

June 29, 2023

Alberta Environment and Protected Areas (AEPA) Monitoring Branch 11th Floor Oxbridge Place 9820-106 Street Edmonton, Alberta T5K 2J6

RE: Monthly Ambient Air Monitoring Report

May 2023

Clean Harbors Canada, Inc. Approval 10348-03-01

To whom it may concern:

Clean Harbors Canada, Inc. (Clean Harbors) is presenting this Monthly Ambient Air Monitoring Report, which was prepared by GHD Limited (Consultant), for the reporting period of May 2023, to Alberta Environment and Protected Areas (AEPA). The Clean Harbors Ryley Industrial Waste Management Facility (Facility) is located in SE 09-050-17 W4M near Ryley, Alberta.

This ambient air monitoring program is conducted in accordance with the requirements outlined in the facility's amended Environmental Protection and Enhancement Act (EPEA) Approval, Approval No. 10348-03-01 (Approval). Clean Harbors' original Ambient Air Monitoring Program for Approval No. 10348-03-00 was initially approved on June 24, 2009. As part of the amended Approval requirements, the Facility submitted an Enhanced Ambient Air Quality Monitoring Program to AEPA (formerly AEP) on September 14, 2022 (no formal approval has been provided by AEPA). Operating under the Approval and the submitted program, Clean Harbors operates the following ambient air monitoring stations:

Wind

- Facility Meteorological Station AEPA Station ID 00010348-C-1
- Facility Site Station AEPA Station ID 00010348-C-2
- Ryley School Station AEPA Station ID 00010348-C-3

TSP

- Facility Site Station AEPA Station ID 00010348-I-2
- Ryley School Station AEPA Station ID 00010348-I-3
- Highway 854 Lift Station AEPA Station ID 00010348-I-1

PM₁₀

Highway 854 Lift Station – AEPA Station ID 00010348-I-1

Included in this report are the following:

- Summary of the ambient air monitoring program for May 2023
- Summary of AMD Electronic Transfer System submittals
- Results for Total Suspended Particulate Matter (TSP) reported in μg/m³
- Results for Particulate Matter < 10 microns (PM₁₀) reported in μg/m³
- Results for metals if the TSP or PM₁₀ results were >50 μg/m³
- Results for Total Non-Methane Organic Compounds (TNMOC) and Volatile Organic Compounds (VOC)
- · Wind frequency distribution tables, wind rose and monthly uptime

Should there be any questions and comments regarding this report, please do not hesitate to contact the undersigned.

Yours truly,

CLEAN HARBORS CANADA INC.

Ctan Yuha

Stan Yuha

Facility Manager Ryley Facility

Alberta Environment and Protected Areas (AEPA) Monthly Ambient Air Monitoring Report May 2023 Report Completed on June 29, 2023

Clean Harbors Environmental Services Inc.

Approval Number: 10348-03-01

Ryley Facility, Alberta

Table of Contents

1.	Intro	duction		1
	1.1	Contact I	nformation	3
2.	Sumi	mary of Am	nbient Air Monitoring Activities	4
3.	Sumi	mary of Ele	ectronic Transfer System (ETS) Submittals	5
	3.1	AMD App	proval Contravention Form	5
	3.2	AMD XM	L Schema	6
	3.3	Ambient	Air Monitoring Program Laboratory Reports	6
	3.4	Ambient	Air Monitoring Program Calibration Reports	6
4.	Calib	ration and	Operation & Maintenance (O&M) Activities	6
	4.1		leteorological Station for Wind Speed and Direction (AEPA Station ID 8-C-1)	6
	4.2	Facility S	ite Station for Wind Speed and Direction (AEPA Station ID 00010348-C-2)	7
	4.3	Ryley Sc	hool Station for Wind Speed and Direction (AEPA Station ID 00010348-C-3)	7
	4.4	Facility S	ite Station TSP Hi-Vol Sampler (AEPA Station ID 00010348-I-2)	7
	4.5	Ryley Sc	hool Station TSP Hi-Vol Sampler (AEPA Station ID 00010348-I-3)	7
	4.6	Highway	854 Lift Station TSP Hi-Vol Sampler (AEPA Station ID 00010348-I-1)	7
	4.7	Highway	854 Lift Station PM ₁₀ Sampler (AEPA Station ID 00010348-I-1)	8
5.	Ambi	ent Air Mo	nitoring Results	8
	5.1	Meteorol	ogical Data for Wind Speed and Direction	8
		5.1.1	Facility Meteorological Station Data Verification and Validation and Uptime	
		5.1.2	(AEPA Station ID 00010348-C-1)Facility Site Station Data Verification and Validation and Uptime (AEPA	8
		5.1.3	Station ID 00010348-C-2)	9
		5.1.3	Ryley School Station Data Verification and Validation and Uptime (AEPA Station ID 00010348-C-3)	9
	5.2	TSP Con	centrations	9
		5.2.1	Facility Site Station (AEPA Station ID 00010348-I-2)	9
		5.2.2 5.2.3	Ryley School Station (AEPA Station ID 00010348-I-3)Highway 854 Lift Station (AEPA Station ID 00010348-I-1)	9 10
	5.3		ncentrations	
	0.0	5.3.1	Highway 854 Lift Station (AEPA Station ID 00010348-I-1)	
	5.4		TNMOC Concentrations	
		5.4.1	Highway 854 Lift Station (AEPA Station ID 00010348-I-1)	
	5.5	Metal Co	ncentrations	
		5.5.1	Facility Site Station (AEPA Station ID 00010348-I-2)	10
		5.5.2	Ryley School Station (AEPA Station ID 00010348-I-3)	11
	5.6	5.5.3	Highway 854 Lift Station (AEPA Station ID 00010348-I-1)	
•	5.6	•		
6.	Conc	iusions		12

Table Index

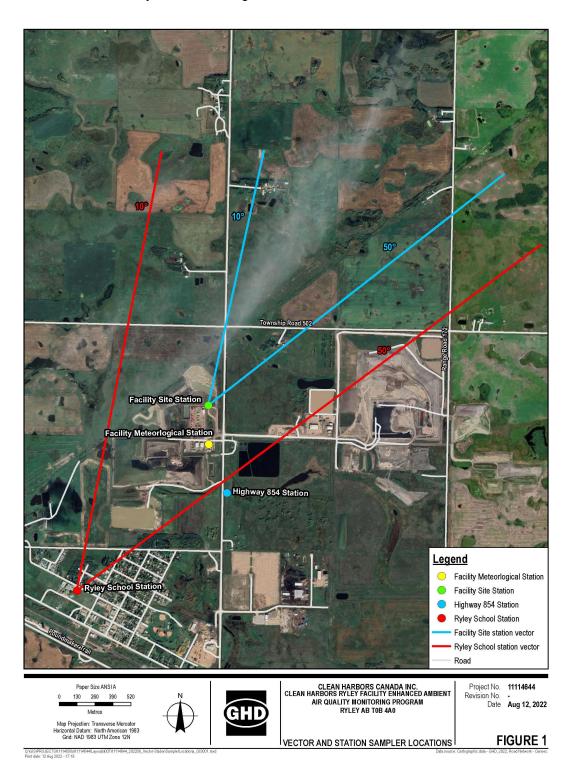
Table 1	Average Wind Speed – Facility Meteorological Station
Table 2	Average Wind Speed – Facility Site Station
Table 3	Average Wind Speed – Ryley School Station
Table 4	Most Frequent Wind Direction – Facility Meteorological Station
Table 5	Most Frequent Wind Direction – Facility Site Station
Table 6	Most Frequent Wind Direction – Ryley School Station
Table 7	Frequency Distribution – Facility Meteorological Station
Table 8	Frequency Distribution – Facility Site Station
Table 9	Frequency Distribution – Ryley School Station
Table 10	TSP Concentrations – Facility Site Station
Table 11	TSP Concentrations – Ryley School Station
Table 12	TSP Concentrations – Highway 854 Lift Station
Table 13	PM ₁₀ Concentrations – Highway 854 Lift Station
Table 14	VOC and TNMOC – Highway 854 Lift Station
Table 15	TSP Metals Analysis – Facility Site Station
Table 16	TSP Metals Analysis – Ryley School Station
Table 17	TSP Metals Analysis – Highway 854 Lift Station
Table 18	PM ₁₀ Metals Analysis – Highway 854 Lift Station

Figure Index

Figure 1 Vector and Sampler Station Locations

Appendices

Appendix A Facility Meteorological Station Calibration Report


Appendix B Sampling Field Sheets

Appendix C Wind Class Frequency Distribution Graphs and Wind Rose

Appendix D Chain of Custody Forms and Laboratory Analytical Reports

1. Introduction

The Facility operates the following ambient air monitoring stations to assess ambient air quality at and around the Facility as shown in Figure 1.

- Upwind intermittent ambient air quality monitoring station, known as the Facility Site Station (AEPA Station ID 00010348-I-2), located at 50114 Range Road 173, Ryley, Alberta (53°18'13.11"N and 112°25'5.81"W). At this location, a Tisch TE-5170V VFC High Volume TSP Sampler (TSP Hi-Vol Sampler) is located against the Facility perimeter fence, north of the vehicle staging road.
- 2. Downwind intermittent ambient air quality monitoring station, known as the Ryley School Station (AEPA Station ID 00010348-I-3), located at 5211 52 Avenue, Ryley, Alberta (53°17'28.99"N and 112°25'55.81"W). At this location, a TSP Hi-Vol Sampler is located on the roof of the Ryley School.

For these two locations, samples are collected and analyzed for the following: total suspended particulate matter (TSP) (typically with diameter less than 35 microns (μ m)). Additionally, TSP samples that exceed 50 micrograms per cubic metre (50 μ g/m³) are analyzed for a target list of metals. The samplers are programmed to run for approximately 24-hours. All samples are collected for a total of 24-hours by intermittent sampling when the wind speed is greater than 5 km/hr and wind direction is blowing from the northeast towards the southwest.

- 3. Intermittent monitoring station, known as the Highway 854 Lift Station (AEPA Station ID 00010348-I-1), located on Secondary Road 854, approximately 350 metres southeast of the Facility (Latitude: 53°17′52.66″N, Longitude: 112°24′57.87″W). At this location, a TSP Hi-Vol Sampler and a Partisol FRM 2000 PM₁0 Sampler (PM₁0 Sampler) will be located on the roof of the lift station. Samples are collected and analyzed for the following: TSP, particulate matter less than or equal to 10 μm in diameter (PM₁0), volatile organic compounds (VOCs), and total non-methane organic compounds (TNMOC). Additionally, TSP or PM₁0 samples that exceed 50 μg/m³ are analyzed for a target list of metals. Sampling is conducted once every 6-days for a 24-hour sampling period (midnight to midnight) as required by the Facility's Approval. The 6-day sampling frequency will be in alignment with the Government of Canada, National Air Pollution Surveillance Program Canada.ca). To correlate PM₁0 data with TSP data, Clean Harbors will continue PM₁0 sampling at the station for a two-year period.
- 4. Continuous meteorological stations that collect wind speed and wind direction data are also located at the Facility Meteorological Station (AEPA Station ID 00010348-C-1), Upwind Facility Site Station (AEPA Station ID 00010348-C-2), and Downwind Ryley School Station (AEPA Station ID 00010348-C-3). The anemometer equipment used to measure this data includes three R. M. Young 05305-10A Wind Monitor-Ags.

All sampling and monitoring is conducted in accordance with the Facility's amended Approval (Approval No. 10348-03-01) and the Alberta Air Monitoring Directive, 2016 (AMD).

1.1 Contact Information

As required by AMD Chapter 9, Section 2, contact information is provided for the following Facility personnel and Contractors that assisted with the performance of the Facility's Air Monitoring Program.

	Contact Information
Name	Mr. Stan Yuha
Title	Plant Manager
Company	Clean Harbors
Responsibilities	Report Certifier/ETS Submitter
Address	PO Box 390, Ryley, AB T0B 4A0
Phone	780-663-2509
Email	yuha.stan@cleanharbors.com
Name	Mr. Todd Webb
Title	Laboratory Chemist
Company	Clean Harbors
Responsibilities	Station Field Operator and Field Sampler
Address	PO Box 390, Ryley, AB T0B 4A0
Phone	780-663-2513
Email	webb.todd@cleanharbors.com
Name	Mr. Pooya Shariaty
Title	Senior Air Quality Engineer/Project Manager
Company	GHD Limited
Responsibilities	Senior QA/QC
Address	3445-114 th Ave. SE, Suite 103 Calgary, AB
Phone	403-538-7479
Email	Pooya.shariaty@ghd.com
Name	Ms. Stepheney Davey
Title	Air Quality Engineer in Training
Company	GHD Limited
Responsibilities	Maintenance/Calibration Services/Report Preparer/ETS
Responsibilities	Submitter
Address	10250 101 Street NW, Suite 640, Edmonton, AB
Phone	780-229-3687
Email	Stepheney.davey@ghd.com
Company	Innotech
Responsibilities	Laboratory Analytical Services
Address	PO Bag 4000, Vegreville, Alberta
Phone	780-632-8211
Email	EAS.Results@albertainnovates.ca

2. Summary of Ambient Air Monitoring Activities

The following ambient air monitoring activities were conducted during the month of May 2023.

Activity	Completed (Y/N)	Date(s)
Wind – Fac	cility Meteorolog	gical Station
Wind Speed/Direction Sensor Calibration	N	March 18, 2022 ⁽¹⁾
Changes to the Wind Speed/Direction Sensor	N	-
Wind	- Facility Site	Station
Wind Speed/Direction Sensor Calibration	N	Due for calibration Summer 2023 ⁽²⁾
Changes to the Wind Speed/Direction Sensor	N	-
	- Ryley School	Station
Wind Speed/Direction Sensor Calibration	N	Due for calibration Summer 2023 ⁽²⁾
Changes to the Wind Speed/Direction Sensor	N	-
	- Facility Site S	Station
TSP Hi-Vol Sampler Calibration	N	-
Changes to the TSP Hi-Vol Sampler	N	-
TSP Samples Collected	Y	May 1 – May 26, 2023
TSP Metal Analysis Conducted	Y	May 26, 2023
TSP Sampler Maintenance Activities	Y	May 26, 2023
TSP -	- Ryley School	Station
TSP Hi-Vol Sampler Calibration	N	-
Changes to the TSP Hi-Vol Sampler	N	-
TSP Samples Collected	Y	May 1 – May 26, 2023
TSP Metal Analysis Conducted	Y	May 26, 2023
TSP Sampler Maintenance Activities	Y	May 26, 2023
		hway 854 Lift Station
TSP Hi-Vol Sampler Calibration	N	-
PM ₁₀ Sampler Calibration	N	-
Changes to the TSP Hi-Vol Sampler	N	-
Changes to the PM ₁₀ Sampling Station	N	-
		May 6, 2023
TCD Commiss Calls stad	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	May 12, 2023
TSP Samples Collected	Y	May 18, 2023
		May 24, 2023 May 30, 2023
		May 6, 2023
PM ₁₀ Samples Collected	Y	May 12, 2023

Activity	Completed (Y/N)	Date(s)
		May 18, 2023
		May 24, 2023
		May 30, 2023
		May 6, 2023
VOC and TNMOC Samples		May 12, 2023
Collected	Y	May 18, 2023
Concoted		May 24, 2023
		May 30, 2023
		May 18, 2023
		May 24, 2023
TSP Metal Analysis Conducted	Y	
		April 18, 2023 (delayed analysis from
		previous month)
		May 18, 2023
		May 24, 2023
PM ₁₀ Metal Analysis Conducted	Y	
		April 18, 2023 (delayed analysis from
		previous month)
		May 6, 2023
TSP Sampler Maintenance	V	May 12, 2023
Activities	Y	May 18, 2023
		May 24, 2023
		May 30, 2023
		May 6, 2023
PM ₁₀ Sampler Maintenance	Y	May 12, 2023
Activities	Y	May 18, 2023
		May 24, 2023
	Othor	May 30, 2023
Duet Cumpressies A-4: ::4:	Other	
Dust Suppression Activities	N	-

Note: (1) The wind speed/direction sensor on the Facility Site Meteorological Station was checked for calibration on March 18, 2022 and was shown to be within the allowable tolerances and was then re-installed after calibration.

3. Summary of Electronic Transfer System (ETS) Submittals

In addition to the May 2023 monthly report, the following summarized items were submitted to the ETS:

3.1 AMD Approval Contravention Form

An AMD Approval contravention form (AMD1), for AEPA Reference No. 409379, was submitted to the AEPA via the ETS portal. The contravention form was completed due to the Ryley School

⁽²⁾ Instrument was calibrated prior to install in the Fall of 2014 for voluntary reporting.

Station experiencing an anemometer instrument failure between May 1, 2023 and May 26, 2023, resulting in an uptime less than the 90% required under Chapter 6, Section 4.1.3 of the AMD.

3.2 AMD XML Schema

An XML formatted Schema file was submitted to the AEPA via the ETS portal. The XML Schema file contains the results from:

- Wind
 - Facility Meteorological Station AEPA Station ID 00010348-C-1.
 - Facility Site Station AEPA Station ID 00010348-C-2.
 - Ryley School Station AEPA Station ID 00010348-C-3.
- TSP
 - Facility Site Station AEPA Station ID 00010348-I-2.
 - Ryley School Station AEPA Station ID 00010348-I-3.
 - Highway 854 Lift Station AEPA Station ID 00010348-I-1.
- PM₁₀
 - Highway 854 Lift Station AEPA Station ID 00010348-I-1.

3.3 Ambient Air Monitoring Program Laboratory Reports

One laboratory report in PDF file format was submitted to the AEPA via the ETS portal. The PDF file contains the results from AEPA Station ID 00010348-I-1, AEPA Station ID 00010348-I-2, and AEPA Station ID 00010348-I-3.

3.4 Ambient Air Monitoring Program Calibration Reports

One calibration report in PDF file format was submitted to the AEPA via the ETS portal. The PDF file contains the results from AEPA Station ID 00010348-C-1.

4. Calibration and Operation & Maintenance (O&M) Activities

4.1 Facility Meteorological Station for Wind Speed and Direction (AEPA Station ID 00010348-C-1)

The Facility Meteorological Station was taken down and calibrated on March 18, 2022. The station was shown to be within all allowable tolerances, as required by the manufacturer. Provided in Appendix A is the calibration report and record of installation.

There were no changes to the meteorological station during May 2023.

4.2 Facility Site Station for Wind Speed and Direction (AEPA Station ID 00010348-C-2)

The Facility Site Station was last calibrated upon installation. When installed, the station was shown to be within all allowable tolerances, as required by the manufacturer.

During May 2023, Clean Harbors chose to swap the Ryley School Station (AEPA Station ID 00010348-C-3) anemometer with the Facility Site Station (AEPA Station ID 00010348-C-2) anemometer due to AEPA Station ID 00010348-C-3 anemometer program corruption. Per Approval No. 10348-03-01, Clean Harbors is only required to report "a minimum of one (1) meteorological station in each of the Ryley School and Facility Site intermittent ambient air quality monitoring stations" thus, reporting from Station ID 00010348-C-2 is not required as Clean Harbors reports from the Facility Meteorological Station (Station ID 00010348-C-1).

4.3 Ryley School Station for Wind Speed and Direction (AEPA Station ID 00010348-C-3)

The Ryley School Station was last calibrated upon installation. When installed, the station was shown to be within all allowable tolerances, as required by the manufacturer.

As noted above, Clean Harbors chose to swap the AEPA Station ID 00010348-C-3 anemometer with the AEPA Station ID 00010348-C-2 anemometer due to AEPA Station ID 00010348-C-3 anemometer program corruption. Once swapped on May 24th, the wind data was retrieved successfully from AEPA Station ID 00010348-C-3 apart from a brief time period on May 26th.

4.4 Facility Site Station TSP Hi-Vol Sampler (AEPA Station ID 00010348-I-2)

The sampling activities for the Tisch TE-5170V VFC High Volume TSP Sampler (TSP Hi-Vol Sampler) are recorded in the field sampling sheets provided in Appendix B.

On a quarterly basis, performance audits are completed on the TSP Hi-Vol Sampler. A quarterly audit was performed on March 10, 2023.

4.5 Ryley School Station TSP Hi-Vol Sampler (AEPA Station ID 00010348-I-3)

The sampling activities for the TSP Hi-Vol Sampler are recorded in the field sampling sheets provided in Appendix B.

On a quarterly basis, performance audits are completed on the TSP Hi-Vol Sampler. A quarterly audit was performed on March 10, 2023.

4.6 Highway 854 Lift Station TSP Hi-Vol Sampler (AEPA Station ID 00010348-I-1)

The sampling activities for the TSP Hi-Vol Sampler are recorded in the field sampling sheets provided in Appendix B.

On a quarterly basis, performance audits are completed on the TSP Hi-Vol Sampler. A quarterly audit was performed on March 10, 2023.

4.7 Highway 854 Lift Station PM₁₀ Sampler (AEPA Station ID 00010348-I-1)

Maintenance activities for the Thermo Scientific™ Partisol 2000i-Federal Reference Method (FRM) PM₁₀ Sampler included inlet cleaning and leak checks that were conducted before each sampling event in May 2023. The pre-sampling maintenance activities are recorded in the field sampling sheets provided in Appendix B.

On a quarterly basis, performance audits are completed on the TSP Hi-Vol Sampler. A quarterly audit was performed on March 10, 2023.

5. Ambient Air Monitoring Results

The following section presents the results from the ambient air monitoring program for the Facility Meteorological Station (AEPA Station ID 00010348-C-1), Facility Site Station (AEPA Station ID 00010348-C-2), Ryley School Station (AEPA Station ID 00010348-C-3), Highway 854 Lift Station (AEPA Station ID 00010348-I-1), Facility Site Station (AEPA Station ID 00010348-I-2), and Ryley School Station (AEPA Station ID 00010348-I-3) conducted in May 2023. Where applicable, comparisons were made to Alberta Ambient Air Quality Objectives (AAAQO) for parameters that had 24-hour average objectives. These parameters are TSP and some of the VOCs including 0,m,p-xylene, hexane, and toluene. For the parameter objectives with averaging periods other than 24-hours, Section 7.1.2 of the Air Quality Model Guideline was used to covert the measured values to the corresponding AAAQO averaging periods prior to comparison. For all other parameters, AAAQO have not been established.

5.1 Meteorological Data for Wind Speed and Direction

In accordance with the Approval and the AMD, the Facility is required to collect wind speed and directional data continuously for the Facility Meteorological Station, Facility Site Station, and Ryley School Station. Tables 1 - 3 present the hourly and 24-hour average wind speeds, Tables 4 - 6 present the hourly and 24-hour most frequent wind direction data (degrees from north), and Tables 7 - 9 present the Wind Class Frequency Distribution for May 2023 from the Facility Meteorological Station, Facility Site Station, and Ryley School Station, respectively. Appendix C provides graphical representations of the Wind Class Frequency Distribution and the Wind Roses based on Tables 1 – 9.

5.1.1 Facility Meteorological Station Data Verification and Validation and Uptime (AEPA Station ID 00010348-C-1)

Based on the verification and validation process conducted for the meteorological data that was collected in May 2023, it was determined that 100 percent of the data is valid, which represents 100 percent uptime of the meteorological station. This is above the 90 percent uptime limit required for compliance, as per the Approval.

5.1.2 Facility Site Station Data Verification and Validation and Uptime (AEPA Station ID 00010348-C-2)

As noted above, Clean Harbors chose to swap the Ryley School Station (AEPA Station ID 00010348-C-3) anemometer with the Facility Site Station (AEPA Station ID 00010348-C-2) anemometer due to AEPA Station ID 00010348-C-3 anemometer program corruption. Per Approval No. 10348-03-01, Clean Harbors is only required to report "a minimum of one (1) meteorological station in each of the Ryley School and Facility Site intermittent ambient air quality monitoring stations" thus, reporting from Station ID 00010348-C-2 is not required as Clean Harbors reports from the Facility Meteorological Station (Station ID 00010348-C-1).

5.1.3 Ryley School Station Data Verification and Validation and Uptime (AEPA Station ID 00010348-C-3)

Based on the verification and validation process conducted for the meteorological data that was collected in May 2023, it was determined that 24.2 percent of the data is valid, which represents 24.2 percent uptime of the meteorological station. This is below the 90 percent uptime limit required for compliance, as per the Approval. The missing wind data was due to an instrument malfunction regarding the anemometer at the Ryley School Station. The anemometer program had been corrupted and the instrument was recording zeros from May 1st until May 24th (ongoing issue which was initially reported in January 2023) until the anemometer was replaced. The Facility confirmed that several unsuccessful attempts were made to reprogram the instrument prior to swapping the instrument with the Facility Site Station. Clean Harbors submitted a 7-day reference letter to the AEPA on February 10, 2023 (reference number # 409379) upon learning about the contravention. Per guidance from AEPA, "the incident will remain open pending confirmation that the station is fully operational."

5.2 TSP Concentrations

AAAQO are specified for TSP at 100 $\mu g/m^3$ (24-hour averaging period). In accordance with the Facility's Approval, TSP samples that exceed 50 $\mu g/m^3$ are analyzed for a target list of metals. Appendix B provides the field sheets completed for each sampling event. Appendix D provides the chain of custody forms and laboratory analytical reports.

5.2.1 Facility Site Station (AEPA Station ID 00010348-I-2)

Table 10 presents the results of the sampling conducted for TSP from the Facility Site Station. The TSP sample collected in May 2023 was shown to have an elevated TSP concentration of 110.465 $\mu g/m^3$ which is above the 100 $\mu g/m^3$ AAAQO threshold. It should be noted that Alberta experienced an unprecedented number of wildfires during this time which led to numerous regional air quality advisories resulting from wildfire smoke. The TSP exceedance for May 2023 is likely a result of the background air quality and not related to the Facility. As such, no contravention form was submitted due to this exceedance.

5.2.2 Ryley School Station (AEPA Station ID 00010348-I-3)

Table 11 presents the results of the sampling conducted for TSP from the Ryley School Station. The TSP sample collected in May 2023 was shown to have an elevated TSP concentration of 119.868 μ g/m³, which is above the 100 μ g/m³ AAAQO threshold. It should be noted that Alberta

experienced an unprecedented number of wildfires during this time which led to numerous regional air quality advisories resulting from wildfire smoke. The TSP exceedance for May 2023 is likely a result of the background air quality and not related to the Facility. As such, no contravention form was submitted due to this exceedance.

5.2.3 Highway 854 Lift Station (AEPA Station ID 00010348-I-1)

Table 12 presents the results of the sampling conducted for TSP from the Highway 854 Lift Station.

5.3 PM₁₀ Concentrations

AAAQO are specified for TSP at 100 $\mu g/m^3$ and Particulate Matter ≤ 2.5 microns (PM_{2.5}) at 29 $\mu g/m^3$ (24-hour averaging period). There is currently no AAAQO specified for PM₁₀ for a 24-hour averaging period in Alberta. To correlate PM₁₀ data with TSP data, Clean Harbors will continue PM₁₀ sampling at the station for a two-year period. In accordance with the Facility's Approval, PM₁₀ samples that exceed 50 $\mu g/m^3$ are analyzed for a target list of metals. Appendix B provides the field sheets completed for each sampling event. Appendix D provides the chain of custody forms and laboratory analytical reports.

5.3.1 Highway 854 Lift Station (AEPA Station ID 00010348-I-1)

Table 13 presents the results of the sampling conducted for PM₁₀.

5.4 VOC and TNMOC Concentrations

There are three VOC parameters that have corresponding AAAQO with 24-hour averaging periods including o,p,m-xylene, hexane and toluene. Appendix B provides the field sheets completed for each sampling event. Appendix D provides the chain of custody forms and laboratory analytical reports.

5.4.1 Highway 854 Lift Station (AEPA Station ID 00010348-I-1)

Table 14 presents the VOC and TNMOC concentrations measured in May 2023. There were no exceedances for the parameters with AAAQO in May 2023.

5.5 Metal Concentrations

In accordance with the Facility's Approval, if collected TSP or PM_{10} samples show exceedances over 50 μ g/m³ after gravimetric analysis, a subsequent filter particulate analysis is done using inductively coupled plasma mass spectroscopy (ICP-MS) for 21 trace elements. There are four parameters that have corresponding AAAQO with 1 hour averaging periods including arsenic, chromium, lead, and nickel. The sample results were converted to a 1-hour averaging period for comparison with the sample AAAQO. If metal analysis was conducted, Appendix B provides the field sheets completed for each sampling event. Appendix D provides the chain of custody forms and laboratory analytical reports.

5.5.1 Facility Site Station (AEPA Station ID 00010348-I-2)

The TSP sample collected in May 2023 was above 50 μ g/m³ and as such, analysis for metals was conducted on the sample. Facility Test #102 (HV-22-12-13) was shown to have an elevated TSP

concentration of $110.465 \,\mu\text{g/m}^3$, which is over the $50 \,\mu\text{g/m}^3$ threshold. This sample was sent for additional analysis and the results for this test can be found in Table 15 of this report. There were no exceedances for the parameters with AAAQO in May 2023.

5.5.2 Ryley School Station (AEPA Station ID 00010348-I-3)

The TSP sample collected in May 2023 was above $50 \,\mu g/m^3$ and as such, analysis for metals was conducted on the sample. School Test #102 (HV-22-12-14) was shown to have an elevated TSP concentration of 119.868 $\mu g/m^3$, which is over the $50 \,\mu g/m^3$ threshold. This sample was sent for additional analysis and the results for this test can be found in Table 16 of this report. There were no exceedances for the parameters with AAAQO in May 2023.

5.5.3 Highway 854 Lift Station (AEPA Station ID 00010348-I-1)

TSP

Two of the TSP samples collected in May 2023 were above 50 μ g/m³ and as such, analysis for metals was conducted on the samples. Facility Test #842 (HVF-23-03-09) and Facility Test #843 (HVF-23-03-10) were shown to have elevated TSP concentrations of 88.055 μ g/m³ and 84.329 μ g/m³, which are over the 50 μ g/m³ threshold. These samples were sent for additional analysis and the results for Test #842 and Test #843 can be found in Table 17 of this report. Test #837 was sent for additional analysis in April though, due to laboratory delays, the results were not yet received when the April report was submitted. As such, the metal analysis results for Test #837 are included in the May 2023 monthly report submission (found in Table 17). There were no exceedances for the parameters with AAAQO in May 2023.

PM₁₀

None of the PM $_{10}$ samples collected in May 2023 was above 50 μ g/m 3 . The PM $_{10}$ concentrations measured for Facility Test #842 (C9700051) and Facility Test #843 (C1169901) were less than the 50 μ g/m 3 threshold, 38.675 μ g/m 3 and 28.210 μ g/m 3 , respectively; however, as the TSP concentrations for these samples were above the 50 μ g/m 3 threshold (as noted above), the corresponding PM $_{10}$ samples were sent for additional analysis. The results for Test #842 and Test #843 can be found in Table 18 of this report. Test #837 was sent for additional analysis in April though, due to laboratory delays, the results were not yet received when the April report was submitted. As such, the metal analysis results for Test #837 are included in the May 2023 monthly report submission (found in Table 18). There were no exceedances for the parameters with AAAQO in May 2023.

The remainder of the TSP and PM₁₀ samples collected in May 2023 were below 50 μg/m³ and as such analysis for metals was not conducted on those samples.

5.6 Dust Suppression

There were no dust suppression activities, which include using leachate spread on the surface of the active landfill, conducted during May 2023.

6. Conclusions

The following summarizes the Ambient Air Monitoring Program that was conducted in May 2023.

- 1 During May 2023, the Facility Meteorological Station (AEPA Station ID 00010348-C-1) operated at 100 percent uptime. Based on the data verification and validation procedure conducted, this is in compliance with the minimum 90 percent uptime required by the AMD.
- 2 During May 2023, the continuous Facility Site wind Station was not operational. Per the approval, reporting from Station ID 00010348-C-2 is not required as Clean Harbors reports from the Facility Meteorological Station.
- 3 During May 2023, the continuous Ryley School wind Station operated at 24.2 percent uptime. Based on the data verification and validation procedure conducted, this is not in compliance with the minimum 90 percent uptime required by the AMD.
- 4 The TSP concentration measured at the intermittent Facility Site Station from May 1, 2023 to May 26, 2023 was 110.465 μg/m³. The AAAQO exceedance for this month is likely a result of the background air quality due to wildfire smoke and not related to the Facility.
- The TSP concentration measured at the intermittent Ryley School Station from May 1, 2023 to May 26, 2023 was 119.868 μg/m³. The AAAQO exceedance for this month is likely a result of the background air quality due to wildfire smoke and not related to the Facility.
- The TSP concentrations measured at the intermittent Highway 854 Lift Station (AEPA Station ID 00010348-I-1) on May 6, May 12, May 18, May 24, and May 30 were 40.038 μg/m³, 34.729 μg/m³, 88.055 μg/m³, 84.329 μg/m³, and 48.263 μg/m³, respectively.
- The PM₁₀ concentrations measured at the intermittent Highway 854 Lift Station (AEPA Station ID 00010348-I-1) on May 6, May 12, May 18, May 24, and May 30 were 17.273 μg/m³, 11.826 μg/m³, 38.675 μg/m³, 28.210 μg/m³, and 17.156 μg/m³, respectively.
- 8 Based on the VOC and TMNOC results measured at the intermittent Highway 854 Lift Station (AEPA Station ID 00010348-I-1), no exceedances were detected for parameters with applicable AAAQO, which included o,m,p-xylene, hexane and toluene. There are no applicable AAAQO for other parameters that were monitored in May 2023.
- 9 The TSP concentration measured for Facility Test #102 (HV-22-12-13), conducted from May 1, 2023 to May 26, 2023, was above the 50 μg/m³ threshold outlined in the Facility's approval. Because of the elevated TSP concentration, this sample was sent for additional analysis of metals. The results of this test showed that all parameters were below any applicable AAAQO (arsenic, chromium, lead, and nickel).
- 10 The TSP concentration measured for School Test #102 (HV-22-12-14), conducted from May 1, 2023 to May 26, 2023, was above the 50 μg/m³ threshold outlined in the Facility's approval. Because of the elevated TSP concentration, this sample was sent for additional analysis of metals. The results of this test showed that all parameters were below any applicable AAAQO (arsenic, chromium, lead, and nickel).
- 11 The TSP concentrations measured for Facility Test #842 (HVF-23-03-09) and Facility Test #843 (HVF-23-03-10) were over the 50 μg/m³ threshold outlined in the Facility's approval. Because of the elevated TSP concentration, these samples were sent for additional analysis of metals. The results for Test #837 were not received when the April reported was submitted. As such, the

- metal analysis results for Test #837 are included in the May 2023 monthly report submission. The results of these tests showed that all parameters for Test #842, Test #843, and Test #837 were below any applicable AAAQO (arsenic, chromium, lead, and nickel).
- 12 None of the PM₁₀ concentrations measured were over the 50 μg/m³ threshold outlined in the Facility's approval. The PM₁₀ concentrations measured for Facility Test #842 (C9700051) and Facility Test #843 (C1169901) were less than the 50 μg/m³ threshold; however, as the TSP concentrations for these samples were above the 50 μg/m³ threshold, the corresponding PM₁₀ samples were sent for additional analysis. The results for Test #837 were not received when the April reported was submitted. As such, the metal analysis results for Test #837 are included in the May 2023 monthly report submission. The results of these tests showed that all parameters for Test #842, Test #843, and Test #837 were below any applicable AAAQO (arsenic, chromium, lead, and nickel).

Clean Harbors will continue perform their Facility's Ambient Air Monitoring Program in accordance with their Approval and the AMD and evaluate the data to determine impacts on the ambient air quality.

7. Certification

Per the requirements of AMD, Chapter 9, Section 2.3, the following certification is provided for the May 2023 Ambient Air Monitoring Report.

"I certify that I have reviewed and verified this report and that the information is complete, accurate and representative of the monitoring results, reporting timeframe and the specified analysis, summarization and reporting requirements."

Stan Yuha

Plant Manager/Report Certifier

Stan Yuha

END OF REPORT

Tables

TABLE 1

Average Wind Speed (metres/second)
AEPA Station ID 00010348-C-1
Clean Harbors Canada, Inc.
Monthly Ambient Air Monitoring Report
May 2023

								F	Ryley Wi	nd Spe	ed Data	(m/s) -	Month	of May	2023									$\overline{}$
Day/Hour	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1	7.4	7.3	7.8	7.2	6.4	6.4	6.0	5.8	7.7	7.8	9.2	10.3	10.4	10.5	9.6	8.8	8.2	7.7	7.2	5.7	4.8	5.3	6.0	5.8
2	5.5	4.9	3.6	2.5	2.7	3.5	3.4	2.7	3.7	6.2	8.9	9.4	8.4	8.5	7.2	6.2	5.6	3.9	2.3	4.3	3.3	3.2	3.6	3.4
3	2.6	2.9	3.2	3.9	3.6	4.3	3.8	4.5	6.8	8.7	9.2	9.0	7.8	7.3	7.4	7.4	7.3	6.7	5.3	4.0	3.6	3.3	3.6	4.1
4	4.7	4.8	3.5	3.3	1.9	0.7	1.6	1.9	3.4	3.6	3.7	3.1	5.3	6.0	5.6	5.8	6.0	6.0	6.7	5.8	4.6	4.2	4.2	4.0
5	3.8	3.8	4.4	4.1	3.9	3.9	5.0	5.7	6.9	6.7	8.3	8.7	9.4	9.9	9.7	10.1	9.8	9.5	9.8	9.3	7.3	5.8	6.1	6.5
6	6.8	5.9	5.2	5.6	6.3	5.5	5.5	5.9	6.3	8.6	9.1	9.5	9.3	8.7	9.6	8.6	8.4	8.6	7.8	7.5	7.4	5.6	4.6	7.3
7	7.8	7.0	6.2	4.9	3.6	4.1	6.1	9.3	8.1	9.6	10.2	8.9	8.1	8.7	8.7	9.9	9.1	8.1	8.2	6.4	4.8	3.8	6.3	5.5
8	4.1	3.6	3.8	2.7	2.6	3.2	3.5	3.1	4.7	3.7	2.9	3.8	3.8	4.1	7.4	7.5	6.2	6.6	7.0	4.5	2.5	3.0	2.0	1.3
9	1.3	2.0	2.0	1.3	8.0	2.1	1.3	0.9	1.6	1.7	2.1	1.8	2.1	4.5	4.0	4.5	2.0	1.2	5.4	4.6	2.1	1.5	2.4	1.6
10	2.0	2.6	3.4	2.4	2.3	2.0	2.0	2.2	2.3	0.9	0.7	1.1	1.3	1.1	1.8	2.8	1.9	3.7	3.0	4.4	3.3	1.6	1.5	2.7
11	2.2	3.2	1.6	1.4	0.6	1.0	1.6	0.6	0.7	1.2	1.5	1.7	2.3	2.2	2.8	4.8	3.9	3.1	3.4	4.6	6.2	3.1	2.6	1.8
12	1.9	2.6	3.1	3.7	2.6	1.8	1.5	0.9	8.0	0.9	1.2	1.7	2.1	2.9	2.2	2.4	2.1	2.5	2.1	3.0	2.9	2.5	2.0	2.2
13	2.6	2.5	2.6	2.9	2.7	2.2	2.3	2.7	3.1	3.8	5.0	6.3	6.3	6.0	5.7	5.4	5.7	5.8	5.7	4.9	4.1	4.4	5.0	5.3
14	5.1	5.6	5.5	4.5	4.9	3.7	3.0	3.7	4.4	4.8	7.3	7.8	7.2	7.5	7.4	6.8	6.7	6.4	5.9	5.6	4.0	3.1	2.7	3.8
15	4.0	4.5	3.2	3.9	3.8	2.9	3.5	4.1	5.0	5.8	7.2	8.1	8.5	8.0	8.2	7.5	7.0	7.1	7.0	6.1	4.1	3.1	2.6	3.4
16	3.7	3.7	3.5	2.0	2.2	1.2	2.9	7.8	8.5	8.6	9.9	10.1	9.5	9.0	9.1	9.6	8.5	8.2	7.4	4.5	4.2	4.2	3.2	1.0
17	2.1	3.6	4.2	4.4	4.2	4.2	2.3	3.2	5.1	5.9	6.0	7.9	8.5	9.3	9.3	9.0	8.0	8.1	8.3	6.5	5.5	4.2	3.0	4.5
18	2.8	1.2	1.7	1.3	0.3	0.5	1.8	3.7	4.7	3.2	2.3	2.1	2.8	2.5	3.3	3.5	3.9	4.6	5.2	5.8	5.2	4.6	4.7	5.2
19	5.6	5.1	4.7	4.5	4.8	5.1	4.5	4.8	5.0	5.2	4.8	4.0	3.1	3.4	3.6	5.5	7.9	4.0	4.4	3.9	4.6	4.6	4.3	3.4
20	3.3	3.3	2.8	3.1	2.6	2.4	2.0	1.7	1.2	1.4	0.8	0.9	1.3	1.4	2.2	2.9	2.6	4.0	4.8	4.1	3.0	2.7	2.7	2.9
21	3.1	2.7	4.6	3.6	2.8	4.0	3.0	3.5	4.7	3.7	3.2	4.7	4.4	5.3	5.1	6.1	6.6	7.8	7.5	6.4	5.6	4.4	4.3	4.5
22	4.2	3.5	1.7	1.8	2.5	3.6	3.5	3.6	3.3	2.8	2.5	3.9	3.2	2.5	1.5	2.2	3.9	4.0	4.7	4.3	3.1	3.4	2.8	6.4
23	7.5	8.3	8.6	6.7	5.0	5.3	6.2	7.0	7.0	7.7	7.6	9.0	8.7	8.3	7.8	7.5	5.7	4.2	3.2	3.3	8.2	5.8	6.1	5.0
24	5.7	4.6	4.9	4.2	3.5	4.0	3.8	4.4	4.5	4.3	3.2	3.5	4.3	3.9	2.8	3.9	4.2	3.4	2.6	4.4	4.8	3.3	2.3	2.8
25	3.8	2.9	2.8	2.7	2.5	2.9	2.8	3.6	4.5	5.0	6.1	5.3	4.8	4.5	3.3	4.5	4.1	4.0	4.2	2.6	2.3	1.7	1.4	1.1
26	0.5	0.5	1.2	0.6	0.5	1.3	1.4	0.7	0.9	1.3	1.3	1.9	2.5	2.5	2.9	2.8	2.4	2.6	2.9	3.0	2.6	2.3	1.9	2.4
27	2.9	2.8	3.0	2.4	2.3	2.3	2.7	2.4	2.8	2.7	3.8	4.4	3.9	4.1	4.0	4.7	4.2	4.5	6.6	5.9	6.7	5.8	5.0	5.4
28	5.2	5.0	4.4	4.5	4.2	3.5	4.6	4.0	4.4	4.4	3.8	4.2	4.1	3.7	3.9	4.7	4.8	5.3	12.9	6.6	2.2	1.1	1.3	1.3
29	0.5	1.5	0.8	1.5	1.0	0.2	2.9	3.0	2.1	3.8	5.1	5.0	5.1	6.1	6.2	6.2	6.2	5.5	4.2	4.5	3.7	2.6	2.1	2.1
30	2.6	5.1	3.8	5.2	7.1	4.6	2.2	2.7	2.8	4.2	5.3	4.6	5.0	5.3	4.2	7.4	6.0	6.1	6.3	6.6	9.5	6.8	4.6	4.3
31	3.0	2.0	2.9	4.0	3.2	2.5	2.7	3.0	3.1	3.7	4.0	4.9	5.9	6.0	7.0	8.0	7.8	7.5	8.0	6.3	7.2	10.6	10.2	9.3

TABLE 2

Average Wind Speed (metres/second) AEPA Station ID 00010348-C-2 Clean Harbors Canada, Inc. Monthly Ambient Air Monitoring Report May 2023

									Ryley Wi	nd Spe	ed Data	(m/s) -	Month	of May	2023									$\overline{}$
Day/Hour 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 1 (X) (X) <t< th=""></t<>																								
1	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
2	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
3	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
4	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
5	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
6	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
7	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
8	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
9	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
10	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
11	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
12	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
13	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
14	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
15	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
16	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
17	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
18	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
19	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
20	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
21	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
22	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
23	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
24	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
25	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
26	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
27	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
28	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
29	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
30	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
31	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								

Notes:

TABLE 3

Average Wind Speed (metres/second)
AEPA Station ID 00010348-C-3
Clean Harbors Canada, Inc.

Monthly Ambient Air Monitoring Report
May 2023

									Ryley Wi	nd Spe	ed Data	a (m/s) -	Month (of May	2023									
Day/Hour	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
2	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
3	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
4	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
5	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
6	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
7	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
8	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
9	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
10	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
11	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
12	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
13	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
14	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
15	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
16	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
17	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
18	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
19	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
20	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
21	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
22	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
23	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
24	(X)	(X)	(X)	(X)	4.3	3.4	2.4	4.0	3.8	2.5	2.4	4.0	4.3	2.4	1.5	2.2								
25	2.7	2.1	2.0	2.2	1.8	2.7	2.4	3.4	4.2	4.8	5.6	4.7	4.7	3.9	3.6	4.3	3.7	3.8	3.6	2.2	1.8	1.3	8.0	0.4
26	0.8	0.5	1.2	0.6	0.3	1.3	0.5	0.7	1.0	1.3	1.5	(X)	1.8	2.3	2.0	2.3	2.2	2.3	2.7	2.3	1.8	1.5	1.2	1.5
27	2.3	2.1	2.2	1.5	1.2	1.4	2.4	2.0	2.7	2.6	3.6	4.2	4.0	3.3	3.7	3.9	3.4	4.0	5.5	4.6	6.1	4.7	4.0	4.6
28	4.6	4.0	3.3	3.2	3.2	3.5	3.6	2.2	1.2	1.4	2.0	2.1	2.0	1.8	1.7	1.7	1.4	3.2	7.7	2.6	1.3	0.4	0.2	0.2
29	0.2	0.3	0.1	0.5	0.1	0.2	0.5	0.6	1.9	3.3	4.4	4.3	4.7	5.0	4.8	5.1	3.7	2.0	1.8	2.0	1.6	1.2	0.9	1.1
30	1.7	2.6	1.9	2.8	3.8	2.2	1.2	1.0	1.8	3.3	4.1	3.5	3.5	3.1	3.3	6.3	4.3	4.5	5.3	5.1	3.8	3.1	1.9	1.8
31	1.8	1.0	1.3	1.5	0.9	1.0	1.4	1.6	1.9	2.0	2.2	2.7	2.6	3.2	3.6	4.1	4.0	3.3	3.6	2.4	4.7	4.3	3.9	3.6

Notes:

TABLE 4

Average Wind Direction (degrees from North)
 AEPA Station ID 00010348-C-1
 Clean Harbors Canada, Inc.
 Monthly Ambient Air Monitoring Report
 May 2023

							Ryle	y Wind	Direction	n Data	(degree	s, blowi	ng from	ı) - Mon	th of M	ay 202	3							
Day/Hour	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1	128	132	128	129	129	127	130	142	151	150	152	151	154	163	170	171	175	171	174	173	161	164	166	173
2	177	179	202	218	177	182	210	227	270	24	35	39	34	33	33	47	40	41	52	84	28	48	63	104
3	135	139	141	142	141	133	134	140	144	146	145	151	155	160	163	169	165	178	166	159	151	150	147	145
4	149	152	148	152	159	151	109	113	150	152	143	143	145	149	152	136	132	127	131	131	127	144	147	131
5	128	132	146	147	127	113	125	131	122	130	123	121	118	119	111	107	108	109	107	112	114	110	113	114
6	114	114	104	98	110	111	113	112	120	125	121	116	111	110	111	120	116	127	114	118	119	113	114	110
7	93	89	99	101	102	93	79	55	65	81	89	104	118	121	123	125	124	129	132	157	157	130	127	126
8	128	123	120	117	116	119	124	132	136	130	126	132	146	102	121	130	116	180	265	284	295	50	104	125
9	120	238	254	190	173	290	172	179	286	238	125	67	118	211	70	122	66	188	250	261	242	216	165	243
10	280	211	257	292	298	292	312	333	155	215	179	245	158	168	140	182	233	160	84	216	245	149	301	178
11	192	211	227	212	186	197	237	133	131	100	134	185	125	135	127	117	90	99	276	219	140	172	225	235
12	177	172	206	236	181	126	171	201	199	215	226	201	180	156	144	176	170	180	172	169	145	150	158	153
13	167	161	166	187	159	177	175	182	178	188	198	177	176	187	193	193	187	186	182	176	172	175	183	185
14	189	194	196	192	193	190	166	171	196	201	201	195	199	188	192	192	189	189	185	180	179	176	162	180
15	187	188	180	173	173	161	153	156	158	175	175	174	177	184	180	186	190	186	179	177	169	159	155	165
16	164	167	166	173	198	196	268	334	345	350	334	341	332	330	342	334	334	331	322	325	184	17	36	202
17	285	285	278	271	274	278	297	311	329	326	333	315	299	281	229	258	280	131	24	43	59	81	98	92
18	113	136	132	212	197	172	127	137	127	123	135	138	134	136	135	151	148	158	148	143	139	140	149	154
19	159	165	163	169	164	166	166	180	185	196	199	199	213	270	279	292	280	264	251	243	245	261	282	302
20	302	312	308	297	301	307	312	235	130	53	54	97	135	141	147	136	132	123	134	141	137	149	152	143
21	142	165	175	198	135	116	107	104	123	136	140	140	124	117	121	124	128	127	124	118	118	108	104	110
22	118	124	189	234	54	42	47	57	49	44	133	179	111	116	135	186	283	290	295	303	289	288	283	86
23	100	105	118	130	148	138	145	157	156	155	149	142	155	166	176	189	201	215	218	276	325	345	345	330
24	326	322	317	318	312	316	309	325	322	318	168	251	244	252	282	288	313	235	225	305	335	332	325	305
25	307	299	297	313	328	322	163	18	28	121	286	139	174	111	64	49	57	48	53	52	60	62	46	52
26	226	300	292	258	240	253	225	228	172	159	147	98	108	93	117	112	117	104	109	124	121	128	152	152
27	146	149	151	157	143	141	150	156	146	157	155	170	168	167	177	158	168	164	149	144	173	178	177	174
28	169	170	168	174	181	164	180	213	243	248	236	239	243	252	257	248	276	286	319	295	206	188	291	254
29	230	274	295	289	259	170	252	242	190	148	177	187	178	172	181	182	278	132	62	78	63	45	177	262
30	183	302	26	67	97	92	205	151	59	101	123	107	93	102	115	141	117	107	129	136	149	36	151	73
31	103	253	322	228	35	256	324	296	258	261	148	110	36	59	33	27	30	82	22	65	328	327	77	15

TABLE 5

Average Wind Direction (degrees from North) AEPA Station ID 00010348-C-2 Clean Harbors Canada, Inc. Monthly Ambient Air Monitoring Report May 2023

							Ryle	y Wind	Directio	n Data	degrees	s, blowi	ng from	ı) - Mor	nth of M	ay 202	3							
Day/Hour	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
2	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
3	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
4	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
5	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
6	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
7	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
8	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
9	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
10	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
11	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
12	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
13	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
14	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
15	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
16	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
17	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
18 19	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
20	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
21	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
22	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X) (X)
23	(X) (X)	(X) (X)	(X)	(X) (X)	(X) (X)	(X) (X)	(X) (X)	(X)	(X) (X)	(X)	(X) (X)	(X) (X)	(X) (X)	(X)	(X) (X)	(X) (X)	(X) (X)	(X) (X)	(X) (X)	(X) (X)	(X)	(X)	(X) (X)	(X)
24	(X)	(X)	(X)	(X)	(X)		(X)	• '	(X)		(X)	(X)	(X)	(X)	(X)		(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
25	(X)	(X)	(X)	(X)	(X)	(X) (X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X) (X)	(X)	(X)	(X)	(X)	(X) (X)	(X)	(X)	(X)
26	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
27	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
28	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
29	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
30	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
31	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)

Notes:

TABLE 6

Most Frequent Wind Direction (degrees from North)
 AEPA Station ID 00010348-C-3
 Clean Harbors Canada, Inc.
 Monthly Ambient Air Monitoring Report
 May 2023

							Ryle	y Wind	Directio	n Data	(degree	s, blowi	ng fron	n) - Mor	nth of M	ay 202	3							
Day/Hour	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
2	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
3	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
4	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
5	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
6	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
7	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
8	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
9	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
10	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
11	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
12	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
13	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
14	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
15	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
16	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
17	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
18	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
19	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
20	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
21	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
22	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
23	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
24	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	277	269	279	274	315	316	178	321	329	323	313	280
25	286	269	271	290	314	334	306	120	32	217	335	281	236	190	97	47	48	41	45	43	50	49	39	67
26	267	262	246	236	194	243	216	229	149	138	175	(X)	100	76	109	127	118	128	130	130	119	127	153	147
27	136	137	137	136	124	132	133	146	135	152	148	160	169	165	176	157	152	159	141	142	158	163	164	164
28	156	164	166	166	160	155	174	225	255	245	233	237	245	233	261	256	278	290	317	289	216	219	209	221
_	238	213	207	275	261	264	257	244	176	143	163	178	171	172	177	176	284	116	62	84 425	53	59	172	211
30	246	273	68	74 105	99	96	229	107	68	107	116	108	102	96	110	133	117	110	130	135	181	33	209	75 06
31	115	248	326	195	143	295	328	300	244	318	169	94	35	47	23	34	21	44	20	218	323	303	101	96

Notes:

Wind Frequency Distribution AEPA Station ID 00010348-C-1 Clean Harbors Canada, Inc. Monthly Ambient Air Monitoring Report May 2023

TABLE 7

			Frequen	cy Distribution	Report: Ryle	y, Alberta - M	ay 2023			
			Wind Spe	eed (m/s) and	Number of Oc	curences (min	utes)			Total Occurrences
Direction	Angle	< 0.5	0.5 to < 2.1	2.1 to < 3.6	3.6 to < 5.7	5.7 to < 8.8	8.8 to < 11.1	>= 11.1	%	by Direction
North	> 337.5 - 22.5	98	688	1033	1203	958	483	164	10.4%	4627
Northeast	> 22.5 - 67.5	102	652	890	806	561	210	33	7.3%	3254
East	> 67.5 - 112.5	100	549	775	1310	1124	414	107	9.8%	4379
Southeast	> 112.5 - 157.5	98	1145	3053	4003	3247	944	207	28.4%	12697
South	> 157.5 - 202.5	147	1081	2232	3579	2403	479	85	22.4%	10006
Southwest	> 202.5 - 247.5	161	490	644	793	200	31	0	5.2%	2319
West	> 247.5 - 292.5	154	778	739	991	209	8	1	6.5%	2880
Northwest	> 292.5 - 337.5	131	964	1505	1073	492	205	108	10.0%	4478
Missing/Inv	valid Hours								0.0%	0
Total Occuren	ces by Speed	991	6347	10871	13758	9194	2774	705		44640
Occurent	ces by %	2.2%	14.2%	24.4%	30.8%	20.6%	6.2%	1.6%	100.00%	

TABLE 8

Wind Frequency Distribution AEPA Station ID 00010348-C-2 Clean Harbors Canada, Inc. Monthly Ambient Air Monitoring Report May 2023

Frequency Distribution Report: Ryley, Alberta - May 2023										
			Wind Spe	eed (m/s) and			Total Occurrences			
Direction	Angle	< 0.5	0.5 to < 2.1	2.1 to < 3.6	3.6 to < 5.7	5.7 to < 8.8	8.8 to < 11.1	>= 11.1	%	by Direction
North	> 337.5 - 22.5	0	0	0	0	0	0	0	0.0%	0
Northeast	> 22.5 - 67.5	0	0	0	0	0	0	0	0.0%	0
East	> 67.5 - 112.5	0	0	0	0	0	0	0	0.0%	0
Southeast	> 112.5 - 157.5	0	0	0	0	0	0	0	0.0%	0
South	> 157.5 - 202.5	0	0	0	0	0	0	0	0.0%	0
Southwest	> 202.5 - 247.5	0	0	0	0	0	0	0	0.0%	0
West	> 247.5 - 292.5	0	0	0	0	0	0	0	0.0%	0
Northwest	> 292.5 - 337.5	0	0	0	0	0	0	0	0.0%	0
Missing/Inv	Missing/Invalid Hours						100%	44640		
Total Occuren	ces by Speed	0	0	0	0	0	0	0		44640
Occurent	ces by %	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	100.00%	

Wind Frequency Distribution
AEPA Station ID 00010348-C-3
Clean Harbors Canada, Inc.
Monthly Ambient Air Monitoring Report
May 2023

TABLE 9

Frequency Distribution Report: Ryley, Alberta - May 2023										
			Wind Spe	eed (m/s) and			Total Occurrences			
Direction	Angle	< 0.5	0.5 to < 2.1	2.1 to < 3.6	3.6 to < 5.7	5.7 to < 8.8	8.8 to < 11.1	>= 11.1	%	by Direction
North	> 337.5 - 22.5	110	657	600	565	116	1	0	4.6%	2049
Northeast	> 22.5 - 67.5	50	503	305	233	27	1	0	2.5%	1119
East	> 67.5 - 112.5	31	297	335	192	32	0	0	2.0%	887
Southeast	> 112.5 - 157.5	47	731	659	624	239	6	0	5.2%	2306
South	> 157.5 - 202.5	70	164	333	473	100	1	0	2.6%	1141
Southwest	> 202.5 - 247.5	180	307	115	64	10	0	0	1.5%	676
West	> 247.5 - 292.5	310	649	222	13	2	0	0	2.7%	1196
Northwest	> 292.5 - 337.5	107	519	393	301	99	18	7	3.2%	1444
Missing/Inv	Missing/Invalid Hours					75.8%	33822			
Total Occuren	ices by Speed	905	3827	2962	2465	625	27	7		44640
Occurent	ces by %	2.0%	8.6%	6.6%	5.5%	1.4%	0.1%	0.0%	100.00%	

TABLE 10

Total Suspended Particulate (TSP) Matter Results AEPA Station ID 00010348-I-2 Clean Harbors Canada, Inc. Monthly Ambient Air Monitoring Report May 2023

Filter ID	HV-22-12-13
Test ID	Facility Test # 102
Sample Start Date/Time	23/05/01 15:00:00
Sample End Date/Time	23/05/26 11:00:00
Sampling Time (hours)	25.17
Flow Rate (m³/min)	1.229
Volume (m³)	1855.79
TSP Mass (mg)	205
TSP Concentration (ug/m³)	110.465
Sampler Name	TE-5170V / P8580 TSP VFC

TABLE 11

Total Suspended Particulate (TSP) Matter Results AEPA Station ID 00010348-I-3 Clean Harbors Canada, Inc. Monthly Ambient Air Monitoring Report May 2023

Filter ID	HV-22-12-14
Test ID	School Test # 102
Sample Start Date/Time	23/05/01 15:00:00
Sample End Date/Time	23/05/26 11:00:00
Sampling Time (hours)	34.08
Flow Rate (m³/min)	1.232
Volume (m³)	2519.44
TSP Mass (mg)	302
TSP Concentration (ug/m³)	119.868
Sampler Name	TE-5170V / P8581 TSP VFC

TABLE 12

Total Suspended Particulate (TSP) Matter Results AEPA Station ID 00010348-I-1 Clean Harbors Canada, Inc. Monthly Ambient Air Monitoring Report May 2023

Filter ID	HVF-23-03-07	HVF-23-03-06	HVF-23-03-09	HVF-23-03-10	HVF-23-03-08
Test ID	840	841	842	843	844
Sample Start Date/Time	23/05/06 00:00:00	23/05/12 00:00:00	23/05/18 00:00:00	23/05/24 00:00:00	23/05/30 00:00:00
Sample End Date/Time	23/05/07 00:00:00	23/05/13 00:00:00	23/05/19 00:00:00	23/05/25 00:00:00	23/05/31 00:00:00
Sampling Time (hours)	23.85	23.78	23.91	24	23.81
Flow Rate (m³/min)	1.227	1.227	1.227	1.227	1.227
Volume (m³)	1755.84	1750.68	1760.25	1766.88	1752.89
TSP Mass (mg)	70.3	60.8	155	149	84.6
TSP Concentration (ug/m³)	40.038	34.729	88.055	84.329	48.263
Sampler Name	TE-5170V / P11162 TSP VFC	TE-5170V / P11162 TSP VFC		TE-5170V / P11162 TSP VFC	TE-5170V / P11162 TSP VFC

TABLE 13

Particulate Matter PM₁₀ Results AEPA Station ID 00010348-I-1 Clean Harbors Canada, Inc. Monthly Ambient Air Monitoring Report May 2023

Filter ID	C9700052	C9700085	C9700051	C1169901	C1169902
Test ID	840	841	842	843	844
Sample Start Date/Time	23/05/06 00:00:00	23/05/12 00:00:00	23/05/18 00:00:00	23/05/24 00:00:00	23/05/30 00:00:00
Sample End Date/Time	23/05/07 00:00:00	23/05/13 00:00:00	23/05/19 00:00:00	23/05/25 00:00:00	23/05/31 00:00:00
Sampling Time (hours)	24	24	24	24	24
Flow Rate (I/min)	16.7	16.7	16.7	16.7	16.7
Volume (m³)	23.1	23	23.4	22.9	22.5
PM ₁₀ Mass (mg)	0.399	0.272	0.905	0.646	0.386
PM ₁₀ Concentration (ug/m ³)	17.273	11.826	38.675	28.210	17.156
Sampler Name	2000 FRM-AE / 200FB209860905				

TABLE 14

VOC and TNMOC Analytical Results AEPA Station ID 00010348-I-1 Clean Harbors Canada, Inc. Monthly Ambient Air Monitoring Report May 2023

		Date Sample ID	6-May-23 840	12-May-23 841	18-May-23 842	24-May-23 843	30-May-23 844
Parameter	Units	AAAQO ⁽¹⁾					
Total Non-Methane Organic Carbon	ppmv	-	< 0.08	< 0.09	< 0.09	< 0.09	< 0.08
1,2,3-Trimethylbenzene	ppbv	-	< 0.08	< 0.09	< 0.09	< 0.09	< 0.08
1,2,4-Trimethylbenzene	ppbv	-	0.08	0.09	< 0.05	0.07	< 0.05
1,3,5-Trimethylbenzene	ppbv	-	0.08	0.09	< 0.05	< 0.06	< 0.05
1-Butene/Isobutylene	ppbv	-	< 0.10	< 0.11	< 0.10	< 0.11	< 0.10
1-Hexene/2-Methyl-1-pentene	ppbv	-	< 0.12	< 0.13	< 0.12	< 0.13	< 0.12
1-Pentene	ppbv	-	< 0.05	< 0.05	< 0.05	< 0.06	< 0.05
2,2,4-Trimethylpentane	ppbv	-	< 0.03	< 0.04	< 0.03	< 0.04	< 0.03
2,2-Dimethylbutane	ppbv	-	0.06	< 0.04	< 0.03	< 0.04	< 0.03
2,3,4-Trimethylpentane	ppbv	-	< 0.03	< 0.04	< 0.03	0.13	< 0.03
2,3-Dimethylbutane	ppbv	-	< 0.15	< 0.16	< 0.15	< 0.17	< 0.15
2,3-Dimethylpentane	ppbv	-	< 0.03	< 0.04	< 0.03	0.08	< 0.03
2,4-Dimethylpentane	ppbv	-	< 0.05	< 0.05	< 0.05	< 0.06	< 0.05
2-Methylheptane	ppbv	-	< 0.03	< 0.04	< 0.03	0.09	< 0.03
2-Methylhexane	ppbv	-	< 0.05	< 0.05	< 0.05	0.22	< 0.05
2-Methylpentane	ppbv	-	< 0.03	< 0.04	0.06	0.45	< 0.03
3-Methylheptane	ppbv	-	< 0.05	< 0.05	< 0.05	0.06	< 0.05
3-Methylhexane	ppbv	-	< 0.03	0.04	< 0.03	0.24	< 0.03
3-Methylpentane	ppbv	-	< 0.03	< 0.04	< 0.03	0.26	< 0.03
Benzene	ppbv	-	< 0.05	< 0.05	0.16	0.46	0.05
cis-2-Butene	ppbv	-	< 0.05	< 0.05	< 0.05	< 0.06	< 0.05
cis-2-Pentene	ppbv	-	< 0.03	< 0.04	< 0.03	< 0.04	< 0.03
Cyclohexane	ppbv	-	< 0.07	0.07	< 0.07	0.27	< 0.07
Cyclopentane	ppbv	-	< 0.03	< 0.04	< 0.03	0.08	< 0.03
Ethylbenzene	ppbv	-	0.11	0.13	< 0.05	0.16	< 0.05
Isobutane	ppbv	-	0.26	0.72	0.49	0.59	0.41
Isopentane	ppbv	-	< 0.07	0.20	0.14	0.92	0.18
Isoprene	ppbv	-	0.04	< 0.04	< 0.03	< 0.04	0.09
Isopropylbenzene	ppbv	-	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
m,p-Xylene	ppbv	161	< 0.07	< 0.07	< 0.07	1.10	0.07
m-Diethylbenzene	ppbv	-	0.10	0.12	< 0.03	< 0.04	< 0.03
m-Ethyltoluene	ppbv	-	0.06	0.07	< 0.05	0.06	< 0.05
Methylcyclohexane	ppbv	-	< 0.03	0.06	< 0.03	0.51	< 0.03
Methylcyclopentane	ppbv	-	< 0.08	< 0.09	< 0.09	0.30	< 0.08
n-Butane	ppbv	-	0.09	0.35	0.21	0.65	0.17
n-Decane	ppbv	-	< 0.10	< 0.11	< 0.10	0.17	< 0.10
n-Dodecane	ppbv	-	< 0.5	< 0.5	< 0.5	< 0.6	
n-Heptane	ppbv	-	< 0.07	0.09	< 0.07	0.45	< 0.07
n-Hexane	ppbv	1990	< 0.05	< 0.05	< 0.05	0.62	0.15
n-Nonane	ppbv	-	< 0.07	< 0.07	< 0.07	0.14	< 0.07
n-Octane	ppbv	-	< 0.03	0.13	< 0.03	0.17	< 0.03
n-Pentane	ppbv	-	< 0.07	0.11	< 0.07	0.93	< 0.07
n-Propylbenzene	ppbv	-	< 0.10	< 0.11	< 0.10	< 0.11	< 0.10
n-Undecane	ppbv	-	< 0.8	< 0.9	< 0.9	< 0.9	< 0.8
o-Ethyltoluene	ppbv	-	0.06	0.07	< 0.03	< 0.04	< 0.03
o-Xylene	ppbv	161	0.06	0.07	< 0.05	0.29	< 0.05
p-Diethylbenzene	ppbv		0.06	0.08	< 0.03	< 0.04	< 0.03
p-Ethyltoluene	ppbv	-	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07
Styrene	ppbv	-	0.13	0.15	< 0.07	< 0.07	< 0.07
Toluene	ppbv	106	< 0.05	0.11	< 0.05	1.80	0.05
trans-2-Butene trans-2-Pentene	ppbv	-	< 0.05	< 0.05	< 0.05	< 0.06	< 0.05
Total VOCs (2)	ppbv ppbv	-	< 0.03 4.590	< 0.04 6.070	< 0.03 4.900	< 0.04 14.210	< 0.03 4.720
Total VOCs **	pppv	-	4.590	0.070	4.900	14.210	4.720

Notes:

⁽¹⁾ Alberta Ambient Air Quality Objectives for a 24 hour averaging period.

⁽²⁾ Total VOCs are calculated under the assumption that values under the detection limit are equal to the detection limit, as per the AMD.

TABLE 15

TSP Metals Analytical Results AEPA Station ID 00010348-I-2 Clean Harbors Canada, Inc. Monthly Ambient Air Monitoring Report May 2023

	Date				
	Sample II) HV-2			
Parameter	Lab Res	ults ⁽¹⁾	(ug/m³) ⁽²⁾	AAAQO ⁽²⁾ (ug/m ³)	
Antimony	276	ng/Filter	3.67E-04	-	
Arsenic	2700	ng/Filter	3.59E-03	0.10	
Barium	21700000	ng/Filter	2.89E+01	-	
Beryllium	188	ng/Filter	2.50E-04	-	
Boron	19400000	ng/Filter	2.58E+01	-	
Cadmium	236	ng/Filter	3.14E-04	-	
Chromium	6510	ng/Filter	8.66E-03	1.0	
Cobalt	1150	ng/Filter	1.53E-03	-	
Copper	96100	ng/Filter	1.28E-01	-	
Iron	2990000	ng/Filter	3.98E+00	-	
Lead	6340	ng/Filter	8.43E-03	1.5	
Manganese	84400	ng/Filter	1.12E-01	-	
Mercury	< 0.70	ng/Filter	9.31E-07	-	
Nickel	18100	ng/Filter	2.41E-02	6	
Selenium	1500	ng/Filter	1.99E-03	-	
Silver	68.9	ng/Filter	9.16E-05	-	
Thallium	86.1	ng/Filter	1.14E-04	-	
Tin	< 0.20	ng/Filter	2.66E-07	-	
Uranium	328	ng/Filter	4.36E-04	-	
Vanadium	6980	ng/Filter	9.28E-03	-	
Zinc	< 1000	ng/Filter	1.33E-03	-	
Sampling Time (hours)	25.17				
Flow Rate (m3/min)	1.229				
Volume Sampled (m ³)	1855.79				

Notes:

⁽¹⁾ These results are from a 25.17 hour averaging period that took place on May 1 to May 26, 2023

⁽²⁾ Measured data have been converted from the measured 25.17 hour avering period to a 1 hour averaging period based on Alberta's Air Quality Model Guideline Section 7.1.2.

TABLE 16

TSP Metals Analytical Results AEPA Station ID 00010348-I-3 Clean Harbors Canada, Inc. Monthly Ambient Air Monitoring Report May 2023

	Date	e 26-	May-23	
	Sample II	O HV-	22-12-14	
Parameter	Lab Res	sults ⁽¹⁾	(ug/m³) ⁽²⁾	AAAQO ⁽²⁾ (ug/m ³)
Antimony	418	ng/Filter	4.46E-04	-
Arsenic	2910	ng/Filter	3.10E-03	0.10
Barium	19700000	ng/Filter	2.10E+01	-
Beryllium	157	ng/Filter	1.67E-04	-
Boron	13400000	ng/Filter	1.43E+01	-
Cadmium	585	ng/Filter	6.24E-04	-
Chromium	12300	ng/Filter	1.31E-02	1.0
Cobalt	1750	ng/Filter	1.87E-03	-
Copper	470000	ng/Filter	5.01E-01	-
Iron	4510000	ng/Filter	4.81E+00	-
Lead	15300	ng/Filter	1.63E-02	1.5
Manganese	161000	ng/Filter	1.72E-01	-
Mercury	14.1	ng/Filter	1.50E-05	-
Nickel	54900	ng/Filter	5.85E-02	6
Selenium	1410	ng/Filter	1.50E-03	-
Silver	290	ng/Filter	3.09E-04	-
Thallium	91.1	ng/Filter	9.71E-05	-
Tin	< 0.20	ng/Filter	2.13E-07	-
Uranium	301	ng/Filter	3.21E-04	-
Vanadium	11000	ng/Filter	1.17E-02	-
Zinc	< 1000	ng/Filter	1.07E-03	-
Sampling Time (hours)	34.08			
Flow Rate (m3/min)	1.232			
Volume Sampled (m³)	2519.44			

Notes:

⁽¹⁾ These results are from a 34.08 hour averaging period that took place on May 1 to May 26, 2023

⁽²⁾ Measured data have been converted from the measured 34.08 hour avering period to a 1 hour averaging period based on Alberta's Air Quality Model Guideline Section 7.1.2.

TABLE 17

TSP Metals Analytical Results EPA Station ID 00010348-I-1 Clean Harbors Canada, Inc. Monthly Ambient Air Monitoring Report May 2023

	Date	e 18-	May-23	Date	9 24	4-May-23	Date	e 1	8-Apr-23	
	Sample II		842	Sample II		843	Sample II		837 ⁽²⁾	
Parameter	Lab Res	sults ⁽¹⁾	(ug/m³) ⁽³⁾	Lab Res	sults ⁽¹⁾	(ug/m ³) ⁽³⁾	Lab Res	sults ⁽¹⁾	(ug/m³) ⁽³⁾	AAAQO ⁽³⁾ (ug/m ³)
Antimony	241	ng/Filter	3.33E-04	383	ng/Filter	5.28E-04	256	ng/Filter	3.55E-04	-
Arsenic	6260	ng/Filter	8.65E-03	5980	ng/Filter	8.24E-03	5550	ng/Filter	7.69E-03	0.10
Barium	19200000	ng/Filter	2.65E+01	15300000	ng/Filter	2.11E+01	14000000	ng/Filter	1.94E+01	-
Beryllium	169	ng/Filter	2.34E-04	197	ng/Filter	2.71E-04	158	ng/Filter	2.19E-04	-
Boron	11900000	ng/Filter	1.64E+01	38800000	ng/Filter	5.35E+01	8170000	ng/Filter	1.13E+01	-
Cadmium	311	ng/Filter	4.30E-04	286	ng/Filter	3.94E-04	121	ng/Filter	1.68E-04	-
Chromium	7940	ng/Filter	1.10E-02	14900	ng/Filter	2.05E-02	6090	ng/Filter	8.44E-03	1.0
Cobalt	1130	ng/Filter	1.56E-03	1730	ng/Filter	2.38E-03	847	ng/Filter	1.17E-03	=
Copper	471000	ng/Filter	6.51E-01	346000	ng/Filter	4.77E-01	498000	ng/Filter	6.90E-01	-
Iron	2500000	ng/Filter	3.45E+00	2740000	ng/Filter	3.78E+00	1670000	ng/Filter	2.31E+00	-
Lead	8620	ng/Filter	1.19E-02	29000	ng/Filter	4.00E-02	7560	ng/Filter	1.05E-02	1.5
Manganese	86900	ng/Filter	1.20E-01	134000	ng/Filter	1.85E-01	47100	ng/Filter	6.52E-02	=
Mercury	< 0.70	ng/Filter	9.67E-07	56.5	ng/Filter	7.79E-05	< 0.70	ng/Filter	9.70E-07	-
Nickel	5750	ng/Filter	7.95E-03	32600	ng/Filter	4.49E-02	3300	ng/Filter	4.57E-03	6
Selenium	473	ng/Filter	6.54E-04	2160	ng/Filter	2.98E-03	856	ng/Filter	1.19E-03	-
Silver	289	ng/Filter	3.99E-04	250	ng/Filter	3.45E-04	291	ng/Filter	4.03E-04	-
Thallium	46.0	ng/Filter	6.36E-05	39.4	ng/Filter	5.43E-05	26.6	ng/Filter	3.68E-05	=
Tin	< 0.20	ng/Filter	2.76E-07	< 0.20	ng/Filter	2.76E-07	< 0.20	ng/Filter	2.77E-07	=
Uranium	179	ng/Filter	2.47E-04	160	ng/Filter	2.20E-04	109	ng/Filter	1.51E-04	-
Vanadium	5700	ng/Filter	7.88E-03	15600	ng/Filter	2.15E-02	3800	ng/Filter	5.26E-03	-
Zinc	< 1000	ng/Filter	1.38E-03	< 1000	ng/Filter	1.38E-03	< 1000	ng/Filter	1.39E-03	-
Sampling Time (hours)	23.91			24			23.83			
Flow Rate (I/min)	1.227			1.227			1.227			
Volume Sampled (m ³)	1760.2542			1766.88			1754.3646			

Notes:

- (1) These results are from an approximately 24 hour averaging period that took place on May 18 and May 24, 2023.
- (2) Due to laboratory delays, the metal analysis results for Test #837 from April 18, 2023 is in the May 2023 monthly report submission
- (3) Measured data have been converted from the measured approximately 24 hour avering period to a 1 hour averaging period based on Alberta's Air Quality Model Guideline Section 7.1.2.

TABLE 18

PM10 Metals Analytical Results EPA Station ID 00010348-I-1 Clean Harbors Canada, Inc. Monthly Ambient Air Monitoring Report May 2023

	Da	te 18-	May-23	Da	te 24-	May-23	Da	te	18-Apr-23	
	Sample l		842	Sample		843	Sample	ID	837 ⁽²⁾	
Parameter	Lab Re	sults ⁽¹⁾	(ug/m³) ⁽²⁾	Lab Re	sults ⁽¹⁾	(ug/m³) ⁽²⁾	Lab Re	sults ⁽¹⁾	(ug/m ³) ⁽²⁾	AAAQO ⁽²⁾ (ug/m ³)
Antimony	1.22	ng/Filter	1.27E-04	3.47	ng/Filter	3.69E-04	2.26	ng/Filte	r 2.39E-04	-
Arsenic	7.80	ng/Filter	8.12E-04	12.2	ng/Filter	1.30E-03	6.62	ng/Filte	r 6.99E-04	0.10
Barium	373	ng/Filter	3.88E-02	363	ng/Filter	3.86E-02	175	ng/Filte	r 1.85E-02	-
Beryllium	0.77	ng/Filter	8.01E-05	0.66	ng/Filter	7.02E-05	0.39	ng/Filte	r 4.12E-05	-
Boron	134	ng/Filter	1.39E-02	176	ng/Filter	1.87E-02	41.0	ng/Filte	r 4.33E-03	-
Cadmium	1.26	ng/Filter	1.31E-04	3.37	ng/Filter	3.58E-04	0.82	ng/Filte	r 8.66E-05	-
Chromium	36	ng/Filter	3.75E-03	127	ng/Filter	1.35E-02	21	ng/Filte	r 2.22E-03	1.0
Cobalt	6.74	ng/Filter	7.01E-04	14.7	ng/Filter	1.56E-03	4.10	ng/Filte	r 4.33E-04	-
Copper	444	ng/Filter	4.62E-02	192	ng/Filter	2.04E-02	728	ng/Filte	r 7.69E-02	-
Iron	23400	ng/Filter	2.43E+00	22900	ng/Filter	2.43E+00	9030	ng/Filte	r 9.54E-01	-
Lead	13.1	ng/Filter	1.36E-03	221	ng/Filter	2.35E-02	15.2	ng/Filte	r 1.61E-03	1.5
Manganese	750	ng/Filter	7.80E-02	1090	ng/Filter	1.16E-01	215	ng/Filte	r 2.27E-02	-
Mercury	< 0.07	ng/Filter	7.28E-06	2.03	ng/Filter	2.16E-04	< 0.07	ng/Filte	r 7.39E-06	-
Nickel	20.6	ng/Filter	2.14E-03	314	ng/Filter	3.34E-02	15.1	ng/Filte	r 1.59E-03	6
Selenium	6.8	ng/Filter	7.08E-04	11.1	ng/Filter	1.18E-03	6.7	ng/Filte	r 7.08E-04	-
Silver	0.48	ng/Filter	4.99E-05	0.86	ng/Filter	9.14E-05	0.55	ng/Filte	r 5.81E-05	-
Thallium	0.41	ng/Filter	4.27E-05	0.34	ng/Filter	3.61E-05	0.17	ng/Filte	r 1.80E-05	-
Tin	< 0.02	ng/Filter	2.08E-06	3.52	ng/Filter	3.74E-04	1.07	ng/Filte	r 1.13E-04	-
Uranium	1.28	ng/Filter	1.33E-04	1.10	ng/Filter	1.17E-04	0.547	ng/Filte	r 5.78E-05	-
Vanadium	43.6	ng/Filter	4.54E-03	143	ng/Filter	1.52E-02	24.6	ng/Filte	r 2.60E-03	-
Zinc	191	ng/Filter	1.99E-02	1780	ng/Filter	1.89E-01	140	ng/Filte	r 1.48E-02	-
Sampling Time (hours)	24			24			23.43			
Flow Rate (I/min)	16.7			16.7			16.7			
Volume Sampled (m ³)	23.40			22.90			22.9			

Notes:

- (1) These results are from an approximately 24 hour averaging period that took place on May 18 and May 24, 2023.
 (2) Due to laboratory delays, the metal analysis results for Test #837 from April 18, 2023 is in the May 2023 monthly report submission
- (3) Measured data have been converted from the measured approximately 24 hour avering period to a 1 hour averaging period based on Alberta's Air Quality Model Guideline Section 7.1.2.

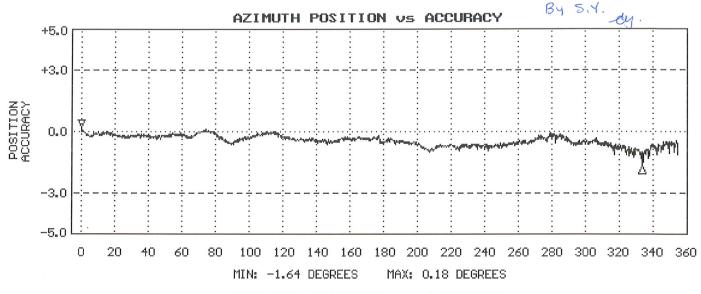
Appendix A Meteorological Station Calibration Report

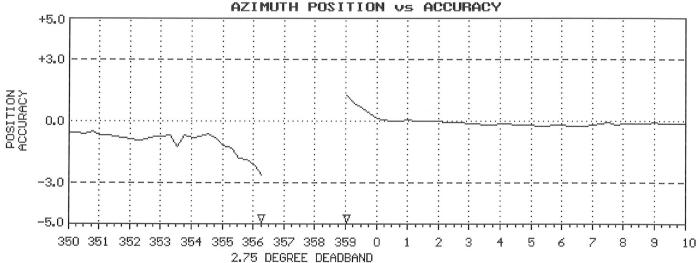
R. M. YOUNG COMPANY WIND SENSOR CALIBRATION CERTIFICATE

SENSOR: 05305-10A WIND MONITOR-AQ

SENSOR SERIAL NUMBER: WM149768

BEARINGS: SHIELDED/OIL LUBE


DATE: AUG 3 2016


WIND SPEED THRESHOLD TEST: PASS LOW WIND SPEED AMPLITUDE/FREQUENCY TEST: PASS HIGH WIND SPEED AMPLITUDE/FREQUENCY TEST: PASS

VANE TORQUE TEST: PASS

SPECIAL NOTES: SPECIAL NOTES:

Insp. By
Installed Nov. 8/16

NOTE: Azimuth Position vs Accuracy graphs are accurate to within 0.5 degrees. The accuracy shown in the potentiometer deadband region between 355 and 0 degrees is the result of no resistance change while position changes. The gap represents the actual deadband (open circuit).

GHD Wind Calibration Form

		Site and Instrur	ment Information	1	
	Site		Win	d Monitor	
Location:	Facility		Make:	RM Young	
Calibration Date:	Mar 18, 2022		Model:	05305	
Tech.:	P. Shariaty & S. Davey		Serial #:	149768	
Instrument:	Continuous Wind Monito	r	Calibration due:	Annually	
Time:	10:15 AM - 2:00 PM		Temperature:	4°C	
Pr	e-Calibration Inspection	on		Y/N	
Is the wind direc	ction < +/- 10° from compas	s observation?		Υ	
	Is siting aligned?			Υ	
Does the p	propeller rotate 360° with n	o friction?		Υ	
Does the	e vane rotate 360° with no f	riction?		Υ	
		Calibration	Information		
	Direction (degrees °)			Anemometer Speed	(m/s)
Test Angle (°)	Recorded Angle (°)	Within +/- 5°? (Y/N)	Test Speed (m/s)	Recorded Speed (m/s)	Within +/- 3 (m/s)? (Y/N)
180	181	Υ	26.1	26.0	Υ
210	213	Υ	20.5	20.4	Υ
240	242	Υ	15.4	15.3	Υ
270	272	Υ	10.2	10.2	Υ
300	303	Υ	5.1	5.1	Υ
330	332	Υ			
0	4	Υ			
30	31	Υ			
60	61	Υ			
90	90	Υ			
120	122	Y			
150	151	Υ			
	Comme	nts			on Factors
	40-00)			m/s	RPM
,	49768) was removed from			19.456	3800
	rch 18, 2022. Mechanical	_	_	15.360	3000
	were replaced and instrur		•	12.800	2500
•	od condition. Other than the condition. Other than the condition of the co	•	•	0.2.0	1800
	ed/replaced at the 2023 ca		•	7.680	1500
•	was re-installed and sited			5.632	1100
				4.096	800
				2.560	500
	Calibration Adjustment	t Doguirod?: No		1.024	200
	Calibration Adjustmen	r required?: No			

Appendix B Sampling Field Sheets

	FIELD SHEET ₁₀ (Partisol Monitoring Uni			
CLI	EAN HARBORS CANADA IN	С		
	RYLEY, ALBERTA			
A) GENERAL INFORMATION				
Filter ID:	C9700052			
PO Number:	233432			
Partisol Sampler ID/Serial Number:	2000 FRM-AE / 200FB209	9860	905	
Test number :	Particulate Test 840			
Sample Date:	23/05/06		yy/mm/dd	
Shipping Date to Laboratory:	23/05/09			. 2
PM10 Analysis Trigger Weight (mg):	1.16		weight which PM10 conc.	> 50 μg/m³
B) SAMPLING INFORMATION				
SAMPLE START				
Sampling Start Date:	23/05/06			
Sampling Start Time:	00:00			
Current Instrument Date:	23/05/01			
Current Instrument Time:	10:16			
Ambient Temperature °C:	20.9			
Barometric Pressure (mm Hg):	697			
Leak Check:	Pass		(Pass/Fail)	
Clean PM10 Inlet:	Yes		(Yes/No)	
Weather Conditions Sampling date :	Scattered clouds			
Weather Conditions set up:	Scattered clouds			
SAMPLE RETRIEVAL				
Sampled by	T. Webb			
Sampling End Date:	23/05/07			
Sampling End Time:	00:00			
Current Instrument Date:	23/05/08			
Current Instrument Time:	10:11			
Run Status:	OK		(Ensure Run Status is OK)	
Total Sampling Time (Hours):	24			
Volume Sampled (m^3):	23.1			
Average Flow Rate (L/min):	16.7 L/min			
AmbT °C:	18.5			
Barometric Pressure (mm Hg) :	699			
Sample Filter Temperature °C:	19.1			
Flow Rate Coefficient of Variation (%CV):	0.2			
Weather Conditions :	Partly sunny			
Leak Check:	Pass		(Pass/Fail)	
FIELD BLANK			(Once every quarter)	
Was a field blank collected	No		(Yes/No)	
Filter ID:			·	
Filter Batch Number:				
Current Instrument Date:				
Current Instrument Time:				
C) OBSERVATIONS				
Was there significant precipitation (e.g., >1/2-inch	No			
rain) within 24 hours prior to (or during) the sampling event?	No			
event:				
Describe facility energtions that was affect and the				
Describe facility operations that may affect sampling event:				
event.				
			+	
Comments:				

FIELD SHEET VOLATILE ORGANIC COMPOUNDS CLEAN HARBORS CANADA INC RYLEY, ALBERTA

Sample Identification Number:	Organic Test 840	_
Sample Canister Location:	Ryley Lift Station -Shed	
Sampled by	T.Webb	_
Sampler Name:	Test 840	
Sample Date:	23/05/06	yy/mm/dd
Shipping Date to Laboratory:	23/05/09	
Canister Type (ie. 1 Litre/6 Litre/Other):	6L	
Canister Serial No.:	31824	
Flow Controller Serial No.:	H/L578699/A0334390-5	
B) SAMPLE SET UP		
	Set up Conditions	Sample Retrieval
Date:	23/05/01	23/05/08
Ambient Temperature °C (inside shed):	22.3	25.4
Barometric Pressure (mm Hg):	697	699
Canister Pressure Gauge Reading (- Inches Hg):	(-)27.1	(-)3
Sample Time:	24	24
C) OBSERVATIONS		
Was there significant precipitation (e.g., >1/2-inch		
rain) within 24 hours prior to (or during) the sampling	No	
event?		
	_	
Describe general weather conditions during sampling		
event:	Scattered Clouds	
Describe facility operations that may affect sampling		
event:	None	
Comments:		

CLEAN HARBORS CANADA INC TSP (High Volume Monitoring Unit) CLEAN HARBORS CANADA INC RYLEY, ALBERTA

1. SAMPLING INFORMATION

Sample ID	Test #840					
Lab Filter ID		HVF-23-03-07				
Start Sampling	5	6	0	2023		
	mm	dd	hr			
Stop Sampling	5	7	0	2023	_	
6.00 Gambun 9	mm	dd	hr			
	<u>-</u>			_		
Timer Initial:			88.82		_	
Timer Final:			12.67 23.85		_	
			 1431			
Total Sampling Time	23	hr	51	51 min		
Average Flow Rate		cfm				
Actual m3/min	1.227					
Air Volume	1755.8	cubic metre	S			
Net TSP Weight	{	g				
TSP Concentration		mg/m3				
TSP Analysis Trigger Weight	87.8	mg	weight which	n TSP conc. >	• 50 μg/m³	
3. OBSERVATIONS						
Comments:						
Instrument Last Calibrated:			10-Mar-23			

3. GUIDELINES

- Faceplate must be handtight.
- Flow rate must be ±10 percent of established flow rate.
- Faceplate gasket must be in good condition.
- Rotameter must be free of foreign material.
- Rotameter operation must be stable.
- Sampler motor brushes must be changed every 400 hours of operation.
- TSP analysis triggers when concentration >0.05mg/m3

Sample was collected in accordance with the above guidelines.

Sampler's Signature:	
Comments:	

	FIELD SHEET ₁₀ (Partisol Monitoring Un			
CLI	EAN HARBORS CANADA IN	IC		
	RYLEY, ALBERTA			
A) GENERAL INFORMATION				
Filter ID:	C9700085			
PO Number:				
Partisol Sampler ID/Serial Number:	233432	0000	005	
Test number :	2000 FRM-AE / 200FB20 Particulate Test 841	9860	905	
Sample Date:	23/05/12		yy/mm/dd	
Shipping Date to Laboratory:	23/05/16		yy/mm/au	
PM10 Analysis Trigger Weight (mg):	1.15		weight which PM10 conc.	> 50 μg/m ³
B) SAMPLING INFORMATION				
SAMPLE START				
Sampling Start Date:	23/05/12			
Sampling Start Time:	00:00			
Current Instrument Date:	23/05/08			
Current Instrument Time:	10:12			
Ambient Temperature °C:	18.5			
Barometric Pressure (mm Hg):	699			
Leak Check:	Pass		(Pass/Fail)	
Clean PM10 Inlet:	Yes		(Yes/No)	
Weather Conditions Sampling date :	Mostly Sunny			
Weather Conditions set up:	Mostly Cloudy			
SAMPLE RETRIEVAL				
Sampled by	T. Webb			
Sampling End Date:	23/05/13			
Sampling End Time:	00:00			
Current Instrument Date:	23/05/15			
Current Instrument Time:	8:26			
Run Status:	OK		(Ensure Run Status is OK)	
Total Sampling Time (Hours):	24			
Volume Sampled (m^3):	23			
Average Flow Rate (L/min):	16.7 L/min			
AmbT °C :	21.9			
Barometric Pressure (mm Hg) :	707			
Sample Filter Temperature °C:	21.0			
Flow Rate Coefficient of Variation (%CV):	0.1			
Weather Conditions :	Sunny			
Leak Check:	Pass		(Pass/Fail)	
FIELD BLANK			(Once every quarter)	
Was a field blank collected	No		(Yes/No)	
Filter ID:	INU		(100) 140)	
Filter Batch Number:				
Current Instrument Date:				
Current Instrument Time:				
C) OBCERVATIONS				
<u>C) OBSERVATIONS</u>				
Was there significant precipitation (e.g., >1/2-inch rain) within 24 hours prior to (or during) the sampling event?	No			
Describe facility operations that may affect sampling event:				
Comments:				

FIELD SHEET VOLATILE ORGANIC COMPOUNDS CLEAN HARBORS CANADA INC RYLEY, ALBERTA

Sample Identification Number:	Organic Test 841	
Sample Canister Location:	Ryley Lift Station -Shed	
Sampled by	T.Webb	
Sampler Name:	Test 841	
Sample Date:	23/05/12	yy/mm/dd
Shipping Date to Laboratory:	23/05/16	
Canister Type (ie. 1 Litre/6 Litre/Other):	6L	
Canister Serial No.:	29017	
Flow Controller Serial No.:	H/L578699/A0334390-5	
Tiow controller serial to	11/23/3033//1030/1030/3	
B) SAMPLE SET UP		
	Set up Conditions	Sample Retrieval
Date:	23/05/08	23/05/15
Ambient Temperature °C (inside shed):	25.4	20.2
Barometric Pressure (mm Hg):	699	707
Canister Pressure Gauge Reading (- Inches Hg):	(-)27.1	(-)8
Sample Time:	24	24
<u>C) OBSERVATIONS</u>		
Was there significant precipitation (e.g., >1/2-inch		
rain) within 24 hours prior to (or during) the sampling	No	
event?		
Describe consult weakhouses white and diving consulting		
Describe general weather conditions during sampling	Mostly Sunny	
event:	Wostly Sullily	
Describe facility operations that may affect sampling		
event:	None	
	-	
Comments:		

CLEAN HARBORS CANADA INC TSP (High Volume Monitoring Unit) CLEAN HARBORS CANADA INC RYLEY, ALBERTA

1. SAMPLING INFORMATION

Test #841				
	HVF-2	23-03-06		
5	12	0	2023	
mm	dd	hr		
5	13	0	2023	_
mm	dd	hr		
_			_	
				<u>—</u>
				_
		_		
23 h	nr	47	1427	
	cfm			
1.227				
1750.7	cubic metres	;		
	g			
	_	weight whicl	n TSP conc. >	· 50 μg/m³
		10-Mar-23		
	mm 5 mm 23 h 1.227 1750.7 c	5 12 mm dd 5 13 mm dd 5 13 mm cfm 1.227	#WF-23-03-06 5	#WF-23-03-06 5

3. GUIDELINES

- Faceplate must be handtight.
- Flow rate must be ±10 percent of established flow rate.
- Faceplate gasket must be in good condition.
- Rotameter must be free of foreign material.
- Rotameter operation must be stable.
- Sampler motor brushes must be changed every 400 hours of operation.
- TSP analysis triggers when concentration >0.05mg/m3

Sample was collected in accordance with the above guidelines.

Sampler's Signature:	
Comments:	

FIELD SHEET PM₁₀ (Partisol Monitoring Unit) CLEAN HARBORS CANADA INC RYLEY, ALBERTA

Filter ID:	C9700051	
PO Number:	233432	
Partisol Sampler ID/Serial Number:	2000 FRM-AE / 200FB209	9860905
Test number :	Particulate Test 842	
Sample Date:	23/05/18	yy/mm/dd
Shipping Date to Laboratory:	23/05/24	
PM10 Analysis Trigger Weight (mg):	1.17	weight which PM10 conc. > 50 με
B) SAMPLING INFORMATION		
SAMPLE START		
Sampling Start Date:	23/05/18	_
Sampling Start Time:	00:00	
Current Instrument Date:	23/05/15	
Current Instrument Time:	8:33	
Ambient Temperature °C:	21.9	_
Barometric Pressure (mm Hg):	707	_
Leak Check:	Pass	— (Pass/Fail)
Clean PM10 Inlet:	Yes	(Yes/No)
Weather Conditions Sampling date :	Mostly Cloudy	7
Weather Conditions set up:	Mostly Sunny	
SAMPLE RETRIEVAL		
Sampled by	T. Webb	
Sampling End Date:	23/05/18	_
Sampling End Time:	00:00	_
Current Instrument Date:	23/05/23	_
Current Instrument Time:	10:12	_
Run Status:	OK	— (Ensure Run Status is OK)
Total Sampling Time (Hours):	24	_
Volume Sampled (m^3):	23.4	_
Average Flow Rate (L/min):	 16.7 L/min	_
AmbT °C:	19.5	_
Barometric Pressure (mm Hg):	697	_
Sample Filter Temperature °C:	20.5	_
Flow Rate Coefficient of Variation (%CV):	0.1	_
Weather Conditions :	Sunny	
Leak Check:	Pass	(Pass/Fail)
FIELD BLANK		(Once every quarter)
Was a field blank collected	No	(Yes/No)
Filter ID:		_ ` ` ,
Filter Batch Number:		_
Current Instrument Date:		_
Current Instrument Time:		- -
C) OBSERVATIONS		
Was there significant precipitation (e.g., >1/2-inch rain) within 24 hours prior to (or during) the sampling event?	No	
Describe facility operations that may affect sampling event:		
Comments:		

FIELD SHEET VOLATILE ORGANIC COMPOUNDS CLEAN HARBORS CANADA INC RYLEY, ALBERTA

Sample Identification Number:	Organic Test 842	_
Sample Canister Location:	Ryley Lift Station -Shed	
Sampled by	T.Webb	
Sampler Name:	Test 842	
Sample Date:	23/05/18	yy/mm/dd
Shipping Date to Laboratory:	23/05/24	
Canister Type (ie. 1 Litre/6 Litre/Other):	6L	
Canister Serial No.:	32266	
Flow Controller Serial No.:	H/L578699/A0334390-5	
B) SAMPLE SET UP		
	Set up Conditions	Sample Retrieval
Date:	23/05/15	23/05/23
Ambient Temperature °C (inside shed):	20.2	23.4
Barometric Pressure (mm Hg):	707	697
Canister Pressure Gauge Reading (- Inches Hg):	(-)27.1	(-)4
Sample Time:	24	24
C) OBSERVATIONS		
Was there significant precipitation (e.g., >1/2-inch rain)		
within 24 hours prior to (or during) the sampling	No	
event?		
Describe general weather conditions during sampling		
event:	Mostly Cloudy	
Describe facility operations that may affect sampling		
event:	None	
Comments:		

Test 627-PM10

CLEAN HARBORS CANADA INC TSP (High Volume Monitoring Unit) CLEAN HARBORS CANADA INC RYLEY, ALBERTA

1. SAMPLING INFORMATION

Sample ID	Test #842				<u> </u>
Lab Filter ID	HVF-23-03-09				
Start Sampling	5	18	0	2023	
	mm	dd	hr		
Stop Sampling	5	19	0	2023	_
	mm	dd	hr		
Timer Initial:	-	53	6.45	-	
Timer Final:		56	0.36		_
	23.91				<u> </u>
Total Sampling Time	23 hr 55 min			1435	
Average Flow Rate	cfm				
Actual m3/min	1.227				
Air Volume	1760.3 cubic metres				
Net TSP Weight		5			
TSP Concentration	mg/m3				
TSP Analysis Trigger Weight	0.88	ng	weight whic	h TSP conc. >	> 50 μg/m ³
3. OBSERVATIONS					
Comments:					
Instrument Last Calibrated:			10-Mar-23		

3. GUIDELINES

- Faceplate must be handtight.
- Flow rate must be ±10 percent of established flow rate.
- Faceplate gasket must be in good condition.
- Rotameter must be free of foreign material.
- Rotameter operation must be stable.
- Sampler motor brushes must be changed every 400 hours of operation.
- TSP analysis triggers when concentration >0.05mg/m3

Sample was collected in accordance with the above guidelines.

Sampler's Signature:	
Comments:	

	FIELD SHEET			
PM ₁₀ (Partisol Monitoring Unit)				
	EAN HARBORS CANADA IN			
	RYLEY, ALBERTA			
A) GENERAL INFORMATION				
Filter ID:	C11C0001			
Filter ID: PO Number:	C1169901	_		
Partisol Sampler ID/Serial Number:	233432	0000	205	
Test number :	2000 FRM-AE / 200FB20	9860	905	
Sample Date:	Particulate Test 843 23/05/24		yy/mm/dd	
Shipping Date to Laboratory:	23/05/26		yy/mm/uu	
PM10 Analysis Trigger Weight (mg):	1.15		weight which PM10 conc.	> 50 ug/m ³
TWIO Analysis Trigger Weight (ring).	1.13		weight which Fivilo conc.	> 30 μg/111
B) SAMPLING INFORMATION				
SAMPLE START				
Sampling Start Date:	23/05/24			
Sampling Start Time:	00:00			
Current Instrument Date:	23/05/23			
Current Instrument Time:	10:18	1		
Ambient Temperature °C:	20.4			
Barometric Pressure (mm Hg):	697			
Leak Check:	Pass		(Pass/Fail)	
Clean PM10 Inlet:	Yes		(Yes/No)	
Weather Conditions Sampling date :	Mostly Cloudy	1	,	
Weather Conditions set up:	Mostly Cloudy			
SAMPLE RETRIEVAL				
Sampled by	T. Webb			
Sampling End Date:	23/05/25			
Sampling End Time:	00:00			
Current Instrument Date:	23/05/26			
Current Instrument Time:	7:52			
Run Status:	OK		(Ensure Run Status is OK)	
Total Sampling Time (Hours):	24			
Volume Sampled (m^3):	22.9			
Average Flow Rate (L/min):	16.7 L/min			
AmbT°C:	16.0			
Barometric Pressure (mm Hg) :	703			
Sample Filter Temperature °C:	16.1			
Flow Rate Coefficient of Variation (%CV):	0.2			
Weather Conditions : Leak Check:	Mostly Sunny		(Dece/Feil)	
Leak Clieck.	Pass		(Pass/Fail)	
FIELD BLANK			(Once every quarter)	
Was a field blank collected	Yes	+	(Once every quarter) (Yes/No)	
Filter ID:	C9700088		(103/140/	
Filter Batch Number:	C3700000	+		
Current Instrument Date:	23/05/26			
Current Instrument Time:	7:52	1		
	-			
C) OBSERVATIONS				
Was there significant precipitation (e.g., >1/2-inch				
rain) within 24 hours prior to (or during) the sampling	No			
event?		\perp		
		\perp		
Describe facility operations that may affect sampling				
event:		+		
	_			
		\perp		
Comments:		_		
	_			

FIELD SHEET VOLATILE ORGANIC COMPOUNDS CLEAN HARBORS CANADA INC RYLEY, ALBERTA

Sample Identification Number:	Organic Test 843	_
Sample Canister Location:	Ryley Lift Station -Shed	-
Sampled by	T.Webb	
Sampler Name:	Test 843	
Sample Date:	23/05/24	yy/mm/dd
Shipping Date to Laboratory:	23/05/26	
Canister Type (ie. 1 Litre/6 Litre/Other):	6L	
Canister Serial No.:	28904	
Flow Controller Serial No.:	H/L578699/A0334390-5	
B) SAMPLE SET UP		
	Set up Conditions	Sample Retrieval
Date:	23/05/23	23/05/26
Ambient Temperature °C (inside shed):	23.4	16.0
Barometric Pressure (mm Hg):	697	703
Canister Pressure Gauge Reading (- Inches Hg):	(-)27.1	(-)8
Sample Time:	24	24
C) OBSERVATIONS		
Was there significant precipitation (e.g., >1/2-inch		
rain) within 24 hours prior to (or during) the sampling	No	
event?		
Describe general weather conditions during sampling		
event:	Mostly Cloudy	
Describe facility operations that may affect sampling		
event:	None	
Comments:		
	-	
	-	

CLEAN HARBORS CANADA INC TSP (High Volume Monitoring Unit) CLEAN HARBORS CANADA INC RYLEY, ALBERTA

1. SAMPLING INFORMATION

Sample ID	Test #843				
Lab Filter ID	HVF-23-03-10				_
Start Sampling	5 mm	24 dd	0 hr	2023	
Stop Sampling	5 mm	25 dd	0 hr	2023	_
Timer Initial:	_	560	0.36	_	
Timer Final:	584.36				
	24.00				
Total Sampling Time	<u>24</u> hr0 r			<u> </u>	1440
Average Flow Rate		cfm			
Actual m3/min	1.227				
Air Volume	1766.9	cubic metres			
Net TSP Weight		g			
TSP Concentration		mg/m3			
TSP Analysis Trigger Weight	88.3	mg	weight whic	h TSP conc. >	> 50 μg/m ³
3. OBSERVATIONS					
Comments:					

10-Mar-23

3. GUIDELINES

- Faceplate must be handtight.

Instrument Last Calibrated:

- Flow rate must be ±10 percent of established flow rate.
- Faceplate gasket must be in good condition.
- Rotameter must be free of foreign material.
- Rotameter operation must be stable.
- Sampler motor brushes must be changed every 400 hours of operation.
- TSP analysis triggers when concentration >0.05mg/m3

Sample was collected in accordance with the above guidelines.

Sampler's Signature:	
Comments:	

	FIELD SHEET 10 (Partisol Monitoring Unit EAN HARBORS CANADA INC RYLEY, ALBERTA		T	
A) GENERAL INFORMATION				
Filter ID:	C1169902			
PO Number:	233432			
Partisol Sampler ID/Serial Number:	2000 FRM-AE / 200FB209	860	905	
Test number :	Particulate Test 844			
Sample Date:	23/05/30		yy/mm/dd	
Shipping Date to Laboratory:	23/06/01			
PM10 Analysis Trigger Weight (mg):	1.13		weight which PM10 conc.	> 50 μg/m ³
B) SAMPLING INFORMATION SAMPLE START				
SAMPLE START	22/05/20			
Sampling Start Date:	23/05/30			
Sampling Start Time: Current Instrument Date:	00:00			
Current Instrument Date: Current Instrument Time:	23/05/26 8:03			
Ambient Temperature °C: Barometric Pressure (mm Hg):	17.0			
Leak Check:	703		(Pass/Fail)	
Clean PM10 Inlet:	Pass Yes		(Pass/Fail)	
Weather Conditions Sampling date :			(Yes/No)	
Weather Conditions sampling date : Weather Conditions set up:	Partly Cloudy Passing clouds	+		
weather Conditions set up.	rassing clouds			
SAMPLE RETRIEVAL				
Sampled by	T. Webb			
Sampling End Date:	23/05/31			
Sampling End Time:	00:00			
Current Instrument Date:	23/05/31			
Current Instrument Time:	10:12			
Run Status:	OK		(Ensure Run Status is OK)	
Total Sampling Time (Hours):	24			
Volume Sampled (m^3):	22.5			
Average Flow Rate (L/min):	16.7 L/min			
AmbT °C :	19.9			
Barometric Pressure (mm Hg) :	697			
Sample Filter Temperature °C :	22.0			
Flow Rate Coefficient of Variation (%CV):	0.2			
Weather Conditions :	Scattered clouds			
Leak Check:	Pass		(Pass/Fail)	
FIELD BLANK			(Once every quarter)	
Was a field blank collected	No		(Yes/No)	
Filter ID:				
Filter Batch Number:				
Current Instrument Date:				
Current Instrument Time:				
C) ODCEDIVATIONS				
C) OBSERVATIONS				
Was there significant presinitation (a.g., 1/2 in the				
Was there significant precipitation (e.g., >1/2-inch rain) within 24 hours prior to (or during) the sampling	No			
event?				
Describe facility operations that may affect sampling				
event:				
Comments:				
comments.				
		1		

FIELD SHEET VOLATILE ORGANIC COMPOUNDS CLEAN HARBORS CANADA INC RYLEY, ALBERTA

Sample Identification Number:	Organic Test 844	
Sample Canister Location:	Ryley Lift Station -Shed	
Sampled by	T.Webb	
Sampler Name:	Test 844	
Sample Date:	23/05/30	yy/mm/dd
Shipping Date to Laboratory:	23/06/01	
Canister Type (ie. 1 Litre/6 Litre/Other):	6L	
Canister Serial No.:	31818	
Flow Controller Serial No.:	H/L578699/A0334390-5	
B) SAMPLE SET UP		
	Set up Conditions	Sample Retrieval
Date:	23/05/26	23/05/31
Ambient Temperature °C (inside shed):	16.0	22.6
Barometric Pressure (mm Hg):	703	697
Canister Pressure Gauge Reading (- Inches Hg):	(-)27.1	(-)5
Sample Time:	24	24
C) OBSERVATIONS		
Was there significant presinitation (e.g. >1/2 inch		
Was there significant precipitation (e.g., >1/2-inch	No	
rain) within 24 hours prior to (or during) the sampling event?	No	
eventr		
Describe general weather conditions during sampling		
event:	Partly Cloudy	
	, ,	
Describe facility operations that may affect sampling		
event:	None	
Comments:		
	-	

CLEAN HARBORS CANADA INC TSP (High Volume Monitoring Unit) CLEAN HARBORS CANADA INC RYLEY, ALBERTA

1. SAMPLING INFORMATION

Sample ID		Test #844			_
Lab Filter ID	-	HVF-23-03-08			
Start Sampling	5	30	0	2023	
	mm	dd	hr		
Stop Sampling	5	31	0	2023	-
	mm	dd	hr		
Timer Initial:		584	1.36		
Timer Final:	608.17				_
	-	23	.81		_
Total Sampling Time	23	hr	49	min	1429
Average Flow Rate		cfm			
Actual m3/min	1.227	-			
Air Volume	1752.9	cubic metres			
Net TSP Weight		g			
TSP Concentration		mg/m3			
TSP Analysis Trigger Weight	87.6	mg	weight which	TSP conc. >	50 μg/m ³
3. OBSERVATIONS					

Comments:

Instrument Last Calibrated:	10-Mar-23

3. GUIDELINES

- Faceplate must be handtight.
- Flow rate must be ±10 percent of established flow rate.
- Faceplate gasket must be in good condition.
- Rotameter must be free of foreign material.
- Rotameter operation must be stable.
- Sampler motor brushes must be changed every 400 hours of operation.
- TSP analysis triggers when concentration >0.05mg/m3

Sample was collected in accordance with the above guidelines.

Sampler's Signature:	
Comments:	-

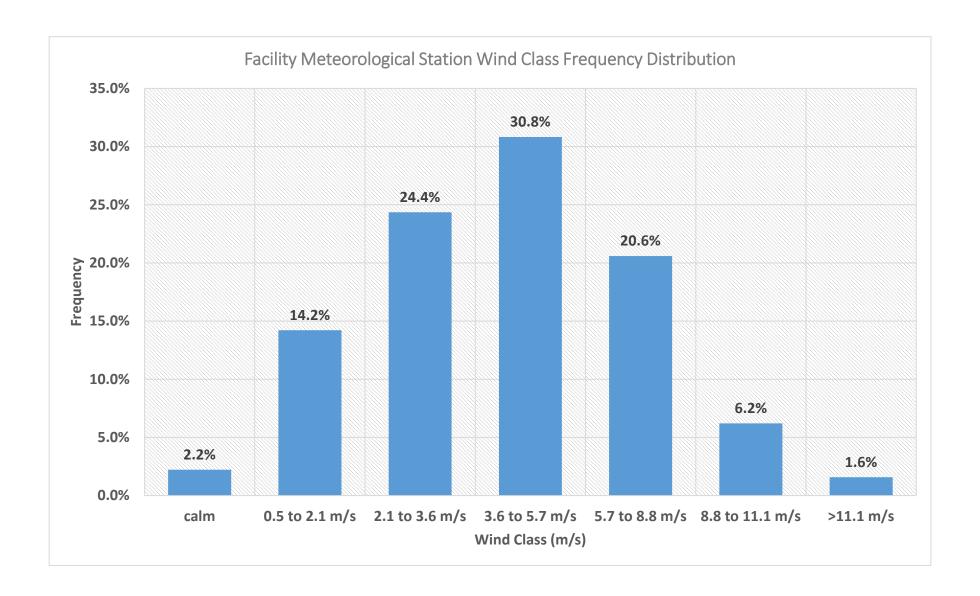
FIELD SHEET TSP (High Volume Monitoring Unit) CLEAN HARBORS CANADA INC RYLEY, ALBERTA

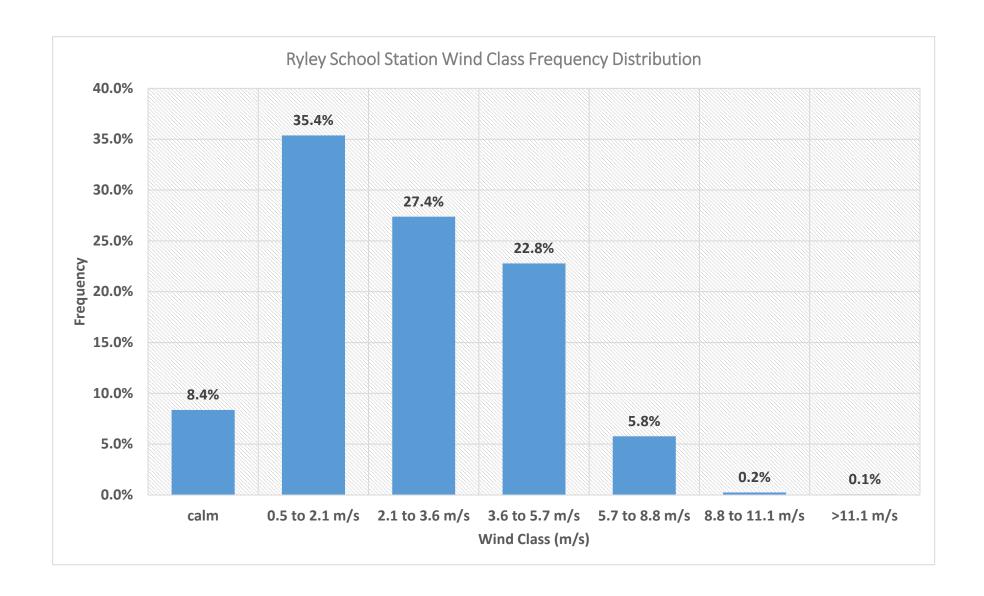
1. SAMPLING INFORMATION						2. SAMPLING INFORMATION					
Sample ID	Facility Test # 102				Sample ID		School To	est # 102	!		
Lab Filter ID		HV-22	-12-13		_	Lab Filter ID		HV-22	-12-14		_
Start Sampling	5	1	15	2023		Start Sampling	5	1	15	2023	
	mm	dd	hr				mm	dd	hr		
Stop Sampling	5	26	11	2023	_	Stop Sampling	5	26	11	2023	_
	mm	dd	hr				mm	dd	hr		
Timer Initial:		247	2.33			Timer Initial:		305	7.06		
Timer Final:		249	7.5		_	Timer Final:		309	1.14		_
Total Sampling Time	25	hr	10) min	1510	Total Sampling Time	34	hr		5 min	2045
Average Flow Rate		cfm				Average Flow Rate		cfm			
Actual m3/min	1.229	•				Actual m3/min	1.232	•			
Air Volume	1855.8	cubic metre	S			Air Volume	2519.4	cubic metre	S		
Net TSP Weight		g				Net TSP Weight		g			
TSP Concentration		mg/m3				TSP Concentration		mg/m3			
3. OBSERVATIONS											
Comments:											

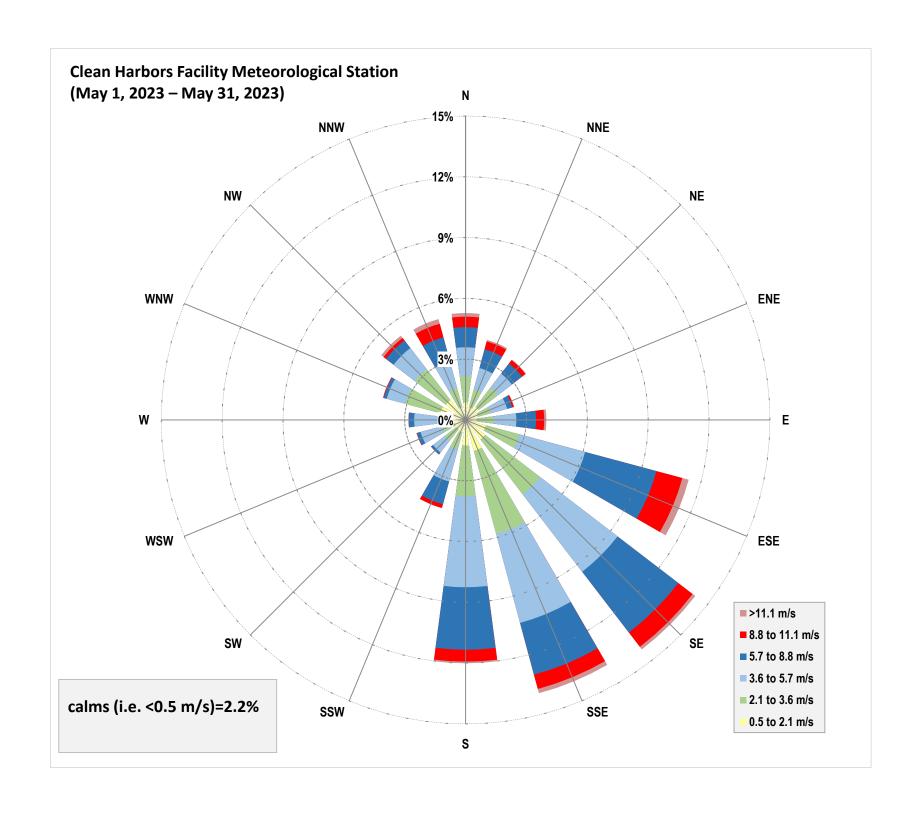
3. GUIDELINES

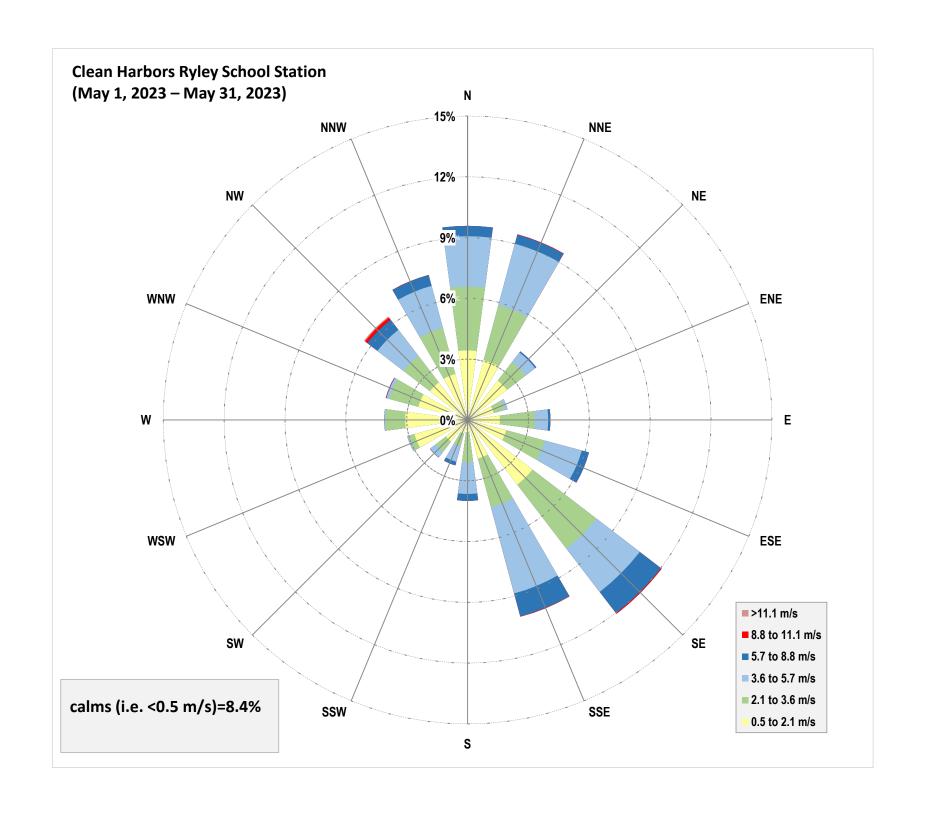
Faceplate must be handtight.

Instrument Last Calibrated:


- Flow rate must be ±10 percent of established flow rate.
- Faceplate gasket must be in good condition.
- Rotameter must be free of foreign material.
- Rotameter operation must be stable.
- Sampler motor brushes must be changed every 400 hours of operation.


Sample was collected in accordance with the above guidelines.


Sampler's Signature:	Clan Yura
Comments:	


10-Mar-23

Appendix C Wind Class Frequency Distribution Graphs and Wind Rose

Appendix D Chain of Custody Forms and Laboratory Analytical Reports

PO Bag 4000 Vegreville, Alberta Canada T9C 1T4 (780) 632-8211

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 1 of 9

RESULTS: Todd Webb

Clean Harbors Environmental

PO Box 390

2 km N of Hwy 14 on Sec Road 854 50114 RR 173

Ryley

AB TOB 4A0

INVOICE: Stephanie Dennis

PO Box 390

2 km N of Hwy 14 on Sec Road 854 50114 RR 173

Ryley

AB TOB 4A0

CLIENT SAMPLE ID

Ryley Facility Test #102

CANISTER ID:

PRIORITY: Normal

DESCRIPTION: Filter Number # HV-22-12-13

DATE SAMPLED: 01-May-23 **DATE RECEIVED:** 30-May-23

REPORT CREATED: 28-Jun-23 **REPORT NUMBER:** 23050416

VERSION: Version 01

Matrix

Air Filter

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
23050416-001	Antimony		276 ng/Filter	0.30	AC-021	19-Jun-23
23050416-001	Arsenic		2700 ng/Filter	0.30	AC-021	19-Jun-23
23050416-001	Barium		21700000 ng/Filter	300	AC-021	19-Jun-23
23050416-001	Beryllium		188 ng/Filter	0.60	AC-021	19-Jun-23
23050416-001	Boron		19400000 ng/Filter	600	AC-021	19-Jun-23
23050416-001	Cadmium		236 ng/Filter	0.80	AC-021	19-Jun-23
23050416-001	Chromium		6510 ng/Filter	20	AC-021	19-Jun-23
23050416-001	Cobalt		1150 ng/Filter	0.50	AC-021	19-Jun-23
23050416-001	Copper		96100 ng/Filter	20	AC-021	19-Jun-23
23050416-001	Iron		2990000 ng/Filter	80	AC-021	19-Jun-23
23050416-001	Lead		6340 ng/Filter	0.70	AC-021	19-Jun-23
23050416-001	Manganese		84400 ng/filter	1.0	AC-021	19-Jun-23
23050416-001	Mercury	K, T, U	< 0.70 ng/Filter	0.70	AC-021	19-Jun-23
23050416-001	Nickel		18100 ng/Filter	5.0	AC-021	19-Jun-23
23050416-001	Selenium		1500 ng/Filter	4.0	AC-021	19-Jun-23
23050416-001	Silver		68.9 ng/Filter	0.50	AC-021	19-Jun-23
23050416-001	Thallium		86.1 ng/Filter	0.20	AC-021	19-Jun-23

Report certified by: Andrea Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: June 28, 2023 E-mail: EAS.Results@innotechalberta.ca

InnoTech's ISO/IEC 17025:2017 scope of accreditation can be located at https://directory.cala.ca//

PO Bag 4000 Vegreville, Alberta Canada T9C 1T4 (780) 632-8211

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 2 of 9

CLIENT SAMPLE ID CANISTER ID Matrix DATE SAMPLED

Ryley Facility Test #102 Air Filter 01-May-23

DESCRIPTION: Filter Number # HV-22-12-13

REPORT NUMBER: 23050416 REPORT CREATED: 28-Jun-23 VERSION: Version 01

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
23050416-001	Tin	T, U	< 0.20 ng/Filter	0.20	AC-021	19-Jun-23
23050416-001	Uranium		328 ng/Filter	0.200	AC-021	19-Jun-23
23050416-001	Vanadium		6980 ng/Filter	0.40	AC-021	19-Jun-23
23050416-001	Zinc	K, T, U	< 1000 ng/Filter	1000	AC-021	19-Jun-23
23050416-001	Particulate Weight		205 mg	0.1	Research	07-Jun-23

Report certified by: Andrea Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: June 28, 2023 E-mail: EAS.Results@innotechalberta.ca

InnoTech's ISO/IEC 17025:2017 scope of accreditation can be located at https://directory.cala.ca//

ENVIRONMENTAL ANALYTICAL SERVICES

Page 3 of 9 **TEST REPORT**

CLIENT SAMPLE ID Matrix **CANISTER ID DATE SAMPLED**

Ryley School Test #102 01-May-23 Air Filter

DESCRIPTION: Filter Number # HV-22-12-14

VERSION: Version 01 REPORT NUMBER: 23050416 **REPORT CREATED:** 28-Jun-23

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
23050416-002	Antimony		418 ng/Filter	0.30	AC-021	19-Jun-23
23050416-002	Arsenic		2910 ng/Filter	0.30	AC-021	19-Jun-23
23050416-002	Barium		19700000 ng/Filter	300	AC-021	19-Jun-23
23050416-002	Beryllium		157 ng/Filter	0.60	AC-021	19-Jun-23
23050416-002	Boron		13400000 ng/Filter	600	AC-021	19-Jun-23
23050416-002	Cadmium		585 ng/Filter	0.80	AC-021	19-Jun-23
23050416-002	Chromium		12300 ng/Filter	20	AC-021	19-Jun-23
23050416-002	Cobalt		1750 ng/Filter	0.50	AC-021	19-Jun-23
23050416-002	Copper		470000 ng/Filter	20	AC-021	19-Jun-23
23050416-002	Iron		4510000 ng/Filter	80	AC-021	19-Jun-23
23050416-002	Lead		15300 ng/Filter	0.70	AC-021	19-Jun-23
23050416-002	Manganese		161000 ng/filter	1.0	AC-021	19-Jun-23
23050416-002	Mercury		14.1 ng/Filter	0.70	AC-021	19-Jun-23
23050416-002	Nickel		54900 ng/Filter	5.0	AC-021	19-Jun-23
23050416-002	Selenium		1410 ng/Filter	4.0	AC-021	19-Jun-23
23050416-002	Silver		290 ng/Filter	0.50	AC-021	19-Jun-23
23050416-002	Thallium		91.1 ng/Filter	0.20	AC-021	19-Jun-23
23050416-002	Tin	T, U	< 0.20 ng/Filter	0.20	AC-021	19-Jun-23
23050416-002	Uranium		301 ng/Filter	0.200	AC-021	19-Jun-23
23050416-002	Vanadium		11000 ng/Filter	0.40	AC-021	19-Jun-23
23050416-002	Zinc	K, T, U	< 1000 ng/Filter	1000	AC-021	19-Jun-23
23050416-002	Particulate Weight		302 mg	0.1	Research	07-Jun-23

Report certified by: Andrea Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: June 28, 2023 Inquiries: (780) 632 8403 E-mail: EAS.Results@innotechalberta.ca

InnoTech's ISO/IEC 17025:2017 scope of accreditation can be located at https://directory.cala.ca//

PO Bag 4000 Vegreville, Alberta Canada T9C 1T4 (780) 632-8211

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 4 of 9

Revision History

PO Bag 4000 Vegreville, Alberta Canada T9C 1T4 (780) 632-8211

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 5 of 9

Methods

_	Method	Description
	AC-021 Research	Elemental Analysis Methodology of Filter-collected Airborne Particulate Matter (PM) by ICP-MS Research method

List of Analytical Method IDs within InnoTech's ISO/IEC 17025:2017 CALA Scope of Accreditation

Method ID	Description
AC-013	Mercury in Waters by Cold Vapor Atomic Fluorescence Detection (CVAFS)
AC-020	Ion Chromatographic Procedures using the Dionex ICS 3000 and 5000 Systems
AC-021	Elemental Analysis Methodology of Filter-collected Airborne Particulate Matter (PM) by ICP-MS
AC-026	Ion Chromatographic Procedures using the Dionex ICS 3000 and 5000 Systems
AC-029	Procedure for the Equilibration and Weighing of Membrane Filters and PUFs on the Mettler Toledo Micro Balance
AC-035	Analysis of Glyphosate, Aminomethylphosphonic Acid and Glufosinate in Water
AC-038	Trace Metal Analysis of Water Samples by ICP-MS
AC-048	Specific Conductance (Conductivity Meter Method)
AC-049	pH (Meter Method)
AC-054	Alkalinity Total and Phenolphthalein
AC-058	Determination of Volatile Organic Compounds in Ambient Air by Gas Chromatography Mass Spectrometry
AC-060	Trace Metal Analysis of Soil Sediment and Industrial Waste Samples by Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
AC-061	Trace Metal Analysis for Biological Samples by Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
AC-065	Analysis of Naphthenic Acids in Water by HPLC-Orbitrap-MS analysis
AC-074	Pesticides in Water
AC-079	Alkylated PAH in Soil and Sediment
AC-080	Alkylated PAH in Water (SPE Extraction)
NA-006	Determination of BTEX, F1 Hydrocarbons and F2, F3 and F4 Hydrocarbons in Water
NA-024	Analysis of Reduced Sulfur Compounds in Air

Data Qualifier Translation

PO Bag 4000 Vegreville, Alberta Canada T9C 1T4 (780) 632-8211

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 6 of 9

Qualifiers

В Blank contamination; Analyte detected above the method reporting limit in an associated blank 1 The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit J1 Reported value is estimated; Surrogate recoveries limits were exceeded J2 Reported value is estimated; No known QC criteria for this component J3 Reported value is estimated; The value failed to meet QC criteria for either precision or accuracy J4 Reported value is estimated; The sample matrix interfered with the analysis Κ Off-scale low. Actual value is known to be less than the value given L Off-scale high. Actual value is known to be greater than value given Ν Non-target analyte; Tentatively identified compound (using mass spectroscopy) Q Sample held beyond the accepted holding time R Rejected data; Not suitable for the projects intended use Т Value reported is less than the laboratory method detection limit U Compound was analyzed for but not detected V Analyte was detected in both the sample and the associated method blank

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 7 of 9

Order Comments

23050416

Quote ID: QT140005

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 8 of 9

Sample Comments

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 9 of 9

Result Comments

Note:

- 1. Results relate only to items tested and apply to the sample as received.
- 2. This report shall not be reproduced, except in full, without the explicit approval of the laboratory.

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 1 of 9

RESULTS: Todd Webb

Clean Harbors Environmental

PO Box 390

2 km N of Hwy 14 on Sec Road 854 50114 RR 173

Ryley

AB TOB 4A0

INVOICE: Robbi Gooding

PO Box 390

2 km N of Hwy 14 on Sec Road 854 50114 RR 173

Ryley

AB TOB 4A0

CLIENT SAMPLE ID

Hi-Vol Test #: 837, Flt # HVF-23-03-11

Air Filter

Matrix

CANISTER ID:

PRIORITY: Normal

DESCRIPTION: Hi-Vol Filter

DATE SAMPLED: 18-Apr-23 0:00 **DATE RECEIVED:** 30-May-23

REPORT CREATED: 28-Jun-23 **REPORT NUMBER:** 23050421

VERSION: Version 01

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
23050421-002	Antimony		256 ng/Filter	0.30	AC-021	19-Jun-23
23050421-002	Arsenic		5550 ng/Filter	0.30	AC-021	19-Jun-23
23050421-002	Barium		14000000 ng/Filter	300	AC-021	19-Jun-23
23050421-002	Beryllium		158 ng/Filter	0.60	AC-021	19-Jun-23
23050421-002	Boron		8170000 ng/Filter	600	AC-021	19-Jun-23
23050421-002	Cadmium		121 ng/Filter	0.80	AC-021	19-Jun-23
23050421-002	Chromium		6090 ng/Filter	20	AC-021	19-Jun-23
23050421-002	Cobalt		847 ng/Filter	0.50	AC-021	19-Jun-23
23050421-002	Copper		498000 ng/Filter	20	AC-021	19-Jun-23
23050421-002	Iron		1670000 ng/Filter	80	AC-021	19-Jun-23
23050421-002	Lead		7560 ng/Filter	0.70	AC-021	19-Jun-23
23050421-002	Manganese		47100 ng/filter	1.0	AC-021	19-Jun-23
23050421-002	Mercury	K, T, U	< 0.70 ng/Filter	0.70	AC-021	19-Jun-23
23050421-002	Nickel		3300 ng/Filter	5.0	AC-021	19-Jun-23
23050421-002	Selenium		856 ng/Filter	4.0	AC-021	19-Jun-23
23050421-002	Silver		291 ng/Filter	0.50	AC-021	19-Jun-23
23050421-002	Thallium		26.6 ng/Filter	0.20	AC-021	19-Jun-23

Report certified by: Andrea Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: June 28, 2023 E-mail: EAS.Results@innotechalberta.ca

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 2 of 9

CLIENT SAMPLE ID CANISTER ID Matrix DATE SAMPLED

Hi-Vol Test #: 837, Flt # HVF-23-03-11 Air Filter 18-Apr-23 0:00

DESCRIPTION: Hi-Vol Filter

REPORT NUMBER: 23050421 REPORT CREATED: 28-Jun-23 VERSION: Version 01

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
23050421-002	Tin	T, U	< 0.20 ng/Filter	0.20	AC-021	19-Jun-23
23050421-002	Uranium		109 ng/Filter	0.200	AC-021	19-Jun-23
23050421-002	Vanadium		3800 ng/Filter	0.40	AC-021	19-Jun-23
23050421-002	Zinc	K, T, U	< 1000 ng/Filter	1000	AC-021	19-Jun-23

Report certified by: Andrea Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: June 28, 2023 E-mail: EAS.Results@innotechalberta.ca

TEST REPORT Page 3 of 9

CLIENT SAMPLE ID CANISTER ID Matrix DATE SAMPLED

PM10 Test #: 837 Flt # C9700054 Air Filter 18-Apr-23 0:00

DESCRIPTION: PM10 Filter

REPORT NUMBER: 23050421 REPORT CREATED: 28-Jun-23 VERSION: Version 01

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
23050421-001	Antimony		2.26 ng/filter	0.03	AC-021	16-Jun-23
23050421-001	Arsenic		6.62 ng/filter	0.03	AC-021	16-Jun-23
23050421-001	Barium		175 ng/filter	0.3	AC-021	16-Jun-23
23050421-001	Beryllium		0.39 ng/filter	0.06	AC-021	16-Jun-23
23050421-001	Boron		41.0 ng/filter	0.6	AC-021	16-Jun-23
23050421-001	Cadmium		0.82 ng/filter	0.08	AC-021	16-Jun-23
23050421-001	Chromium		21 ng/filter	2	AC-021	16-Jun-23
23050421-001	Cobalt		4.10 ng/filter	0.05	AC-021	16-Jun-23
23050421-001	Copper		728 ng/filter	2	AC-021	16-Jun-23
23050421-001	Iron		9030 ng/filter	8	AC-021	16-Jun-23
23050421-001	Lead		15.2 ng/filter	0.07	AC-021	16-Jun-23
23050421-001	Manganese		215 ng/filter	0.1	AC-021	16-Jun-23
23050421-001	Mercury	K, T, U	< 0.07 ng/filter	0.07	AC-021	16-Jun-23
23050421-001	Nickel		15.1 ng/filter	0.5	AC-021	16-Jun-23
23050421-001	Selenium		6.7 ng/filter	0.4	AC-021	16-Jun-23
23050421-001	Silver		0.55 ng/filter	0.05	AC-021	16-Jun-23
23050421-001	Thallium	1	0.17 ng/filter	0.02	AC-021	16-Jun-23
23050421-001	Tin		1.07 ng/filter	0.02	AC-021	16-Jun-23
23050421-001	Uranium		0.547 ng/filter	0.020	AC-021	16-Jun-23
23050421-001	Vanadium		24.6 ng/filter	0.04	AC-021	16-Jun-23
23050421-001	Zinc		140 ng/filter	1	AC-021	16-Jun-23

Report certified by: Andrea Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: June 28, 2023 E-mail: EAS.Results@innotechalberta.ca

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 4 of 9

Revision History

Order ID	Ver	Date	Reason			
23050421	01	28-Jun-23	Report created			

Description

PO Bag 4000 Vegreville, Alberta Canada T9C 1T4 (780) 632-8211

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 5 of 9

Methods

Method ID

Method	Description
AC-021	Elemental Analysis Methodology of Filter-collected Airborne Particulate Matter (PM) by ICP-MS

List of Analytical Method IDs within InnoTech's ISO/IEC 17025:2017 CALA Scope of Accreditation

	·
AC-013	Mercury in Waters by Cold Vapor Atomic Fluorescence Detection (CVAFS)
AC-020	Ion Chromatographic Procedures using the Dionex ICS 3000 and 5000 Systems
AC-021	Elemental Analysis Methodology of Filter-collected Airborne Particulate Matter (PM) by ICP-MS
AC-026	Ion Chromatographic Procedures using the Dionex ICS 3000 and 5000 Systems
AC-029	Procedure for the Equilibration and Weighing of Membrane Filters and PUFs on the Mettler Toledo Micro Balance
AC-035	Analysis of Glyphosate, Aminomethylphosphonic Acid and Glufosinate in Water
AC-038	Trace Metal Analysis of Water Samples by ICP-MS
AC-048	Specific Conductance (Conductivity Meter Method)
AC-049	pH (Meter Method)
AC-054	Alkalinity Total and Phenolphthalein
AC-058	Determination of Volatile Organic Compounds in Ambient Air by Gas Chromatography Mass Spectrometry
AC-060	Trace Metal Analysis of Soil Sediment and Industrial Waste Samples by Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
AC-061	Trace Metal Analysis for Biological Samples by Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
AC-065	Analysis of Naphthenic Acids in Water by HPLC-Orbitrap-MS analysis
AC-074	Pesticides in Water
AC-079	Alkylated PAH in Soil and Sediment
AC-080	Alkylated PAH in Water (SPE Extraction)
NA-006	Determination of BTEX, F1 Hydrocarbons and F2, F3 and F4 Hydrocarbons in Water
NA-024	Analysis of Reduced Sulfur Compounds in Air

Data Qualifier Translation

PO Bag 4000 Vegreville, Alberta Canada T9C 1T4 (780) 632-8211

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 6 of 9

Qualifiers

В Blank contamination; Analyte detected above the method reporting limit in an associated blank 1 The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit J1 Reported value is estimated; Surrogate recoveries limits were exceeded J2 Reported value is estimated; No known QC criteria for this component J3 Reported value is estimated; The value failed to meet QC criteria for either precision or accuracy J4 Reported value is estimated; The sample matrix interfered with the analysis Κ Off-scale low. Actual value is known to be less than the value given L Off-scale high. Actual value is known to be greater than value given Ν Non-target analyte; Tentatively identified compound (using mass spectroscopy) Q Sample held beyond the accepted holding time R Rejected data; Not suitable for the projects intended use Т Value reported is less than the laboratory method detection limit U Compound was analyzed for but not detected V Analyte was detected in both the sample and the associated method blank

TEST REPORT Page 7 of 9

Order Comments

23050421

Project ID: Test #837. Report also to Stan Yuha. Invoice also to Stephanie Dennis. No canister, metals analysis for filters from order 23040208.

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 8 of 9

Sample Comments

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 9 of 9

Result Comments

Note:

- 1. Results relate only to items tested and apply to the sample as received.
- 2. This report shall not be reproduced, except in full, without the explicit approval of the laboratory.

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 1 of 11

RESULTS: Todd Webb

Clean Harbors Environmental

PO Box 390

2 km N of Hwy 14 on Sec Road 854 50114 RR 173

Ryley

AB TOB 4A0

INVOICE: Stephanie Dennis

PO Box 390

2 km N of Hwy 14 on Sec Road 854 50114 RR 173

Ryley

AB TOB 4A0

CLIENT SAMPLE ID

HI-VOL Test #r 840 - HVF-23-03-07

06-Jun-23

CANISTER ID:

PRIORITY: Normal

DESCRIPTION:

REPORT CREATED:

DATE SAMPLED: 06-May-23

0:00

DATE RECEIVED:

11-May-23

REPORT NUMBER: 23050172

VERSION: Version 01

Matrix

Air Filter

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
23050172-003	Particulate Weight		70.3 mg	0.1	Research	05-Jun-23

Report certified by: Andrea Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: June 6, 2023 E-mail: EAS.Results@innotechalberta.ca

Vegreville, Alberta Canada T9C 1T4

ENVIRONMENTAL ANALYTICAL SERVICES

Page 2 of 11 **TEST REPORT**

CLIENT SAMPLE ID Matrix **CANISTER ID DATE SAMPLED**

06-May-23 0:00 PM10 Test # 840 - C9700052 Air Filter

DESCRIPTION:

REPORT CREATED: VERSION: Version 01 REPORT NUMBER: 23050172 06-Jun-23

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
23050172-002	Particulate Weight		0.399 mg	0.004	AC-029	15-May-23

Report certified by: Andrea Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: June 6, 2023 Inquiries: (780) 632 8403 E-mail: EAS.Results@innotechalberta.ca

TEST REPORT Page 3 of 11

CLIENT SAMPLE ID	CANISTER ID	Matrix	DATE SAMPLED
VOCs and TNMOC Test # 840	31824	Ambient Air	06-May-23 0:00

DESCRIPTION:

REPORT NUMBER: 23050172 REPORT CREATED: 06-Jun-23 VERSION: Version 01

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
23050172-001	Total Non-Methane Organic Carbon	K, T, U	< 0.08 ppmv	0.08	NA-028	15-May-23
23050172-001	1,2,3-Trimethylbenzene	K, T, U	< 0.08 ppbv	0.08	AC-058	16-May-23
23050172-001	1,2,4-Trimethylbenzene	1	0.08 ppbv	0.05	AC-058	16-May-23
23050172-001	1,3,5-Trimethylbenzene	1	0.08 ppbv	0.05	AC-058	16-May-23
23050172-001	1-Butene/Isobutylene	K, T, U	< 0.10 ppbv	0.10	AC-058	16-May-23
23050172-001	1-Hexene/2-Methyl-1-pentene	K, T, U	< 0.12 ppbv	0.12	AC-058	16-May-23
23050172-001	1-Pentene	K, T, U	< 0.05 ppbv	0.05	AC-058	16-May-23
23050172-001	2,2,4-Trimethylpentane	K, T, U	< 0.03 ppbv	0.03	AC-058	16-May-23
23050172-001	2,2-Dimethylbutane	1	0.06 ppbv	0.03	AC-058	16-May-23
23050172-001	2,3,4-Trimethylpentane	K, T, U	< 0.03 ppbv	0.03	AC-058	16-May-23
23050172-001	2,3-Dimethylbutane	K, T, U	< 0.15 ppbv	0.15	AC-058	16-May-23
23050172-001	2,3-Dimethylpentane	K, T, U	< 0.03 ppbv	0.03	AC-058	16-May-23
23050172-001	2,4-Dimethylpentane	K, T, U	< 0.05 ppbv	0.05	AC-058	16-May-23
23050172-001	2-Methylheptane	K, T, U	< 0.03 ppbv	0.03	AC-058	16-May-23
23050172-001	2-Methylhexane	K, T, U	< 0.05 ppbv	0.05	AC-058	16-May-23
23050172-001	2-Methylpentane	K, T, U	< 0.03 ppbv	0.03	AC-058	16-May-23
23050172-001	3-Methylheptane	K, T, U	< 0.05 ppbv	0.05	AC-058	16-May-23
23050172-001	3-Methylhexane	K, T, U	< 0.03 ppbv	0.03	AC-058	16-May-23
23050172-001	3-Methylpentane	K, T, U	< 0.03 ppbv	0.03	AC-058	16-May-23
23050172-001	Benzene	K, T, U	< 0.05 ppbv	0.05	AC-058	16-May-23
23050172-001	cis-2-Butene	K, T, U	< 0.05 ppbv	0.05	AC-058	16-May-23
23050172-001	cis-2-Pentene	K, T, U	< 0.03 ppbv	0.03	AC-058	16-May-23
23050172-001	Cyclohexane	K, T, U	< 0.07 ppbv	0.07	AC-058	16-May-23
23050172-001	Cyclopentane	K, T, U	< 0.03 ppbv	0.03	AC-058	16-May-23
23050172-001	Ethylbenzene	1	0.11 ppbv	0.05	AC-058	16-May-23

Report certified by:

Graham Knox, Admin. & Ops. Supervisor

On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: June 6, 2023

InnoTech's ISO/IEC 17025:2017 scope of accreditation can be located at https://directory.cala.ca//

Inquiries: (780) 632 8403

E-mail: EAS.Results@innotechalberta.ca

TEST REPORT Page 4 of 11

CLIENT SAMPLE ID	CANISTER ID	Matrix	DATE SAMPLED	
VOCs and TNMOC Test # 840	31824	Ambient Air	06-May-23 0:00	

DESCRIPTION:

REPORT NUMBER: 23050172 REPORT CREATED: 06-Jun-23 VERSION: Version 01

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
		Quailler				-
23050172-001	Isobutane	W T 11	0.26 ppbv	0.05	AC-058	16-May-23
23050172-001	Isopentane	K, T, U	< 0.07 ppbv	0.07	AC-058	16-May-23
23050172-001	Isoprene	ı	0.04 ppbv	0.03	AC-058	16-May-23
23050172-001	Isopropylbenzene	K, T, U	< 0.07 ppbv	0.07	AC-058	16-May-23
23050172-001	m,p-Xylene	K, T, U	< 0.07 ppbv	0.07	AC-058	16-May-23
23050172-001	m-Diethylbenzene	1	0.10 ppbv	0.03	AC-058	16-May-23
23050172-001	m-Ethyltoluene	1	0.06 ppbv	0.05	AC-058	16-May-23
23050172-001	Methylcyclohexane	K, T, U	< 0.03 ppbv	0.03	AC-058	16-May-23
23050172-001	Methylcyclopentane	K, T, U	< 0.08 ppbv	0.08	AC-058	16-May-23
23050172-001	n-Butane	I	0.09 ppbv	0.03	AC-058	16-May-23
23050172-001	n-Decane	K, T, U	< 0.10 ppbv	0.10	AC-058	16-May-23
23050172-001	n-Dodecane	K, T, U	< 0.5 ppbv	0.5	AC-058	16-May-23
23050172-001	n-Heptane	K, T, U	< 0.07 ppbv	0.07	AC-058	16-May-23
23050172-001	n-Hexane	K, T, U	< 0.05 ppbv	0.05	AC-058	16-May-23
23050172-001	n-Octane	K, T, U	< 0.03 ppbv	0.03	AC-058	16-May-23
23050172-001	n-Pentane	K, T, U	< 0.07 ppbv	0.07	AC-058	16-May-23
23050172-001	n-Propylbenzene	K, T, U	< 0.10 ppbv	0.10	AC-058	16-May-23
23050172-001	n-Undecane	K, T, U	< 0.8 ppbv	0.8	AC-058	16-May-23
23050172-001	n-Nonane	K, T, U	< 0.07 ppbv	0.07	AC-058	16-May-23
23050172-001	o-Ethyltoluene	1	0.06 ppbv	0.03	AC-058	16-May-23
23050172-001	o-Xylene	1	0.06 ppbv	0.05	AC-058	, 16-May-23
23050172-001	p-Diethylbenzene	1	0.06 ppbv	0.03	AC-058	16-May-23
23050172-001	p-Ethyltoluene	К, Т, U	< 0.07 ppbv	0.07	AC-058	16-May-23
23050172-001	Styrene	., , ,	0.13 ppbv	0.07	AC-058	16-May-23
23050172-001	Toluene	К, Т, U	< 0.05 ppbv	0.05	AC-058	16-May-23
23030172 001	Totache	κ, ι, υ	10.05 ppsv	0.05	, NC 030	10 IVIAY 23

Report certified by:

Graham Knox, Admin. & Ops. Supervisor

On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: June 6, 2023

InnoTech's ISO/IEC 17025:2017 scope of accreditation can be located at https://directory.cala.ca//

Inquiries: (780) 632 8403

E-mail: EAS.Results@innotechalberta.ca

TEST REPORT Page 5 of 11

CLIENT SAMPLE IDCANISTER IDMatrixDATE SAMPLEDVOCs and TNMOC Test # 84031824Ambient Air06-May-230:00

DESCRIPTION:

REPORT NUMBER: 23050172 REPORT CREATED: 06-Jun-23 VERSION: Version 01

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
23050172-001	trans-2-Butene	K, T, U	< 0.05 ppbv	0.05	AC-058	16-May-23
23050172-001	trans-2-Pentene	K, T, U	< 0.03 ppbv	0.03	AC-058	16-May-23

Report certified by: Graham Knox, Admin. & Ops. Supervisor On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: June 6, 2023 E-mail: EAS.Results@innotechalberta.ca

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 6 of 11

Revision History

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 7 of 11

<u>Methods</u>

Method	Description
AC-029	Procedure for the Equilibration and Weighing of Membrane Filters and PUFs on the Mettler Toledo Micro Balance
AC-058	Determination of Volatile Organic Compounds in Ambient Air by Gas Chromatography Mass Spectrometry
NA-028	Determination of Total Non-methane Hydrocarbons and Total Hydrocarbons in Ambient Air by Gas Chromatography Flame Ionization Detector
Research	Research method

List of Analytical Method IDs within InnoTech's ISO/IEC 17025:2017 CALA Scope of Accreditation

Method ID	Description
AC-013	Mercury in Waters by Cold Vapor Atomic Fluorescence Detection (CVAFS)
AC-020	Ion Chromatographic Procedures using the Dionex ICS 3000 and 5000 Systems
AC-021	Elemental Analysis Methodology of Filter-collected Airborne Particulate Matter (PM) by ICP-MS
AC-026	Ion Chromatographic Procedures using the Dionex ICS 3000 and 5000 Systems
AC-029	Procedure for the Equilibration and Weighing of Membrane Filters and PUFs on the Mettler Toledo Micro Balance
AC-035	Analysis of Glyphosate, Aminomethylphosphonic Acid and Glufosinate in Water
AC-038	Trace Metal Analysis of Water Samples by ICP-MS
AC-048	Specific Conductance (Conductivity Meter Method)
AC-049	pH (Meter Method)
AC-054	Alkalinity Total and Phenolphthalein
AC-058	Determination of Volatile Organic Compounds in Ambient Air by Gas Chromatography Mass Spectrometry
AC-060	Trace Metal Analysis of Soil Sediment and Industrial Waste Samples by Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
AC-061	Trace Metal Analysis for Biological Samples by Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
AC-065	Analysis of Naphthenic Acids in Water by HPLC-Orbitrap-MS analysis
AC-074	Pesticides in Water
AC-079	Alkylated PAH in Soil and Sediment
AC-080	Alkylated PAH in Water (SPE Extraction)
NA-006	Determination of BTEX, F1 Hydrocarbons and F2, F3 and F4 Hydrocarbons in Water
NA-024	Analysis of Reduced Sulfur Compounds in Air

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 8 of 11

Qualifiers

V

Data Qualifier Translation В Blank contamination; Analyte detected above the method reporting limit in an associated blank 1 The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit J1 Reported value is estimated; Surrogate recoveries limits were exceeded J2 Reported value is estimated; No known QC criteria for this component J3 Reported value is estimated; The value failed to meet QC criteria for either precision or accuracy J4 Reported value is estimated; The sample matrix interfered with the analysis Κ Off-scale low. Actual value is known to be less than the value given L Off-scale high. Actual value is known to be greater than value given Ν Non-target analyte; Tentatively identified compound (using mass spectroscopy) Q Sample held beyond the accepted holding time R Rejected data; Not suitable for the projects intended use Т Value reported is less than the laboratory method detection limit U Compound was analyzed for but not detected

Analyte was detected in both the sample and the associated method blank

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 9 of 11

Order Comments

23050172

Test # 840.

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 10 of 11

Sample Comments

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 11 of 11

Result Comments

Note:

- 1. Results relate only to items tested and apply to the sample as received.
- 2. This report shall not be reproduced, except in full, without the explicit approval of the laboratory.

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 1 of 11

RESULTS: Todd Webb

Clean Harbors Environmental

PO Box 390

2 km N of Hwy 14 on Sec Road 854 50114 RR 173

Ryley

AB TOB 4A0

INVOICE: Stephanie Dennis

PO Box 390

2 km N of Hwy 14 on Sec Road 854 50114 RR 173

Ryley

AB TOB 4A0

CLIENT SAMPLE ID

Matrix Air Filter

17-May-23

HI-VOL Test # 841 - Filter # HVF-23-03-06

CANISTER ID:

PRIORITY: Normal

DESCRIPTION:

DATE SAMPLED: 12-May-23 0:00 **DATE RECEIVED:**

REPORT CREATED: 12-Jun-23 **REPORT NUMBER:** 23050235

VERSION: Version 01

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
23050235-003	Particulate Weight		60.8 mg	0.1	Research	05-Jun-23

Report certified by: Andrea Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: June 12, 2023 E-mail: EAS.Results@innotechalberta.ca

TEST REPORT Page 2 of 11

CLIENT SAMPLE ID CANISTER ID Matrix DATE SAMPLED

PM10 Test # 841 - Filter # C9700085 Air Filter

ilter 12-May-23 0:00

DESCRIPTION:

REPORT NUMBER: 23050235 REPORT CREATED: 12-Jun-23 VERSION: Version 01

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
23050235-002	Particulate Weight		0.272 mg	0.004	AC-029	18-May-23

Report certified by: Andrea Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: June 12, 2023 E-mail: EAS.Results@innotechalberta.ca

Page 3 of 11 **TEST REPORT**

CLIENT SAMPLE ID	CANISTER ID	Matrix	DATE SAMPLED
VOCs and TNMOC Test # 841	29017	Ambient Air	12-May-23 0:00

DESCRIPTION:

REPORT NUMBER: 23050235 **VERSION: Version 01 REPORT CREATED:** 12-Jun-23

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
23050235-001	Total Non-Methane Organic Carbon	K, T, U	< 0.09 ppmv	0.09	NA-028	17-May-23
23050235-001	1,2,3-Trimethylbenzene	K, T, U	< 0.09 ppbv	0.09	AC-058	18-May-23
23050235-001	1,2,4-Trimethylbenzene	1	0.09 ppbv	0.05	AC-058	18-May-23
23050235-001	1,3,5-Trimethylbenzene	1	0.09 ppbv	0.05	AC-058	18-May-23
23050235-001	1-Butene/Isobutylene	K, T, U	< 0.11 ppbv	0.11	AC-058	18-May-23
23050235-001	1-Hexene/2-Methyl-1-pentene	K, T, U	< 0.13 ppbv	0.13	AC-058	18-May-23
23050235-001	1-Pentene	K, T, U	< 0.05 ppbv	0.05	AC-058	18-May-23
23050235-001	2,2,4-Trimethylpentane	K, T, U	< 0.04 ppbv	0.04	AC-058	18-May-23
23050235-001	2,2-Dimethylbutane	K, T, U	< 0.04 ppbv	0.04	AC-058	18-May-23
23050235-001	2,3,4-Trimethylpentane	K, T, U	< 0.04 ppbv	0.04	AC-058	18-May-23
23050235-001	2,3-Dimethylbutane	K, T, U	< 0.16 ppbv	0.16	AC-058	18-May-23
23050235-001	2,3-Dimethylpentane	K, T, U	< 0.04 ppbv	0.04	AC-058	18-May-23
23050235-001	2,4-Dimethylpentane	K, T, U	< 0.05 ppbv	0.05	AC-058	18-May-23
23050235-001	2-Methylheptane	K, T, U	< 0.04 ppbv	0.04	AC-058	18-May-23
23050235-001	2-Methylhexane	K, T, U	< 0.05 ppbv	0.05	AC-058	18-May-23
23050235-001	2-Methylpentane	K, T, U	< 0.04 ppbv	0.04	AC-058	18-May-23
23050235-001	3-Methylheptane	K, T, U	< 0.05 ppbv	0.05	AC-058	18-May-23
23050235-001	3-Methylhexane	1	0.04 ppbv	0.04	AC-058	18-May-23
23050235-001	3-Methylpentane	K, T, U	< 0.04 ppbv	0.04	AC-058	18-May-23
23050235-001	Benzene	K, T, U	< 0.05 ppbv	0.05	AC-058	18-May-23
23050235-001	cis-2-Butene	K, T, U	< 0.05 ppbv	0.05	AC-058	18-May-23
23050235-001	cis-2-Pentene	K, T, U	< 0.04 ppbv	0.04	AC-058	18-May-23
23050235-001	Cyclohexane	1	0.07 ppbv	0.07	AC-058	18-May-23
23050235-001	Cyclopentane	K, T, U	< 0.04 ppbv	0.04	AC-058	18-May-23
23050235-001	Ethylbenzene	1	0.13 ppbv	0.05	AC-058	18-May-23

Report certified by: Andrea Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: June 12, 2023 Inquiries: (780) 632 8403 E-mail: EAS.Results@innotechalberta.ca

Page 4 of 11 **TEST REPORT**

CLIENT SAMPLE ID	CANISTER ID	Matrix	DATE SAMPLED	
VOCs and TNMOC Test # 841	29017	Ambient Air	12-May-23 0:00	

DESCRIPTION:

REPORT NUMBER: 23050235 **VERSION: Version 01 REPORT CREATED:** 12-Jun-23

Lab ID	Davamatav	Onelitie	Dogult Unito	DDI	Mathad	Analysis Data
Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
23050235-001	Isobutane		0.72 ppbv	0.05	AC-058	18-May-23
23050235-001	Isopentane		0.20 ppbv	0.07	AC-058	18-May-23
23050235-001	Isoprene	K, T, U	< 0.04 ppbv	0.04	AC-058	18-May-23
23050235-001	Isopropylbenzene	K, T, U	< 0.07 ppbv	0.07	AC-058	18-May-23
23050235-001	m,p-Xylene	K, T, U	< 0.07 ppbv	0.07	AC-058	18-May-23
23050235-001	m-Diethylbenzene	1	0.12 ppbv	0.04	AC-058	18-May-23
23050235-001	m-Ethyltoluene	1	0.07 ppbv	0.05	AC-058	18-May-23
23050235-001	Methylcyclohexane	1	0.06 ppbv	0.04	AC-058	18-May-23
23050235-001	Methylcyclopentane	K, T, U	< 0.09 ppbv	0.09	AC-058	18-May-23
23050235-001	n-Butane		0.35 ppbv	0.04	AC-058	18-May-23
23050235-001	n-Decane	K, T, U	< 0.11 ppbv	0.11	AC-058	18-May-23
23050235-001	n-Dodecane	K, T, U	< 0.5 ppbv	0.5	AC-058	18-May-23
23050235-001	n-Heptane	1	0.09 ppbv	0.07	AC-058	18-May-23
23050235-001	n-Hexane	K, T, U	< 0.05 ppbv	0.05	AC-058	18-May-23
23050235-001	n-Octane	1	0.13 ppbv	0.04	AC-058	18-May-23
23050235-001	n-Pentane	1	0.11 ppbv	0.07	AC-058	18-May-23
23050235-001	n-Propylbenzene	K, T, U	< 0.11 ppbv	0.11	AC-058	18-May-23
23050235-001	n-Undecane	K, T, U	< 0.9 ppbv	0.9	AC-058	18-May-23
23050235-001	n-Nonane	K, T, U	< 0.07 ppbv	0.07	AC-058	18-May-23
23050235-001	o-Ethyltoluene	1	0.07 ppbv	0.04	AC-058	18-May-23
23050235-001	o-Xylene	1	0.07 ppbv	0.05	AC-058	18-May-23
23050235-001	p-Diethylbenzene	I I	0.08 ppbv	0.04	AC-058	18-May-23
23050235-001	p-Ethyltoluene	K, T, U	< 0.07 ppbv	0.07	AC-058	18-May-23
23050235-001	Styrene	Ī	0.15 ppbv	0.07	AC-058	, 18-May-23
23050235-001	Toluene	I	0.11 ppbv	0.05	AC-058	18-May-23
()						

Report certified by: Andrea Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: June 12, 2023 Inquiries: (780) 632 8403 E-mail: EAS.Results@innotechalberta.ca

TEST REPORT Page 5 of 11

CLIENT SAMPLE IDCANISTER IDMatrixDATE SAMPLEDVOCs and TNMOC Test # 84129017Ambient Air12-May-230:00

DESCRIPTION:

REPORT NUMBER: 23050235 REPORT CREATED: 12-Jun-23 VERSION: Version 01

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
23050235-001	trans-2-Butene	K, T, U	< 0.05 ppbv	0.05	AC-058	18-May-23
23050235-001	trans-2-Pentene	K, T, U	< 0.04 ppbv	0.04	AC-058	18-May-23

Report certified by: Andrea Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: June 12, 2023 E-mail: EAS.Results@innotechalberta.ca

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 6 of 11

Revision History

Order ID	Ver	Date	Reason
23050235	01	12-Jun-23	Report created

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 7 of 11

<u>Methods</u>

Method	Description
AC-029	Procedure for the Equilibration and Weighing of Membrane Filters and PUFs on the Mettler Toledo Micro Balance
AC-058	Determination of Volatile Organic Compounds in Ambient Air by Gas Chromatography Mass Spectrometry
NA-028	Determination of Total Non-methane Hydrocarbons and Total Hydrocarbons in Ambient Air by Gas Chromatography Flame Ionization Detector
Research	Research method

List of Analytical Method IDs within InnoTech's ISO/IEC 17025:2017 CALA Scope of Accreditation

Method ID	Description
AC-013	Mercury in Waters by Cold Vapor Atomic Fluorescence Detection (CVAFS)
AC-020	Ion Chromatographic Procedures using the Dionex ICS 3000 and 5000 Systems
AC-021	Elemental Analysis Methodology of Filter-collected Airborne Particulate Matter (PM) by ICP-MS
AC-026	Ion Chromatographic Procedures using the Dionex ICS 3000 and 5000 Systems
AC-029	Procedure for the Equilibration and Weighing of Membrane Filters and PUFs on the Mettler Toledo Micro Balance
AC-035	Analysis of Glyphosate, Aminomethylphosphonic Acid and Glufosinate in Water
AC-038	Trace Metal Analysis of Water Samples by ICP-MS
AC-048	Specific Conductance (Conductivity Meter Method)
AC-049	pH (Meter Method)
AC-054	Alkalinity Total and Phenolphthalein
AC-058	Determination of Volatile Organic Compounds in Ambient Air by Gas Chromatography Mass Spectrometry
AC-060	Trace Metal Analysis of Soil Sediment and Industrial Waste Samples by Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
AC-061	Trace Metal Analysis for Biological Samples by Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
AC-065	Analysis of Naphthenic Acids in Water by HPLC-Orbitrap-MS analysis
AC-074	Pesticides in Water
AC-079	Alkylated PAH in Soil and Sediment
AC-080	Alkylated PAH in Water (SPE Extraction)
NA-006	Determination of BTEX, F1 Hydrocarbons and F2, F3 and F4 Hydrocarbons in Water
NA-024	Analysis of Reduced Sulfur Compounds in Air

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 8 of 11

Qualifiers

V

Data Qualifier Translation В Blank contamination; Analyte detected above the method reporting limit in an associated blank 1 The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit J1 Reported value is estimated; Surrogate recoveries limits were exceeded J2 Reported value is estimated; No known QC criteria for this component J3 Reported value is estimated; The value failed to meet QC criteria for either precision or accuracy J4 Reported value is estimated; The sample matrix interfered with the analysis Κ Off-scale low. Actual value is known to be less than the value given L Off-scale high. Actual value is known to be greater than value given Ν Non-target analyte; Tentatively identified compound (using mass spectroscopy) Q Sample held beyond the accepted holding time R Rejected data; Not suitable for the projects intended use Т Value reported is less than the laboratory method detection limit U Compound was analyzed for but not detected

Analyte was detected in both the sample and the associated method blank

TEST REPORT Page 9 of 11

Order Comments

23050235

Test #841. Send results to Stan Yuha. Send invoice to Robbi Gooding.

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 10 of 11

Sample Comments

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 11 of 11

Result Comments

Note:

- 1. Results relate only to items tested and apply to the sample as received.
- 2. This report shall not be reproduced, except in full, without the explicit approval of the laboratory.

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 1 of 12

RESULTS: Todd Webb

Clean Harbors Environmental

PO Box 390

2 km N of Hwy 14 on Sec Road 854 50114 RR 173

Ryley

AB T0B 4A0

INVOICE: Stephanie Dennis

PO Box 390

2 km N of Hwy 14 on Sec Road 854 50114 RR 173

Ryley

AB T0B 4A0 **CLIENT SAMPLE ID**

Matrix

HI-VOL Test # 842 - Filter # HVF-23-03-09

Air Filter

CANISTER ID:

PRIORITY: Normal

DESCRIPTION:

18-May-23 **DATE SAMPLED:** 0:00 **DATE RECEIVED:** 25-May-23

REPORT CREATED: 28-Jun-23 23050378 **REPORT NUMBER:**

> **VERSION: Version 01**

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
23050378-003	Antimony		241 ng/Filter	0.30	AC-021	19-Jun-23
23050378-003	Arsenic		6260 ng/Filter	0.30	AC-021	19-Jun-23
23050378-003	Barium		19200000 ng/Filter	300	AC-021	19-Jun-23
23050378-003	Beryllium		169 ng/Filter	0.60	AC-021	19-Jun-23
23050378-003	Boron		11900000 ng/Filter	600	AC-021	19-Jun-23
23050378-003	Cadmium		311 ng/Filter	0.80	AC-021	19-Jun-23
23050378-003	Chromium		7940 ng/Filter	20	AC-021	19-Jun-23
23050378-003	Cobalt		1130 ng/Filter	0.50	AC-021	19-Jun-23
23050378-003	Copper		471000 ng/Filter	20	AC-021	19-Jun-23
23050378-003	Iron		2500000 ng/Filter	80	AC-021	19-Jun-23
23050378-003	Lead		8620 ng/Filter	0.70	AC-021	19-Jun-23
23050378-003	Manganese		86900 ng/Filter	1.0	AC-021	19-Jun-23
23050378-003	Mercury	K, T, U	< 0.70 ng/Filter	0.70	AC-021	19-Jun-23
23050378-003	Nickel		5750 ng/Filter	5.0	AC-021	19-Jun-23
23050378-003	Selenium		473 ng/Filter	4.0	AC-021	19-Jun-23
23050378-003	Silver		289 ng/Filter	0.50	AC-021	19-Jun-23
23050378-003	Thallium		46.0 ng/Filter	0.20	AC-021	19-Jun-23

Report certified by: Andrea Conner, Admin Assistant

On behalf of: Adam Malcolm, Manager, Chemical Testing Date: June 28, 2023 Inquiries: (780) 632 8403 E-mail: EAS.Results@innotechalberta.ca

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 2 of 12

CLIENT SAMPLE ID CANISTER ID Matrix DATE SAMPLED

HI-VOL Test # 842 - Filter # HVF-23-03-09 Air Filter 18-May-23 0:00

DESCRIPTION:

REPORT NUMBER: 23050378 REPORT CREATED: 28-Jun-23 VERSION: Version 01

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
23050378-003	Tin	T, U	< 0.20 ng/Filter	0.20	AC-021	19-Jun-23
23050378-003	Uranium		179 ng/Filter	0.200	AC-021	19-Jun-23
23050378-003	Vanadium		5700 ng/Filter	0.40	AC-021	19-Jun-23
23050378-003	Zinc	K, T, U	< 1000 ng/Filter	1000	AC-021	19-Jun-23
23050378-003	Particulate Weight		155 mg	0.1	Research	05-Jun-23

Report certified by: Andrea Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: June 28, 2023 E-mail: EAS.Results@innotechalberta.ca

TEST REPORT Page 3 of 12

CLIENT SAMPLE ID Matrix **CANISTER ID DATE SAMPLED** 18-May-23 0:00 PM10 Test # 842 - Filter # C9700051 Air Filter

DESCRIPTION:

REPORT NUMBER: 23050378 **REPORT CREATED:** 28-Jun-23 **VERSION: Version 01**

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
23050378-002	Antimony		1.22 ng/filter	0.03	AC-021	16-Jun-23
23050378-002	Arsenic		7.80 ng/filter	0.03	AC-021	16-Jun-23
23050378-002	Barium		373 ng/filter	0.3	AC-021	16-Jun-23
23050378-002	Beryllium		0.77 ng/filter	0.06	AC-021	16-Jun-23
23050378-002	Boron		134 ng/filter	0.6	AC-021	16-Jun-23
23050378-002	Cadmium		1.26 ng/filter	0.08	AC-021	16-Jun-23
23050378-002	Chromium		36 ng/filter	2	AC-021	16-Jun-23
23050378-002	Cobalt		6.74 ng/filter	0.05	AC-021	16-Jun-23
23050378-002	Copper		444 ng/filter	2	AC-021	16-Jun-23
23050378-002	Iron		23400 ng/filter	8	AC-021	16-Jun-23
23050378-002	Lead		13.1 ng/filter	0.07	AC-021	16-Jun-23
23050378-002	Manganese		750 ng/filter	0.1	AC-021	16-Jun-23
23050378-002	Mercury	K, T, U	< 0.07 ng/filter	0.07	AC-021	16-Jun-23
23050378-002	Nickel		20.6 ng/filter	0.5	AC-021	16-Jun-23
23050378-002	Selenium		6.8 ng/filter	0.4	AC-021	16-Jun-23
23050378-002	Silver		0.48 ng/filter	0.05	AC-021	16-Jun-23
23050378-002	Thallium		0.41 ng/filter	0.02	AC-021	16-Jun-23
23050378-002	Tin	K, T, U	< 0.02 ng/filter	0.02	AC-021	16-Jun-23
23050378-002	Uranium		1.28 ng/filter	0.020	AC-021	16-Jun-23
23050378-002	Vanadium		43.6 ng/filter	0.04	AC-021	16-Jun-23
23050378-002	Zinc		191 ng/filter	1	AC-021	16-Jun-23
23050378-002	Particulate Weight		0.905 mg	0.004	AC-029	26-May-23

Report certified by: Andrea Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: June 28, 2023 Inquiries: (780) 632 8403 E-mail: EAS.Results@innotechalberta.ca

Page 4 of 12 **TEST REPORT**

CLIENT SAMPLE ID	CANISTER ID	Matrix DATE SAMPLE		
VOCs and TNMOC Test # 842	32266	Ambient Air	18-May-23 0:00	

DESCRIPTION:

REPORT NUMBER: 23050378 **VERSION: Version 01 REPORT CREATED:** 28-Jun-23

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
23050378-001	Total Non-Methane Organic Carbon	K, T, U	< 0.09 ppmv	0.09	NA-028	29-May-23
23050378-001	1,2,3-Trimethylbenzene	K, T, U	< 0.09 ppbv	0.09	AC-058	07-Jun-23
23050378-001	1,2,4-Trimethylbenzene	K, T, U	< 0.05 ppbv	0.05	AC-058	07-Jun-23
23050378-001	1,3,5-Trimethylbenzene	K, T, U	< 0.05 ppbv	0.05	AC-058	07-Jun-23
23050378-001	1-Butene/Isobutylene	K, T, U	< 0.10 ppbv	0.10	AC-058	07-Jun-23
23050378-001	1-Hexene/2-Methyl-1-pentene	K, T, U	< 0.12 ppbv	0.12	AC-058	07-Jun-23
23050378-001	1-Pentene	K, T, U	< 0.05 ppbv	0.05	AC-058	07-Jun-23
23050378-001	2,2,4-Trimethylpentane	K, T, U	< 0.03 ppbv	0.03	AC-058	07-Jun-23
23050378-001	2,2-Dimethylbutane	K, T, U	< 0.03 ppbv	0.03	AC-058	07-Jun-23
23050378-001	2,3,4-Trimethylpentane	K, T, U	< 0.03 ppbv	0.03	AC-058	07-Jun-23
23050378-001	2,3-Dimethylbutane	K, T, U	< 0.15 ppbv	0.15	AC-058	07-Jun-23
23050378-001	2,3-Dimethylpentane	K, T, U	< 0.03 ppbv	0.03	AC-058	07-Jun-23
23050378-001	2,4-Dimethylpentane	K, T, U	< 0.05 ppbv	0.05	AC-058	07-Jun-23
23050378-001	2-Methylheptane	K, T, U	< 0.03 ppbv	0.03	AC-058	07-Jun-23
23050378-001	2-Methylhexane	K, T, U	< 0.05 ppbv	0.05	AC-058	07-Jun-23
23050378-001	2-Methylpentane	1	0.06 ppbv	0.03	AC-058	07-Jun-23
23050378-001	3-Methylheptane	K, T, U	< 0.05 ppbv	0.05	AC-058	07-Jun-23
23050378-001	3-Methylhexane	K, T, U	< 0.03 ppbv	0.03	AC-058	07-Jun-23
23050378-001	3-Methylpentane	K, T, U	< 0.03 ppbv	0.03	AC-058	07-Jun-23
23050378-001	Benzene	1	0.16 ppbv	0.05	AC-058	07-Jun-23
23050378-001	cis-2-Butene	K, T, U	< 0.05 ppbv	0.05	AC-058	07-Jun-23
23050378-001	cis-2-Pentene	K, T, U	< 0.03 ppbv	0.03	AC-058	07-Jun-23
23050378-001	Cyclohexane	K, T, U	< 0.07 ppbv	0.07	AC-058	07-Jun-23
23050378-001	Cyclopentane	K, T, U	< 0.03 ppbv	0.03	AC-058	07-Jun-23
23050378-001	Ethylbenzene	K, T, U	< 0.05 ppbv	0.05	AC-058	07-Jun-23

Report certified by: Andrea Conner, Admin Assistant

On behalf of: Adam Malcolm, Manager, Chemical Testing Date: June 28, 2023 Inquiries: (780) 632 8403 E-mail: EAS.Results@innotechalberta.ca

TEST REPORT Page 5 of 12

CLIENT SAMPLE IDCANISTER IDMatrixDATE SAMPLEDVOCs and TNMOC Test # 84232266Ambient Air18-May-230:00

DESCRIPTION:

REPORT NUMBER: 23050378 REPORT CREATED: 28-Jun-23 VERSION: Version 01

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
23050378-001	Isobutane		0.49 ppbv	0.05	AC-058	07-Jun-23
23050378-001	Isopentane	1	0.14 ppbv	0.07	AC-058	07-Jun-23
23050378-001	Isoprene	K, T, U	< 0.03 ppbv	0.03	AC-058	07-Jun-23
23050378-001	Isopropylbenzene	K, T, U	< 0.07 ppbv	0.07	AC-058	07-Jun-23
23050378-001	m,p-Xylene	K, T, U	< 0.07 ppbv	0.07	AC-058	07-Jun-23
23050378-001	m-Diethylbenzene	K, T, U	< 0.03 ppbv	0.03	AC-058	07-Jun-23
23050378-001	m-Ethyltoluene	K, T, U	< 0.05 ppbv	0.05	AC-058	07-Jun-23
23050378-001	Methylcyclohexane	K, T, U	< 0.03 ppbv	0.03	AC-058	07-Jun-23
23050378-001	Methylcyclopentane	K, T, U	< 0.09 ppbv	0.09	AC-058	07-Jun-23
23050378-001	n-Butane		0.21 ppbv	0.03	AC-058	07-Jun-23
23050378-001	n-Decane	K, T, U	< 0.10 ppbv	0.10	AC-058	07-Jun-23
23050378-001	n-Dodecane	K, T, U	< 0.5 ppbv	0.5	AC-058	07-Jun-23
23050378-001	n-Heptane	K, T, U	< 0.07 ppbv	0.07	AC-058	07-Jun-23
23050378-001	n-Hexane	K, T, U	< 0.05 ppbv	0.05	AC-058	07-Jun-23
23050378-001	n-Octane	K, T, U	< 0.03 ppbv	0.03	AC-058	07-Jun-23
23050378-001	n-Pentane	K, T, U	< 0.07 ppbv	0.07	AC-058	07-Jun-23
23050378-001	n-Propylbenzene	K, T, U	< 0.10 ppbv	0.10	AC-058	07-Jun-23
23050378-001	n-Undecane	K, T, U	< 0.9 ppbv	0.9	AC-058	07-Jun-23
23050378-001	n-Nonane	K, T, U	< 0.07 ppbv	0.07	AC-058	07-Jun-23
23050378-001	o-Ethyltoluene	K, T, U	< 0.03 ppbv	0.03	AC-058	07-Jun-23
23050378-001	o-Xylene	K, T, U	< 0.05 ppbv	0.05	AC-058	07-Jun-23
23050378-001	p-Diethylbenzene	K, T, U	< 0.03 ppbv	0.03	AC-058	07-Jun-23
23050378-001	p-Ethyltoluene	K, T, U	< 0.07 ppbv	0.07	AC-058	07-Jun-23
23050378-001	Styrene	K, T, U	< 0.07 ppbv	0.07	AC-058	07-Jun-23
23050378-001	Toluene	K, T, U	< 0.05 ppbv	0.05	AC-058	07-Jun-23

Report certified by: Andrea Conner, Admin Assistant

On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: June 28, 2023 E-mail: EAS.Results@innotechalberta.ca

TEST REPORT Page 6 of 12

CLIENT SAMPLE IDCANISTER IDMatrixDATE SAMPLEDVOCs and TNMOC Test # 84232266Ambient Air18-May-230:00

DESCRIPTION:

REPORT NUMBER: 23050378 REPORT CREATED: 28-Jun-23 VERSION: Version 01

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
23050378-001	trans-2-Butene	K, T, U	< 0.05 ppbv	0.05	AC-058	07-Jun-23
23050378-001	trans-2-Pentene	K, T, U	< 0.03 ppbv	0.03	AC-058	07-Jun-23

Report certified by: Andrea Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: June 28, 2023 E-mail: EAS.Results@innotechalberta.ca

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 7 of 12

Revision History

Order ID	Ver	Date	Reason
23050378	01	28-Jun-23	Report created

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 8 of 12

Methods

Method	Description
AC-021	Elemental Analysis Methodology of Filter-collected Airborne Particulate Matter (PM) by ICP-MS
AC-029	Procedure for the Equilibration and Weighing of Membrane Filters and PUFs on the Mettler Toledo Micro Balance
AC-058	Determination of Volatile Organic Compounds in Ambient Air by Gas Chromatography Mass Spectrometry
NA-028	Determination of Total Non-methane Hydrocarbons and Total Hydrocarbons in Ambient Air by Gas Chromatography Flame Ionization Detector
Research	Research method

List of Analytical Method IDs within InnoTech's ISO/IEC 17025:2017 CALA Scope of Accreditation

Method ID	Description
AC-013	Mercury in Waters by Cold Vapor Atomic Fluorescence Detection (CVAFS)
AC-020	Ion Chromatographic Procedures using the Dionex ICS 3000 and 5000 Systems
AC-021	Elemental Analysis Methodology of Filter-collected Airborne Particulate Matter (PM) by ICP-MS
AC-026	Ion Chromatographic Procedures using the Dionex ICS 3000 and 5000 Systems
AC-029	Procedure for the Equilibration and Weighing of Membrane Filters and PUFs on the Mettler Toledo Micro Balance
AC-035	Analysis of Glyphosate, Aminomethylphosphonic Acid and Glufosinate in Water
AC-038	Trace Metal Analysis of Water Samples by ICP-MS
AC-048	Specific Conductance (Conductivity Meter Method)
AC-049	pH (Meter Method)
AC-054	Alkalinity Total and Phenolphthalein
AC-058	Determination of Volatile Organic Compounds in Ambient Air by Gas Chromatography Mass Spectrometry
AC-060	Trace Metal Analysis of Soil Sediment and Industrial Waste Samples by Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
AC-061	Trace Metal Analysis for Biological Samples by Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
AC-065	Analysis of Naphthenic Acids in Water by HPLC-Orbitrap-MS analysis
AC-074	Pesticides in Water
AC-079	Alkylated PAH in Soil and Sediment
AC-080	Alkylated PAH in Water (SPE Extraction)
NA-006	Determination of BTEX, F1 Hydrocarbons and F2, F3 and F4 Hydrocarbons in Water
NA-024	Analysis of Reduced Sulfur Compounds in Air

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 9 of 12

Qualifiers

Data Qualifier Translation В Blank contamination; Analyte detected above the method reporting limit in an associated blank 1 The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit J1 Reported value is estimated; Surrogate recoveries limits were exceeded J2 Reported value is estimated; No known QC criteria for this component J3 Reported value is estimated; The value failed to meet QC criteria for either precision or accuracy J4 Reported value is estimated; The sample matrix interfered with the analysis Κ Off-scale low. Actual value is known to be less than the value given L Off-scale high. Actual value is known to be greater than value given Ν Non-target analyte; Tentatively identified compound (using mass spectroscopy) Q Sample held beyond the accepted holding time R Rejected data; Not suitable for the projects intended use Т Value reported is less than the laboratory method detection limit U Compound was analyzed for but not detected V Analyte was detected in both the sample and the associated method blank

ENVIRONMENTAL ANALYTICAL SERVICES

Page 10 of 12 **TEST REPORT**

Order Comments

23050378

Test #842. Send results to Stan Yuha. Send invoice to Robbi Gooding.

ENVIRONMENTAL ANALYTICAL SERVICES

Page 11 of 12 **TEST REPORT**

Sample Comments

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 12 of 12

Result Comments

Note:

- 1. Results relate only to items tested and apply to the sample as received.
- 2. This report shall not be reproduced, except in full, without the explicit approval of the laboratory.

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 1 of 13

RESULTS: Todd Webb

Clean Harbors Environmental

PO Box 390

2 km N of Hwy 14 on Sec Road 854 50114 RR 173

Ryley

AB TOB 4A0

INVOICE: Stephanie Dennis

PO Box 390

2 km N of Hwy 14 on Sec Road 854 50114 RR 173

Ryley

AB TOB 4A0

CLIENT SAMPLE ID

Matrix Air Filter

HI-VOL Test Number: 843, HVF-23-03-10

CANISTER ID:

PRIORITY: Normal

DESCRIPTION:

DATE SAMPLED: 24-May-23 0:00 **DATE RECEIVED:** 30-May-23

REPORT CREATED: 28-Jun-23 **REPORT NUMBER:** 23050415

VERSION: Version 01

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
23050415-003	Antimony		383 ng/Filter	0.30	AC-021	19-Jun-23
23050415-003	Arsenic		5980 ng/Filter	0.30	AC-021	19-Jun-23
23050415-003	Barium		15300000 ng/Filter	300	AC-021	19-Jun-23
23050415-003	Beryllium		197 ng/Filter	0.60	AC-021	19-Jun-23
23050415-003	Boron		38800000 ng/Filter	600	AC-021	19-Jun-23
23050415-003	Cadmium		286 ng/Filter	0.80	AC-021	19-Jun-23
23050415-003	Chromium		14900 ng/Filter	20	AC-021	19-Jun-23
23050415-003	Cobalt		1730 ng/Filter	0.50	AC-021	19-Jun-23
23050415-003	Copper		346000 ng/Filter	20	AC-021	19-Jun-23
23050415-003	Iron		2740000 ng/Filter	80	AC-021	19-Jun-23
23050415-003	Lead		29000 ng/Filter	0.70	AC-021	19-Jun-23
23050415-003	Manganese		134000 ng/filter	1.0	AC-021	19-Jun-23
23050415-003	Mercury		56.5 ng/Filter	0.70	AC-021	19-Jun-23
23050415-003	Nickel		32600 ng/Filter	5.0	AC-021	19-Jun-23
23050415-003	Selenium		2160 ng/Filter	4.0	AC-021	19-Jun-23
23050415-003	Silver		250 ng/Filter	0.50	AC-021	19-Jun-23
23050415-003	Thallium		39.4 ng/Filter	0.20	AC-021	19-Jun-23

Report certified by: Andrea Conner, Admin Assistant

drea Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: June 28, 2023 E-mail: EAS.Results@innotechalberta.ca

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 2 of 13

CLIENT SAMPLE ID CANISTER ID Matrix DATE SAMPLED

HI-VOL Test Number: 843, HVF-23-03-10 Air Filter 24-May-23 0:00

DESCRIPTION:

REPORT NUMBER: 23050415 REPORT CREATED: 28-Jun-23 VERSION: Version 01

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
23050415-003	Tin	T, U	< 0.20 ng/Filter	0.20	AC-021	19-Jun-23
23050415-003	Uranium		160 ng/Filter	0.200	AC-021	19-Jun-23
23050415-003	Vanadium		15600 ng/Filter	0.40	AC-021	19-Jun-23
23050415-003	Zinc	K, T, U	< 1000 ng/Filter	1000	AC-021	19-Jun-23
23050415-003	Particulate Weight		149 mg	0.1	Research	07-Jun-23

Report certified by: Andrea Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: June 28, 2023 E-mail: EAS.Results@innotechalberta.ca

Page 3 of 13 **TEST REPORT**

CLIENT SAMPLE ID Matrix **CANISTER ID DATE SAMPLED** PM10 Quarter 2 Field Blank, C9700088 26-May-23 7:52 Air Filter

DESCRIPTION:

REPORT NUMBER: 23050415 **REPORT CREATED:** 28-Jun-23 **VERSION: Version 01**

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
23050415-004	Antimony	K, T, U	< 0.03 ng/filter	0.03	AC-021	16-Jun-23
23050415-004	Arsenic		1.16 ng/filter	0.03	AC-021	16-Jun-23
23050415-004	Barium	I	2.2 ng/filter	0.3	AC-021	16-Jun-23
23050415-004	Beryllium	I	0.12 ng/filter	0.06	AC-021	16-Jun-23
23050415-004	Boron	I	1.9 ng/filter	0.6	AC-021	16-Jun-23
23050415-004	Cadmium	К, Т, U	< 0.08 ng/filter	0.08	AC-021	16-Jun-23
23050415-004	Chromium	I	10 ng/filter	2	AC-021	16-Jun-23
23050415-004	Cobalt	К, Т, U	< 0.05 ng/filter	0.05	AC-021	16-Jun-23
23050415-004	Copper		11 ng/filter	2	AC-021	16-Jun-23
23050415-004	Iron		128 ng/filter	8	AC-021	16-Jun-23
23050415-004	Lead		0.90 ng/filter	0.07	AC-021	16-Jun-23
23050415-004	Manganese		2.7 ng/filter	0.1	AC-021	16-Jun-23
23050415-004	Mercury	K, T, U	< 0.07 ng/filter	0.07	AC-021	16-Jun-23
23050415-004	Nickel		5.1 ng/filter	0.5	AC-021	16-Jun-23
23050415-004	Selenium		3.2 ng/filter	0.4	AC-021	16-Jun-23
23050415-004	Silver	K, T, U	< 0.05 ng/filter	0.05	AC-021	16-Jun-23
23050415-004	Thallium	I	0.12 ng/filter	0.02	AC-021	16-Jun-23
23050415-004	Tin	K, T, U	< 0.02 ng/filter	0.02	AC-021	16-Jun-23
23050415-004	Uranium	1	0.048 ng/filter	0.020	AC-021	16-Jun-23
23050415-004	Vanadium		3.32 ng/filter	0.04	AC-021	16-Jun-23
23050415-004	Zinc		26 ng/filter	1	AC-021	16-Jun-23
23050415-004	Particulate Weight	K, T, U	< 0.004 mg	0.004	AC-029	06-Jun-23

Report certified by: Andrea Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: June 28, 2023 Inquiries: (780) 632 8403 E-mail: EAS.Results@innotechalberta.ca

TEST REPORT Page 4 of 13

CLIENT SAMPLE IDCANISTER IDMatrixDATE SAMPLEDPM10 Test Number: 843, C1169901Air Filter24-May-230:00

DESCRIPTION:

REPORT NUMBER: 23050415 REPORT CREATED: 28-Jun-23 VERSION: Version 01

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
23050415-002	Antimony		3.47 ng/filter	0.03	AC-021	16-Jun-23
23050415-002	Arsenic		12.2 ng/filter	0.03	AC-021	16-Jun-23
23050415-002	Barium		363 ng/filter	0.3	AC-021	16-Jun-23
23050415-002	Beryllium		0.66 ng/filter	0.06	AC-021	16-Jun-23
23050415-002	Boron		176 ng/filter	0.6	AC-021	16-Jun-23
23050415-002	Cadmium		3.37 ng/filter	0.08	AC-021	16-Jun-23
23050415-002	Chromium		127 ng/filter	2	AC-021	16-Jun-23
23050415-002	Cobalt		14.7 ng/filter	0.05	AC-021	16-Jun-23
23050415-002	Copper		192 ng/filter	2	AC-021	16-Jun-23
23050415-002	Iron		22900 ng/filter	8	AC-021	16-Jun-23
23050415-002	Lead		221 ng/filter	0.07	AC-021	16-Jun-23
23050415-002	Manganese		1090 ng/filter	0.1	AC-021	16-Jun-23
23050415-002	Mercury		2.03 ng/filter	0.07	AC-021	16-Jun-23
23050415-002	Nickel		314 ng/filter	0.5	AC-021	16-Jun-23
23050415-002	Selenium		11.1 ng/filter	0.4	AC-021	16-Jun-23
23050415-002	Silver		0.86 ng/filter	0.05	AC-021	16-Jun-23
23050415-002	Thallium		0.34 ng/filter	0.02	AC-021	16-Jun-23
23050415-002	Tin		3.52 ng/filter	0.02	AC-021	16-Jun-23
23050415-002	Uranium		1.10 ng/filter	0.020	AC-021	16-Jun-23
23050415-002	Vanadium		143 ng/filter	0.04	AC-021	16-Jun-23
23050415-002	Zinc		1780 ng/filter	1	AC-021	16-Jun-23
23050415-002	Particulate Weight		0.646 mg	0.004	AC-029	06-Jun-23

Report certified by: Andrea Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: June 28, 2023 E-mail: EAS.Results@innotechalberta.ca

Page 5 of 13 **TEST REPORT**

CLIENT SAMPLE ID	CANISTER ID	Matrix	DATE SAMPLED		
VOCs and TNMOC Test Number: 843	28904	Ambient Air	24-May-23 0:00		

DESCRIPTION:

REPORT NUMBER: 23050415 **VERSION: Version 01 REPORT CREATED:** 28-Jun-23

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
23050415-001	Total Non-Methane Organic Carbon	K, T, U	< 0.09 ppmv	0.09	NA-028	02-Jun-23
23050415-001	1,2,3-Trimethylbenzene	K, T, U	< 0.09 ppbv	0.09	AC-058	07-Jun-23
23050415-001	1,2,4-Trimethylbenzene	I	0.07 ppbv	0.06	AC-058	07-Jun-23
23050415-001	1,3,5-Trimethylbenzene	K, T, U	< 0.06 ppbv	0.06	AC-058	07-Jun-23
23050415-001	1-Butene/Isobutylene	K, T, U	< 0.11 ppbv	0.11	AC-058	07-Jun-23
23050415-001	1-Hexene/2-Methyl-1-pentene	K, T, U	< 0.13 ppbv	0.13	AC-058	07-Jun-23
23050415-001	1-Pentene	K, T, U	< 0.06 ppbv	0.06	AC-058	07-Jun-23
23050415-001	2,2,4-Trimethylpentane	K, T, U	< 0.04 ppbv	0.04	AC-058	07-Jun-23
23050415-001	2,2-Dimethylbutane	K, T, U	< 0.04 ppbv	0.04	AC-058	07-Jun-23
23050415-001	2,3,4-Trimethylpentane	1	0.13 ppbv	0.04	AC-058	07-Jun-23
23050415-001	2,3-Dimethylbutane	K, T, U	< 0.17 ppbv	0.17	AC-058	07-Jun-23
23050415-001	2,3-Dimethylpentane	I	0.08 ppbv	0.04	AC-058	07-Jun-23
23050415-001	2,4-Dimethylpentane	K, T, U	< 0.06 ppbv	0.06	AC-058	07-Jun-23
23050415-001	2-Methylheptane	I	0.09 ppbv	0.04	AC-058	07-Jun-23
23050415-001	2-Methylhexane		0.22 ppbv	0.06	AC-058	07-Jun-23
23050415-001	2-Methylpentane		0.45 ppbv	0.04	AC-058	07-Jun-23
23050415-001	3-Methylheptane	I	0.06 ppbv	0.06	AC-058	07-Jun-23
23050415-001	3-Methylhexane		0.24 ppbv	0.04	AC-058	07-Jun-23
23050415-001	3-Methylpentane		0.26 ppbv	0.04	AC-058	07-Jun-23
23050415-001	Benzene		0.46 ppbv	0.06	AC-058	07-Jun-23
23050415-001	cis-2-Butene	K, T, U	< 0.06 ppbv	0.06	AC-058	07-Jun-23
23050415-001	cis-2-Pentene	K, T, U	< 0.04 ppbv	0.04	AC-058	07-Jun-23
23050415-001	Cyclohexane	1	0.27 ppbv	0.07	AC-058	07-Jun-23
23050415-001	Cyclopentane	1	0.08 ppbv	0.04	AC-058	07-Jun-23
23050415-001	Ethylbenzene	1	0.16 ppbv	0.06	AC-058	07-Jun-23

Report certified by: Andrea Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: June 28, 2023 Inquiries: (780) 632 8403 E-mail: EAS.Results@innotechalberta.ca

TEST REPORT Page 6 of 13

CLIENT SAMPLE IDCANISTER IDMatrixDATE SAMPLEDVOCs and TNMOC Test Number: 84328904Ambient Air24-May-230:00

DESCRIPTION:

REPORT NUMBER: 23050415 REPORT CREATED: 28-Jun-23 VERSION: Version 01

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
23050415-001	Isobutane		0.59 ppbv	0.06	AC-058	07-Jun-23
23050415-001	Isopentane		0.92 ppbv	0.07	AC-058	07-Jun-23
23050415-001	Isoprene	K, T, U	< 0.04 ppbv	0.04	AC-058	07-Jun-23
23050415-001	Isopropylbenzene	K, T, U	< 0.07 ppbv	0.07	AC-058	07-Jun-23
23050415-001	m,p-Xylene		1.10 ppbv	0.07	AC-058	07-Jun-23
23050415-001	m-Diethylbenzene	K, T, U	< 0.04 ppbv	0.04	AC-058	07-Jun-23
23050415-001	m-Ethyltoluene	1	0.06 ppbv	0.06	AC-058	07-Jun-23
23050415-001	Methylcyclohexane		0.51 ppbv	0.04	AC-058	07-Jun-23
23050415-001	Methylcyclopentane		0.30 ppbv	0.09	AC-058	07-Jun-23
23050415-001	n-Butane		0.65 ppbv	0.04	AC-058	07-Jun-23
23050415-001	n-Decane	1	0.17 ppbv	0.11	AC-058	07-Jun-23
23050415-001	n-Dodecane	K, T, U	< 0.6 ppbv	0.6	AC-058	07-Jun-23
23050415-001	n-Heptane		0.45 ppbv	0.07	AC-058	07-Jun-23
23050415-001	n-Hexane		0.62 ppbv	0.06	AC-058	07-Jun-23
23050415-001	n-Octane	I	0.17 ppbv	0.04	AC-058	07-Jun-23
23050415-001	n-Pentane		0.93 ppbv	0.07	AC-058	07-Jun-23
23050415-001	n-Propylbenzene	K, T, U	< 0.11 ppbv	0.11	AC-058	07-Jun-23
23050415-001	n-Undecane	K, T, U	< 0.9 ppbv	0.9	AC-058	07-Jun-23
23050415-001	n-Nonane	I	0.14 ppbv	0.07	AC-058	07-Jun-23
23050415-001	o-Ethyltoluene	K, T, U	< 0.04 ppbv	0.04	AC-058	07-Jun-23
23050415-001	o-Xylene	I	0.29 ppbv	0.06	AC-058	07-Jun-23
23050415-001	p-Diethylbenzene	K, T, U	< 0.04 ppbv	0.04	AC-058	07-Jun-23
23050415-001	p-Ethyltoluene	K, T, U	< 0.07 ppbv	0.07	AC-058	07-Jun-23
23050415-001	Styrene	K, T, U	< 0.07 ppbv	0.07	AC-058	07-Jun-23
23050415-001	Toluene		1.80 ppbv	0.06	AC-058	07-Jun-23

Report certified by: Andrea Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: June 28, 2023 E-mail: EAS.Results@innotechalberta.ca

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 7 of 13

CLIENT SAMPLE ID CANISTER ID Matrix DATE SAMPLED

VOCs and TNMOC Test Number: 843 28904 Ambient Air 24-May-23 0:00

DESCRIPTION:

REPORT NUMBER: 23050415 REPORT CREATED: 28-Jun-23 VERSION: Version 01

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
23050415-001	trans-2-Butene	K, T, U	< 0.06 ppbv	0.06	AC-058	07-Jun-23
23050415-001	trans-2-Pentene	K, T, U	< 0.04 ppbv	0.04	AC-058	07-Jun-23

Report certified by: Andrea Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: June 28, 2023 E-mail: EAS.Results@innotechalberta.ca

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 8 of 13

Revision History

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 9 of 13

Methods

Method	Description
AC-021	Elemental Analysis Methodology of Filter-collected Airborne Particulate Matter (PM) by ICP-MS
AC-029	Procedure for the Equilibration and Weighing of Membrane Filters and PUFs on the Mettler Toledo Micro Balance
AC-058	Determination of Volatile Organic Compounds in Ambient Air by Gas Chromatography Mass Spectrometry
NA-028	Determination of Total Non-methane Hydrocarbons and Total Hydrocarbons in Ambient Air by Gas Chromatography Flame Ionization Detector
Research	Research method

List of Analytical Method IDs within InnoTech's ISO/IEC 17025:2017 CALA Scope of Accreditation

Method ID	Description
AC-013	Mercury in Waters by Cold Vapor Atomic Fluorescence Detection (CVAFS)
AC-020	Ion Chromatographic Procedures using the Dionex ICS 3000 and 5000 Systems
AC-021	Elemental Analysis Methodology of Filter-collected Airborne Particulate Matter (PM) by ICP-MS
AC-026	Ion Chromatographic Procedures using the Dionex ICS 3000 and 5000 Systems
AC-029	Procedure for the Equilibration and Weighing of Membrane Filters and PUFs on the Mettler Toledo Micro Balance
AC-035	Analysis of Glyphosate, Aminomethylphosphonic Acid and Glufosinate in Water
AC-038	Trace Metal Analysis of Water Samples by ICP-MS
AC-048	Specific Conductance (Conductivity Meter Method)
AC-049	pH (Meter Method)
AC-054	Alkalinity Total and Phenolphthalein
AC-058	Determination of Volatile Organic Compounds in Ambient Air by Gas Chromatography Mass Spectrometry
AC-060	Trace Metal Analysis of Soil Sediment and Industrial Waste Samples by Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
AC-061	Trace Metal Analysis for Biological Samples by Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
AC-065	Analysis of Naphthenic Acids in Water by HPLC-Orbitrap-MS analysis
AC-074	Pesticides in Water
AC-079	Alkylated PAH in Soil and Sediment
AC-080	Alkylated PAH in Water (SPE Extraction)
NA-006	Determination of BTEX, F1 Hydrocarbons and F2, F3 and F4 Hydrocarbons in Water
NA-024	Analysis of Reduced Sulfur Compounds in Air

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 10 of 13

Qualifiers

Data Qualifier Translation В Blank contamination; Analyte detected above the method reporting limit in an associated blank 1 The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit J1 Reported value is estimated; Surrogate recoveries limits were exceeded J2 Reported value is estimated; No known QC criteria for this component J3 Reported value is estimated; The value failed to meet QC criteria for either precision or accuracy J4 Reported value is estimated; The sample matrix interfered with the analysis Κ Off-scale low. Actual value is known to be less than the value given L Off-scale high. Actual value is known to be greater than value given Ν Non-target analyte; Tentatively identified compound (using mass spectroscopy) Q Sample held beyond the accepted holding time R Rejected data; Not suitable for the projects intended use Т Value reported is less than the laboratory method detection limit U Compound was analyzed for but not detected V Analyte was detected in both the sample and the associated method blank

ENVIRONMENTAL ANALYTICAL SERVICES

Page 11 of 13 **TEST REPORT**

Order Comments

23050415

Project ID: Test 843. Report also to Stan Yuha. Invoice also to Robbi Gooding.

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 12 of 13

Sample Comments

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 13 of 13

Result Comments

Note:

- 1. Results relate only to items tested and apply to the sample as received.
- 2. This report shall not be reproduced, except in full, without the explicit approval of the laboratory.

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 1 of 11

RESULTS: Todd Webb

Clean Harbors Environmental

PO Box 390

2 km N of Hwy 14 on Sec Road 854 50114 RR 173

Ryley

AB TOB 4A0

INVOICE: Stephanie Dennis

PO Box 390

2 km N of Hwy 14 on Sec Road 854 50114 RR 173

Ryley

AB TOB 4A0

CLIENT SAMPLE ID

HI-VOL Test # 844, HVF-23-03-08

CANISTER ID:

PRIORITY: Normal

DESCRIPTION: HI-VOL Filter

DATE SAMPLED: 30-May-23 0:00 **DATE RECEIVED:**

REPORT CREATED: 26-Jun-23 **REPORT NUMBER:** 23060018

VERSION: Version 01

Matrix Air Filter

02-Jun-23

Lab IDParameterQualifierResult UnitsRDLMethodAnalysis Date23060018-003Particulate Weight84.6 mg0.1Research07-Jun-23

Report certified by: Andrea Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: June 26, 2023 E-mail: EAS.Results@innotechalberta.ca

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 2 of 11

CLIENT SAMPLE ID CANISTER ID Matrix DATE SAMPLED

PM10 Test # 844, C1169902 Air Filter 30-May-23 0:00

DESCRIPTION: PM10 Filter

REPORT NUMBER: 23060018 REPORT CREATED: 26-Jun-23 VERSION: Version 01

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
23060018-002	Particulate Weight		0.386 mg	0.004	AC-029	06-Jun-23

Report certified by: Andrea Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: June 26, 2023 E-mail: EAS.Results@innotechalberta.ca

TEST REPORT Page 3 of 11

CLIENT SAMPLE IDCANISTER IDMatrixDATE SAMPLEDVOCs and TNMOC Test # 84431818Ambient Air30-May-230:00

DESCRIPTION: Canister

REPORT NUMBER: 23060018 REPORT CREATED: 26-Jun-23 VERSION: Version 01

		0 1:0:	- L. I. I.			
Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
23060018-001	Total Non-Methane Organic Carbon	K, T, U	< 0.08 ppmv	0.08	NA-028	05-Jun-23
23060018-001	1,2,3-Trimethylbenzene	K, T, U	< 0.08 ppbv	0.08	AC-058	07-Jun-23
23060018-001	1,2,4-Trimethylbenzene	K, T, U	< 0.05 ppbv	0.05	AC-058	07-Jun-23
23060018-001	1,3,5-Trimethylbenzene	K, T, U	< 0.05 ppbv	0.05	AC-058	07-Jun-23
23060018-001	1-Butene/Isobutylene	K, T, U	< 0.10 ppbv	0.10	AC-058	07-Jun-23
23060018-001	1-Hexene/2-Methyl-1-pentene	K, T, U	< 0.12 ppbv	0.12	AC-058	07-Jun-23
23060018-001	1-Pentene	K, T, U	< 0.05 ppbv	0.05	AC-058	07-Jun-23
23060018-001	2,2,4-Trimethylpentane	K, T, U	< 0.03 ppbv	0.03	AC-058	07-Jun-23
23060018-001	2,2-Dimethylbutane	K, T, U	< 0.03 ppbv	0.03	AC-058	07-Jun-23
23060018-001	2,3,4-Trimethylpentane	K, T, U	< 0.03 ppbv	0.03	AC-058	07-Jun-23
23060018-001	2,3-Dimethylbutane	K, T, U	< 0.15 ppbv	0.15	AC-058	07-Jun-23
23060018-001	2,3-Dimethylpentane	K, T, U	< 0.03 ppbv	0.03	AC-058	07-Jun-23
23060018-001	2,4-Dimethylpentane	K, T, U	< 0.05 ppbv	0.05	AC-058	07-Jun-23
23060018-001	2-Methylheptane	K, T, U	< 0.03 ppbv	0.03	AC-058	07-Jun-23
23060018-001	2-Methylhexane	K, T, U	< 0.05 ppbv	0.05	AC-058	07-Jun-23
23060018-001	2-Methylpentane	K, T, U	< 0.03 ppbv	0.03	AC-058	07-Jun-23
23060018-001	3-Methylheptane	K, T, U	< 0.05 ppbv	0.05	AC-058	07-Jun-23
23060018-001	3-Methylhexane	K, T, U	< 0.03 ppbv	0.03	AC-058	07-Jun-23
23060018-001	3-Methylpentane	K, T, U	< 0.03 ppbv	0.03	AC-058	07-Jun-23
23060018-001	Benzene	I	0.05 ppbv	0.05	AC-058	07-Jun-23
23060018-001	cis-2-Butene	K, T, U	< 0.05 ppbv	0.05	AC-058	07-Jun-23
23060018-001	cis-2-Pentene	K, T, U	< 0.03 ppbv	0.03	AC-058	07-Jun-23
23060018-001	Cyclohexane	K, T, U	< 0.07 ppbv	0.07	AC-058	07-Jun-23
23060018-001	Cyclopentane	K, T, U	< 0.03 ppbv	0.03	AC-058	07-Jun-23
23060018-001	Ethylbenzene	K, T, U	< 0.05 ppbv	0.05	AC-058	07-Jun-23

Report certified by: Andrea Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: June 26, 2023 E-mail: EAS.Results@innotechalberta.ca

TEST REPORT Page 4 of 11

CLIENT SAMPLE ID Matrix **CANISTER ID DATE SAMPLED** 30-May-23 0:00 VOCs and TNMOC Test # 844 Ambient Air 31818

DESCRIPTION: Canister

REPORT NUMBER: 23060018 **REPORT CREATED:** 26-Jun-23 **VERSION: Version 01**

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
23060018-001	Isobutane		0.41 ppbv	0.05	AC-058	07-Jun-23
23060018-001	Isopentane		0.18 ppbv	0.07	AC-058	07-Jun-23
23060018-001	Isoprene	1	0.09 ppbv	0.03	AC-058	07-Jun-23
23060018-001	Isopropylbenzene	K, T, U	< 0.07 ppbv	0.07	AC-058	07-Jun-23
23060018-001	m,p-Xylene	1	0.07 ppbv	0.07	AC-058	07-Jun-23
23060018-001	m-Diethylbenzene	K, T, U	< 0.03 ppbv	0.03	AC-058	07-Jun-23
23060018-001	m-Ethyltoluene	K, T, U	< 0.05 ppbv	0.05	AC-058	07-Jun-23
23060018-001	Methylcyclohexane	K, T, U	< 0.03 ppbv	0.03	AC-058	07-Jun-23
23060018-001	Methylcyclopentane	K, T, U	< 0.08 ppbv	0.08	AC-058	07-Jun-23
23060018-001	n-Butane		0.17 ppbv	0.03	AC-058	07-Jun-23
23060018-001	n-Decane	K, T, U	< 0.10 ppbv	0.10	AC-058	07-Jun-23
23060018-001	n-Dodecane	K, T, U	< 0.5 ppbv	0.5	AC-058	07-Jun-23
23060018-001	n-Heptane	K, T, U	< 0.07 ppbv	0.07	AC-058	07-Jun-23
23060018-001	n-Hexane	1	0.15 ppbv	0.05	AC-058	07-Jun-23
23060018-001	n-Octane	K, T, U	< 0.03 ppbv	0.03	AC-058	07-Jun-23
23060018-001	n-Pentane	K, T, U	< 0.07 ppbv	0.07	AC-058	07-Jun-23
23060018-001	n-Propylbenzene	K, T, U	< 0.10 ppbv	0.10	AC-058	07-Jun-23
23060018-001	n-Undecane	K, T, U	< 0.8 ppbv	0.8	AC-058	07-Jun-23
23060018-001	n-Nonane	K, T, U	< 0.07 ppbv	0.07	AC-058	07-Jun-23
23060018-001	o-Ethyltoluene	K, T, U	< 0.03 ppbv	0.03	AC-058	07-Jun-23
23060018-001	o-Xylene	K, T, U	< 0.05 ppbv	0.05	AC-058	07-Jun-23
23060018-001	p-Diethylbenzene	K, T, U	< 0.03 ppbv	0.03	AC-058	07-Jun-23
23060018-001	p-Ethyltoluene	K, T, U	< 0.07 ppbv	0.07	AC-058	07-Jun-23
23060018-001	Styrene	K, T, U	< 0.07 ppbv	0.07	AC-058	07-Jun-23
23060018-001	Toluene	I	0.05 ppbv	0.05	AC-058	07-Jun-23

Report certified by: Andrea Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: June 26, 2023 Inquiries: (780) 632 8403 E-mail: EAS.Results@innotechalberta.ca

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 5 of 11

CLIENT SAMPLE ID CANISTER ID Matrix DATE SAMPLED

VOCs and TNMOC Test # 844 31818 Ambient Air 30-May-23 0:00

DESCRIPTION: Canister

REPORT NUMBER: 23060018 REPORT CREATED: 26-Jun-23 VERSION: Version 01

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
23060018-001	trans-2-Butene	K, T, U	< 0.05 ppbv	0.05	AC-058	07-Jun-23
23060018-001	trans-2-Pentene	K, T, U	< 0.03 ppbv	0.03	AC-058	07-Jun-23

Report certified by: Andrea Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: June 26, 2023 E-mail: EAS.Results@innotechalberta.ca

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 6 of 11

Revision History

Order ID	Ver	Date	Reason
23060018	01	26-Jun-23	Report created

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 7 of 11

<u>Methods</u>

Method	Description
AC-029	Procedure for the Equilibration and Weighing of Membrane Filters and PUFs on the Mettler Toledo Micro Balance
AC-058	Determination of Volatile Organic Compounds in Ambient Air by Gas Chromatography Mass Spectrometry
NA-028	Determination of Total Non-methane Hydrocarbons and Total Hydrocarbons in Ambient Air by Gas Chromatography Flame Ionization Detector
Research	Research method

List of Analytical Method IDs within InnoTech's ISO/IEC 17025:2017 CALA Scope of Accreditation

Method ID	Description
AC-013	Mercury in Waters by Cold Vapor Atomic Fluorescence Detection (CVAFS)
AC-020	Ion Chromatographic Procedures using the Dionex ICS 3000 and 5000 Systems
AC-021	Elemental Analysis Methodology of Filter-collected Airborne Particulate Matter (PM) by ICP-MS
AC-026	Ion Chromatographic Procedures using the Dionex ICS 3000 and 5000 Systems
AC-029	Procedure for the Equilibration and Weighing of Membrane Filters and PUFs on the Mettler Toledo Micro Balance
AC-035	Analysis of Glyphosate, Aminomethylphosphonic Acid and Glufosinate in Water
AC-038	Trace Metal Analysis of Water Samples by ICP-MS
AC-048	Specific Conductance (Conductivity Meter Method)
AC-049	pH (Meter Method)
AC-054	Alkalinity Total and Phenolphthalein
AC-058	Determination of Volatile Organic Compounds in Ambient Air by Gas Chromatography Mass Spectrometry
AC-060	Trace Metal Analysis of Soil Sediment and Industrial Waste Samples by Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
AC-061	Trace Metal Analysis for Biological Samples by Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
AC-065	Analysis of Naphthenic Acids in Water by HPLC-Orbitrap-MS analysis
AC-074	Pesticides in Water
AC-079	Alkylated PAH in Soil and Sediment
AC-080	Alkylated PAH in Water (SPE Extraction)
NA-006	Determination of BTEX, F1 Hydrocarbons and F2, F3 and F4 Hydrocarbons in Water
NA-024	Analysis of Reduced Sulfur Compounds in Air

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 8 of 11

Qualifiers

V

Data Qualifier Translation В Blank contamination; Analyte detected above the method reporting limit in an associated blank 1 The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit J1 Reported value is estimated; Surrogate recoveries limits were exceeded J2 Reported value is estimated; No known QC criteria for this component J3 Reported value is estimated; The value failed to meet QC criteria for either precision or accuracy J4 Reported value is estimated; The sample matrix interfered with the analysis Κ Off-scale low. Actual value is known to be less than the value given L Off-scale high. Actual value is known to be greater than value given Ν Non-target analyte; Tentatively identified compound (using mass spectroscopy) Q Sample held beyond the accepted holding time R Rejected data; Not suitable for the projects intended use Т Value reported is less than the laboratory method detection limit U Compound was analyzed for but not detected

Analyte was detected in both the sample and the associated method blank

TEST REPORT Page 9 of 11

Order Comments

23060018

Project ID: Test 844. Report also to Yuha.Stan@cleanharbors.com.

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 10 of 11

Sample Comments

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 11 of 11

Result Comments

Note:

- 1. Results relate only to items tested and apply to the sample as received.
- 2. This report shall not be reproduced, except in full, without the explicit approval of the laboratory.

Customer ID: Clean Harbours

Cust Samp ID: Ryley Facility Test #102

Sample Reception: Environmental Analytical Services PO Bag 4000

Vegreville, AB T9C 1T4
Phone: (780) 632-8284 Fax: (780) 632-8620
Shipping: Highway 16 A & 75 St

	FOR	Rec'd By:	Date Rec'd (D/M/Y):
	FOR AITF USE ONLY	20222222222	
]			

Invoice Code: Client Code: **Project Code:**

RECEIVED

ANALYSIS REQUEST FORM

					Rvlev School Test # 102	Try to domity 1 oot in 102	Rvlev Facility Test # 102		Sample ID		Email: & People & Teo	www.cleanharbors.com	Address: Environmental Services Box 390, 2 Km North	Project ID: Clean Harbors	Company:	etails:	
					Filter Number # HV-22-12-14	Filter Nulliber # FIV-ZZ-1Z-13			Sample Source Description		ి "People & Technology Creating a Safer, Cleaner Environment"	iAO Direct Line 780.663.2513 mendoza.jorge@cleanharbors.com	rvices Hon lorth of Hwy 14	780.663.3828 Ext. 235	Jorge A. Mendoza Laboratory Manager	<i>*</i>	
				26/05/23 34.08 hrs	1/05/23	26/05/23 25.17 hs	1/05/23	Date (dd/mm/yy) Time (24 Hr)	From/To	Date/Time Sampled	AITF Contact: Email:			Quote ID: QT140005	PO# 233988	Special Instructions/Comments:	
				ICP-MS analysis	Particulate weight	ICP-MS analysis	Particulate weight		Analysis Requested							RUSH (Surcharge):	

Clean Harbours

Cust Sa Customer ID:

IN OF CUSTODY FORM

Environmental Analytical Services Highway 16A & 75 Street Vegreville, AB T9C 1T4

Phone: 780-632-8403 Email: EAS.Reception@innotechalberta.ca www.innotechalberta.ca

	DN 440 H						
allip ID.	FMT0 Test #: 837 FIT # C9700054		Client Billing	Client Billing Information		Turnaround Time	
Company:	Clean Harbors Canada, Inc		Contact:	Robbi Gooding, Stephanie Dennis	ennis	X Normal (10 business days)	usiness days)
Address:	PO Box 390, 50114 Range Road 173, Ryley, AB T0B 4A0		Phone:	780-663-3828		Rush	
Contact:	Todd Webb or Stan Yuha		Email:	Gooding.Robbi@cleanharbors.com, Dennis.Stephanie@cleanharbors.com	rs.com,	Note: Rush service n Confirm rush reques	Note: Rush service not available for all tests. Confirm rush requests with InnoTech Alberta.
Phone:	780-663-2513 or 780-663-3828		Project ID:	Test 837			
Email:	Webb.Todd@cleanharbors.com, Yuha.Stan@cleanharbors.com		PO #:	0000232879			
Special Inst	Special Instructions/Comments:					Date Received – L	Date Received – Lab-Use-Only
*If either P	st if either PM10 or HI-VOL filter exceeds its trigger weight, then both filters are analyzed for metals	weight, then b	oth filters a	re analyzed for metals			
If neither fi	If neither filter exceeds its trigger weight, neither filter is analyzed for metals	filter is analyze	d for metals				APR 2 4 2023
If metals an Trigger We	If metals analysis is required, please report on the same report as filter weights and VOCs/TNMOC Trigger Weight for Analysis (PM10): 1.15 mg This or der is factine meaning to the same report as filter weights and VOCs/TNMOC	same report as	filter weigh	me report as filter weights and VOCS/TNMOC This order is for the metals analysis for	analysis for		
Trigger We	Trigger Weight for Analysis (HI-VOL): 87.7 mg	the Sith	45, 47	the filters, from order 23040208. Jul	Sacs. JMP,	May 30/23.	
		Sample Source/		Canister Number/ (Date Sampled (dd/mm/yy)	Time Sampled (24 hour)	
Lab Sample No.	No. Client Sample ID	Description		Sampler ID F	From / To	From / To	Analysis Requested

				5	,	
	Total: 23.83 hrs					5
over trigger weight (& metals if	00:00	19/04/23		HI-VOL Filter	HI-VOL Test Number: 837	Ü
	00:00	18/04/23	HVF-23-03-11			
over trigger weight)*	00:00	19/04/23		100	ואודס ורפני ממוווסרוי ספי	Name of the last o
FLT Particulate Weight (& metals if	00:00	18/04/23	C9700054	PM10 filter	DM10 Test Number: 837	
	00:00	19/04/23		Callibra	Number: 837	
VOC PAMS & THMOC	00:00	18/04/23	29011	Capister	VOCs and TNMOC Test	
Analysis Requested	From / To	From / To	Sampler ID	Description	Client Sample ID	Lab Sample No.
	Time Sampled (24 hour)	Date Sampled (dd/mm/yy)	Canister Number/	Sample Source/		

F163-01

This "Chain of Custody" form is subject to InnoTech Alberta standard terms and conditions.

(Signature)

Laboratory Personnel:

(Signature)

Client Authorization:

Sent To:

Clean Harbors

PO Box 390

Ryley, AB T0B 4A0

(1/2 mile north, Hwy 854)

780-663-2513 Todd Webb Cust Samp ID: PM10 Test #: 837 Flt # C9700054

Filter Shipping Record

Date:

CIVED

Project:

Prepared by:

					47 mm	Filter Size
					1	# of Filters in Cassettes
					C970054 Tot 837	in Filter IDs

Returns: coolers, large and small containers may be shipped to: Innotech, PO Bag 4000, HWY 16A & 75th Street, Vegreville, AB T9C 1T4

Sample ID: 23050421-001 Priority: Normal

Customer ID: Clean Harbours
Cust Samp ID: PM10 Test #: 837 Flt # C9700054

Evacuated: MAR 0 7 2023 Recertified: (Use within: 3 months from evacuation or recertification date) Laboratory Contact Number: 780-632-8403	Proofed by: ISQU on: FEB 0 7 2023	Canister ID: 2901
Starting Vacuum: -27-1 "Hg	Sampled By:	Sample ID:
End Pressure: TMP psig	dd	637

{00004084;2}

TERMS AND CONDITIONS

commencement of the Services shall be deemed acceptance of the terms and conditions by and Conditions, unless otherwise specified on the Quotation. InnoTech Alberta's The attached document entitled "Chain of Custody Form" is subject to the following Terms

INC. (hereinafter referred to as "InnoTech Alberta") not be used or disclosed to any other party without prior written consent of the INNOTECH ALBERTA 1. Any proposal contained herein is prepared for the consideration of the Client only. Its contents may

2.InnoTech Alberta will perform the Services in accordance with normal professional standards.

approximate and may be changed by InnoTech Alberta giving written notice to the Client. The delivery time for performance of the Services (as set out on the front page of this Quotation) is

being tested or for any damage, loss or expense caused by any delay in carrying out the test, including any damage, loss or expense resulting from InnoTech Alberta's negligence. InnoTech Alberta shall not be responsible for any damage, which is a natural or necessary result of any testing procedure. InnoTech Alberta shall not, however, be liable to the Client for any damage or loss caused to the item 4.InnoTech Alberta will exercise due care and proficiency in testing items submitted by a Client

prior to the signing of this Agreement remains the property of that party. Nothing in this Agreement shall operate as a license, permission or grant of any other rights to either InnoTech Alberta's or the forms of protection. Intellectual Property which was owned by either InnoTech Alberta or the Client limitation, those that could be the subject of patent, copyright, industrial design, trade secret or other 5. For the purposes of this Quotation, Intellectual Property means all information, data, artistic and Client's Intellectual Property. literary works, concepts, designs, processes, software, algorithms and inventions, including, without

6.All data, reports and other information relating to the Services shall be treated by InnoTech Alberta as the confidential property of the Client, and InnoTech Alberta will use reasonable efforts to ensure any applicable law. Any records required to be maintained by InnoTech Alberta pursuant to this corporation during the term of this Agreement and for a period of five (5) years after the date of that its employees, contractors and agents will not disclose the same to any other person, firm or obligation of confidentiality set out in this Section shall not prevent the disclosure of information to any becomes part of the public domain through no act or failure on the part of InnoTech Alberta. The Protection of Privacy Act (Alberta). Agreement are subject to the protection and access provisions of the Freedom of Information and level of government having jurisdiction to make lawful demand therefor, or required to be disclosed by information that was in InnoTech Alberta's possession prior to receipt from the Client or which is or termination of the Agreement. The obligation of confidentiality set out herein shall not apply to any

provided by the Client shall be interpreted as being specific to the sample or item tested. InnoTech 7.The reported results of any InnoTech Alberta tests or evaluations performed on samples or items Alberta makes no representation that any similar or related untested samples or items would produce

8. The Client shall not use InnoTech Alberta's name in any advertising material, sale offer, news results thereof, without the prior written consent of InnoTech Alberta. releases, public statements or announcements, whether written or oral relating to the Services or the

9.Records, test data, reports and samples, except where shipped to the Client after completion of the Retention and Disposition Schedule. work shall be retained by InnoTech Alberta according to InnoTech Alberta's approved Records

provincial, municipal, sales, use or goods and services tax. 10. Prices quoted are in Canadian Dollars unless otherwise stated in writing and are exclusive of any

or loss to items during shipping and it is the responsibility of the Client to arrange and pay for any insurance it deems necessary. by InnoTech Alberta in providing the Services. InnoTech Alberta will not be responsible for any damage the item to the Client after testing and shall be responsible for all necessary incidental costs incurred responsible for all costs incurred by InnoTech Alberta in collecting any item for testing and returning 11. Prices quoted do not include shipping, insurance or cost of consumables. The Client shall be

Sample ID: 23050421-001 Priority: Normal

Customer ID: Clean Harbours

Cust Samp ID: PM10 Test #: 837 Flt # C9700054

> Alberta's option, be returned by InnoTech Alberta to the Client. The Client shall: 12.Any test samples or other materials supplied by the Client to InnoTech Alberta may, at InnoTech

(a)be responsible for all costs associated with the handling, transportation and disposal of such

(b)reimburse InnoTech Alberta for any costs incurred by InnoTech Alberta associated with the

(c)indemnify and hold InnoTech Alberta harmless from any and all claims, handling, transportation and disposal of such materials; and

associated with the handling, transportation and disposal of such materials. days from the date of invoice, without deduction or set-off. associated with the nationing, datispot attention and disposal of such materials.

13. The Client shall pay all invoices rendered by InnoTech Alberta to the Client within thirty (2023)

overdue interest at the same rate. 14.If the Client fails to pay any amount under this Agreement, such unpaid amount shall bear interest at a rate per month equal to one (1%) percent (or 12.6825% per annum) with interest on

of the information contained is at the Client's own risk. purpose of any goods or products to be delivered pursuant to this Agreement. The Client accepts statutory or otherwise and does not warrant the quality, state, merchantability or fitness for any the results of these Services or items tested as is, and acknowledges that any use or interpretation 15.InnoTech Alberta makes no representation, warranties or conditions, either expressed or implied

suffered by the Client, including loss of anticipated profits. 16.In no event shall InnoTech Alberta be liable for any indirect or consequential damage or loss

dangerous defect or content was not disclosed in writing to InnoTech Alberta by the Client at the time the item was submitted for testing; (a)any dangerous defect or content in the item being tested, whether apparent or not, which demands, actions and costs (including legal costs on a solicitor-client basis) that may arise out of 17. The Client shall indemnify and hold harmless InnoTech Alberta from any and all claims,

which are purported to be identical to the item tested; or (b)differences between those items actually tested and items previously or subsequently produced

(c)any use of the tested item or any item incorporating the tested item, whether by the Client or a third party following its return to the Client.

The hold harmless shall survive this Agreement.

supplement or add insurance coverage from time to time as may be required in its sole discretion. shall maintain the following insurance: (i) commercial general liability insurance (including cross responsible for insuring all owned property directly or indirectly related to this Agreement and against bodily injury, and property damage including loss of use thereof. Further, the Client is insuring its operation in an amount not less than \$2,000,000 inclusive per occurrence, insuring required by applicable laws. Notwithstanding the foregoing, InnoTech Alberta reserves the right to in the aggregate. In addition, InnoTech Alberta shall maintain all workers' compensation coverage the amount of one million dollars (\$1,000,000.00) per claim, and two million dollars (\$2,000,000.00) liability, severability of interests, non-owned automobile liability) in the amount of two million dollars InnoTech Alberta shall have no liability for any loss or damage to such property. 19.InnoTech Alberta 20.The Client agrees to comply with all InnoTech Alberta Safety & Security regulations in effect InnoTech Alberta may provide certificates of insurance for coverages outlined in (i) and (ii) above. (\$2,000,000.00) per occurrence, and; (ii) professional liability and errors and omissions insurance in 18.The Client shall, at its own expense and without limiting its liabilities herein, be responsible for

21. This Agreement represents the entire agreement between the parties and shall supersede all while on InnoTech Alberta premises.

prior agreements relative to this transaction.

22.InnoTech Alberta shall not be liable to the Client for any failure or delay in performance of its strikes, laws imposed after the fact, governmental restrictions, riots, wars, civil disorder, rebellion, obligations caused by circumstances beyond its control, including but not limited to acts of God, sabotage, fire, flood, explosion, earthquake or other disasters.

2 of the Business Corporations Act (Alberta)) or successor entity on written notice to the Client. 23.InnoTech Alberta may assign this Quotation to an "affiliated" (as that term is defined at Section

24. This Quotation and rights and parties thereto shall be governed by and construed according to the laws of the Province of Alberta. The parties hereby submit to the jurisdiction of the Courts of

AIN OF CUSTODY FORM

Highway 16A & 75 Street Vegreville, AB T9C 1T4 **Environmental Analytical Services**

Phone: 780-632-8403

Email: EAS.Reception@innotechalberta.ca www.innotechalberta.ca

VOCs and TNMOC Test Number 840

Client Reporting Information	Client Billing Information	Information	Turnaround Time
Company: Clean Harbors Canada, Inc	Contact:	Stephanie Dennis	X Normal (10 business days)
Address: PO Box 390, 50114 Range Road 173, Ryley, AB TOB 4A0	Phone:	780-663-3828	Rush
Contact: Todd Webb or Stan Yuha	Email:	<u>Dennis.Stephanie@cleanharbors.com</u>	Note: Rush service not available for all tests.
Phone: 780-663-2513 or 780-663-3828	Project ID:	Test 840	Confirm rush requests with InnoTech Alberta.
Email: Webb.Todd@cleanharbors.com, Yuha.Stan@cleanharbors.com	PO #:	0000233432	
Special Instructions/Comments:			Date Received – Lab Use Only
*If either PM10 or HI-VOL filter exceeds its trigger weight, then both filters are analyzed for metals If neither filter exceeds its trigger weight, neither filter is analyzed for metals	both filters are zed for metals	analyzed for metals	RECEIVED
If metals analysis is required, please report on the same report as filter weights and VOCs/TNMOC	as filter weigh	s and VOCs/TNMOC	MAY 1 1 2023
Trigger Weight for Analysis (PM10): 1.16 mg			
Trigger Weight for Analysis (HI-VOL): 87.8 mg			

				5		
00-1	Total: 23.85 hrs					5
Particulate Weight (& metals if over trigger weight)*	00:00	07/05/23		HI-VOL Filter	HI-VOL Test Number: 840	
	00:00	06/05/23	HVF-23-03-07			
over trigger weight)*	00:00	07/05/23				
FLT Particulate Weight (& metals if	00:00	06/05/23	C9700052	PM10 filter	PM10 Test Number: 840	
VOC FAINIS & INIVIOC	00:00	07/05/23		Calliste	Number: 840	
VOC BANGS & THINGO	00:00	06/05/23	31824	Opposition of the control of the con	VOCs and TNMOC Test	
Analysis Requested	From / To	From / To		Description	Client Sample ID	Lab Sample No.
	Time Sampled	Date Sampled	Canister Number/	Sample Source/		

F163-01

Client Authorization:

This "Chain of Custody" form is subject to InnoTech Alberta standard terms and conditions.

(Signature)

Laboratory Personnel:

(Signature)

Filter Shipping Record

Clean Harbors Sent To:

PO Box 390

Ryley, AB T0B 4A0

(1/2 mile north, Hwy 854) Todd Webb

780-663-2513

Date:

FEB 34

Project:

Prepared by:

Clean Harbors

# of Filters in Filter Size Cassettes			1				_	
s in	C970005A							
	15+840				**		1	

Returns: coolers, large and small containers may be shipped to: Innotech, PO Bag 4000, HWY 16A & 75th Street, Vegreville, AB T9C 1T4

Evacuated APR 18 2023 Recertified: (Use within: 3 months from evacuation or recertification date) Laboratory Contact Number: 780-632-8403	Proofed by: /SOU on: FEB 1 6 2023	Canister ID: 3783/824 InnoTech ALBERTA This cleaned canister meets or exceeds TO-15 Method
Starting Vacuum: End Vacuum: MW - 27. / "Hg psig	Sampled By: T. Webb	reds TO-15 Method seds TO-15 Method

Sample ID: 23050235-001 Priority: Normal

Customer ID:

Clean Harbours

HAIN OF CUSTODY FORM

Environmental Analytical Services Highway 16A & 75 Street Vegreville, AB T9C 1T4

Email: EAS.Reception@innotechalberta.ca www.innotechalberta.ca Phone: 780-632-8403

Confirm rush requests with InnoTech Alberta. Note: Rush service not available for all tests. X Normal (10 business days) **Turnaround Time** Rush Dennis.Stephanie@cleanharbors.com Stephanie Dennis 780-663-3828 0000233432 Client Billing Information **Test 841** Project ID: Contact: Phone: Email: PO #: PO Box 390, 50114 Range Road 173, Webb.Todd@cleanharbors.com, 780-663-2513 or 780-663-3828 Yuha.Stan@cleanharbors.com VOCs and TNMOC Test # 841 Clean Harbors Canada, Inc Todd Webb or Stan Yuha Ryley, AB T0B 4A0 Client Reporting Information Company: Cust Samp ID: Address: Contact: Phone: Email:

RECEIVED MAY 17 2023

Date Received – Lab Use Only

*If either PM10 or HI-VOL filter exceeds its trigger weight, then both filters are analyzed for metals

Special Instructions/Comments:

If neither filter exceeds its trigger weight, neither filter is analyzed for metals

If metals analysis is required, please report on the same report as filter weights and VOCs/TNMOC

Trigger Weight for Analysis (HI-VOL): 87.5 mg

Trigger Weight for Analysis (PM10): 1.15 mg

						The state of the s
				Date Sampled	Time Sampled	
		Sample Source/	Canister Number/ (dd/mm/yy)	(dd/mm/bb)	(24 hour)	
Lab Sample No.	Client Sample ID	Description	Sampler ID	From / To	From / To	Analysis Requested
	VOCs and TNMOC Test		29017	12/05/23	00:00	
	Number: 841	Canister		13/05/23	00:00	VOC PAINIS & INIVIOC
	PM10 Test Number: 841	DN/10 fil+or	C9700085	12/05/23	00:00	FLT Particulate Weight (& metals if
				13/05/23	00:00	over trigger weight)*
			HVF-23-03-06	12/05/23	00:00	9
	HI-VOL Test Number: 841	HI-VOL Filter		13/05/23	00:00	Particulate Weight (& metals if over trigger weight)*
					Total: 23.78 hrs	

Client Authorization:

Laboratory Personnel:

(Signature)

Page 1 of 2

This "Chain of Custody" form is subject to InnoTech Alberta standard terms and conditions. (Signature)

F163-01

		End Vacuum: 🖔	gisd/gH" Ol
Sample ID:	Sampled By:	Starting Vacuum:	-23.1 "Hg
_	This cleaned canister meets or exceeds TO-15 Method Specifications CD FEB 0 2 2023	1 8 2023 Rece	(Use within: 3 months from evacuation or recertification date) Laboratory Contact Number: 780-632-8403
O nno Tech	ALBERTA	Evacuated: APR	(Use within: 3

{00004084;2} TERMS AND CONDITIONS

The attached document entitled "Chain of Custody Form" is subject to the following Terms commencement of the Services shall be deemed acceptance of the terms and conditions by and Conditions, unless otherwise specified on the Quotation. InnoTech Alberta's

not be used or disclosed to any other party without prior written consent of the INNOTECH ALBERTA 1. Any proposal contained herein is prepared for the consideration of the Client only. Its contents may INC. (hereinafter referred to as "InnoTech Alberta").

2.InnoTech Alberta will perform the Services in accordance with normal professional standards.

3. The delivery time for performance of the Services (as set out on the front page of this Quotation) is approximate and may be changed by InnoTech Alberta giving written notice to the Client.

InnoTech Alberta shall not, however, be liable to the Client for any damage or loss caused to the item being tested or for any damage, loss or expense caused by any delay in carrying out the test, including any damage, loss or expense resulting from InnoTech Alberta's negligence. InnoTech Alberta shall not 4.InnoTech Alberta will exercise due care and proficiency in testing items submitted by a Client. be responsible for any damage, which is a natural or necessary result of any testing procedure.

prior to the signing of this Agreement remains the property of that party. Nothing in this Agreement shall operate as a license, permission or grant of any other rights to either InnoTech Alberta's or the 5. For the purposes of this Quotation, Intellectual Property means all information, data, artistic and iterary works, concepts, designs, processes, software, algorithms and inventions, including, without forms of protection. Intellectual Property which was owned by either InnoTech Alberta or the Client limitation, those that could be the subject of patent, copyright, industrial design, trade secret or other Client's Intellectual Property.

6.All data, reports and other information relating to the Services shall be treated by InnoTech Alberta as the confidential property of the Client, and InnoTech Alberta will use reasonable efforts to ensure corporation during the term of this Agreement and for a period of five (5) years after the date of termination of the Agreement. The obligation of confidentiality set out herein shall not apply to any information that was in InnoTech Alberta's possession prior to receipt from the Client or which is or becomes part of the public domain through no act or failure on the part of InnoTech Alberta. The obligation of confidentiality set out in this Section shall not prevent the disclosure of information to any that its employees, contractors and agents will not disclose the same to any other person, firm or level of government having jurisdiction to make lawful demand therefor, or required to be disclosed by any applicable law. Any records required to be maintained by InnoTech Alberta pursuant to this Agreement are subject to the protection and access provisions of the Freedom of Information and Protection of Privacy Act (Alberta).

7. The reported results of any InnoTech Alberta tests or evaluations performed on samples or items Alberta makes no representation that any similar or related untested samples or items would produce provided by the Client shall be interpreted as being specific to the sample or item tested. InnoTech the same results.

releases, public statements or announcements, whether written or oral relating to the Services or the 8.The Client shall not use InnoTech Alberta's name in any advertising material, sale offer, news results thereof, without the prior written consent of InnoTech Alberta.

9. Records, test data, reports and samples, except where shipped to the Client after completion of the work shall be retained by InnoTech Alberta according to InnoTech Alberta's approved Records Retention and Disposition Schedule.

10. Prices quoted are in Canadian Dollars unless otherwise stated in writing and are exclusive of any provincial, municipal, sales, use or goods and services tax.

by InnoTech Alberta in providing the Services. InnoTech Alberta will not be responsible for any damage 11. Prices quoted do not include shipping, insurance or cost of consumables. The Client shall be responsible for all costs incurred by InnoTech Alberta in collecting any item for testing and returning the item to the Client after testing and shall be responsible for all necessary incidental costs incurred loss to items during shipping and it is the responsibility of the Client to concern shipping and it is the responsibility of the Client to concern shipping and it is the responsibility of the Client to concern shipping and it is the responsibility of the Client to concern shipping and it is the responsibility of the Client to concern shipping and it is the responsibility of the Client to concern shipping and it is the responsibility of the Client to concern shipping and it is the responsibility of the Client to concern shipping and it is the responsibility of the Client to concern shipping and it is the responsibility of the Client to concern shipping and it is the responsibility of the Client to concern shipping and it is the responsibility of the concern shipping and the concern ship

Sample ID: 23050235-001 Priority: Normal

insurance it deems necessary

VOCs and TNMOC Test # 841 Clean Harbours Cust Samp ID: Customer ID:

12.Any test samples or other materials supplied by the Client to InnoTech Alberta may, at InnoTech Alberta's option, be returned by InnoTech Alberta to the Client. The Client shall:

(a)be responsible for all costs associated with the handling, transportation and disposal of such

(b)reimburse InnoTech Alberta for any costs incurred by InnoTech Alberta associated with the nandling, transportation and disposal of such materials; and

(c)indemnify and hold InnoTech Alberta harmless from any and all claims, damages or actions associated with the handling, transportation and disposal of such materials.

13. The Client shall pay all invoices rendered by InnoTech Alberta to the Client within thirty (30)

interest at a rate per month equal to one (1%) percent (or 12.6825% per annum) with interest on 14.If the Client fails to pay any amount under this Agreement, such unpaid amount shall bear days from the date of invoice, without deduction or set-off. overdue interest at the same rate.

statutory or otherwise and does not warrant the quality, state, merchantability or fitness for any purpose of any goods or products to be delivered pursuant to this Agreement. The Client accepts the results of these Services or items tested as is, and acknowledges that any use or interpretation 15. InnoTech Alberta makes no representation, warranties or conditions, either expressed or implied, of the information contained is at the Client's own risk.

16.In no event shall InnoTech Alberta be liable for any indirect or consequential damage or loss

suffered by the Client, including loss of anticipated profits. 17.The Client shall indemnify and hold harmless InnoTech Alberta from any and all claims, demands, actions and costs (including legal costs on a solicitor-client basis) that may arise out of: (a)any dangerous defect or content in the item being tested, whether apparent or not, which dangerous defect or content was not disclosed in writing to InnoTech Alberta by the Client at the time the item was submitted for testing;

(b)differences between those items actually tested and items previously or subsequently produced which are purported to be identical to the item tested; or

(c)any use of the tested item or any item incorporating the tested item, whether by the Client or a third party following its return to the Client.

The hold harmless shall survive this Agreement.

shall maintain the following insurance: (i) commercial general liability insurance (including cross liability, severability of interests, non-owned automobile liability) in the amount of two million dollars 18.The Client shall, at its own expense and without limiting its liabilities herein, be responsible for insuring its operation in an amount not less than \$2,000,000 inclusive per occurrence, insuring against bodily injury, and property damage including loss of use thereof. Further, the Client is responsible for insuring all owned property directly or indirectly related to this Agreement and InnoTech Alberta shall have no liability for any loss or damage to such property. 19.InnoTech Alberta (\$2,000,000,00) per occurrence, and; (ii) professional liability and errors and omissions insurance in the amount of one million dollars (\$1,000,000,00) per claim, and two million dollars (\$2,000,000,00)in the aggregate. In addition, InnoTech Alberta shall maintain all workers' compensation coverage required by applicable laws. Notwithstanding the foregoing, InnoTech Alberta reserves the right to supplement or add insurance coverage from time to time as may be required in its sole discretion. InnoTech Alberta may provide certificates of insurance for coverages outlined in (i) and (ii) above. 20.The Client agrees to comply with all InnoTech Alberta Safety & Security regulations in effect while on InnoTech Alberta premises.

21. This Agreement represents the entire agreement between the parties and shall supersede all prior agreements relative to this transaction.

22. InnoTech Alberta shall not be liable to the Client for any failure or delay in performance of its obligations caused by circumstances beyond its control, including but not limited to acts of God, strikes, laws imposed after the fact, governmental restrictions, riots, wars, civil disorder, rebellion, sabotage, fire, flood, explosion, earthquake or other disasters.

23.InnoTech Alberta may assign this Quotation to an "affiliated" (as that term is defined at Section 2 of the Business Corporations Act (Alberta)) or successor entity on written notice to the Client.

the laws of the Province of Alberta. The parties hereby submit to the jurisdiction of the Courts of Alberta.

Sample ID: 23050378-001 Priority: Normal

VOCs and TNMOC Test # 842

Customer ID: Cust Samp ID:

Clean Harbours

1AIN OF CUSTODY FORM

Environmental Analytical Services Highway 16A & 75 Street Vegreville, AB T9C 1T4

Phone: 780-632-8403
Email: EAS.Reception@innotechalberta.ca
www.innotechalberta.ca

Confirm rush requests with InnoTech Alberta. Note: Rush service not available for all tests. Normal (10 business days) **Turnaround Time** Rush <u>Dennis.Stephanie@cleanharbors.com</u> Stephanie Dennis 780-663-3828 0000233432 Client Billing Information Test 842 Project ID: Contact: Phone: Email: PO #: PO Box 390, 50114 Range Road 173, Webb.Todd@cleanharbors.com, 780-663-2513 or 780-663-3828 Yuha.Stan@cleanharbors.com Clean Harbors Canada, Inc Todd Webb or Stan Yuha Ryley, AB TOB 4A0 Client Reporting Information Company: Address: Contact: Phone: Email:

RECEIVED
MAY 2 5 2023

Date Received - Lab Use Only

*If either PM10 or HI-VOL filter exceeds its trigger weight, then both filters are analyzed for metals

Special Instructions/Comments:

If metals analysis is required, please report on the same report as filter weights and VOCs/TNMOC

Trigger Weight for Analysis (HI-VOL): 88.0 mg

Trigger Weight for Analysis (PM10): 1.17 mg

If neither filter exceeds its trigger weight, neither filter is analyzed for metals

-		Sample Source/	Canister Number/ (dd/mm/yy)	Date Sampled (dd/mm/yy)	Time Sampled (24 hour)	
Lab Sample No.	Client Sample ID	Description	Sampler ID	From / To	From / To	Analysis Requested
	VOCs and TNMOC Test	30,000	32266	18/05/23	00:00	Could o Direct Co.
_	Number: 842	כמווזרבו		19/05/23	00:00	VOC PAINS & LINIVIOL
2	PM10 Test Number: 842	PM10 filter	C9700051	18/05/23	00:00	FLT Particulate Weight (& metals if
				19/05/23	00:00	over trigger weight)*
0			HVF-23-03-09	18/05/23	00:00	
^	HI-VOL Test Number: 842	HI-VOL Filter		19/05/23	00:00	Particulate Weight (& metals if
					Total: 23.92 hrs	(51.0.5)
	((

Client Authorization:

Laboratory Personnel:

(Signature)

(Signature)

This "Chain of Custody" form is subject to InnoTech Alberta standard terms and conditions.

Canister ID: 32266

Sample ID:

Sampled By:

InnoTech
ALBERTA This cleaned canister meets or exceeds TO-15 Method
Specifications

1524 on: MAR 0 8 2023 Evacuated: APR 2 6 2023 Recertified: Proofed by:___

(Use within: 3 months from evacuation or recertification date)

Laboratory Contact Number: 780-632-8403

Starting Vacuum:

End Vacuum

gisq/psig

1.4.1

Hg" -

Sample ID: 23050378-001 Priority: Normal

Clean Harbours Customer ID:

VOCs and TNMOC Test # 842 Cust Samp ID:

TERMS AND CONDITIONS

The attached document entitled "Chain of Custody Form" is subject to the following Terms commencement of the Services shall be deemed acceptance of the terms and conditions by and Conditions, unless otherwise specified on the Quotation. InnoTech Alberta's

 $1.\mathsf{Any}$ proposal contained herein is prepared for the consideration of the Client only. Its contents may not be used or disclosed to any other party without prior written consent of the INNOTECH ALBERTA INC. (hereinafter referred to as "InnoTech Alberta").

3. The delivery time for performance of the Services (as set out on the front page of this Quotation) is 2.InnoTech Alberta will perform the Services in accordance with normal professional standards. approximate and may be changed by InnoTech Alberta giving written notice to the Client.

InnoTech Alberta shall not, however, be liable to the Client for any damage or loss caused to the item 4.InnoTech Alberta will exercise due care and proficiency in testing items submitted by a Client. being tested or for any damage, loss or expense caused by any delay in carrying out the test, including any damage, loss or expense resulting from InnoTech Alberta's negligence. InnoTech Alberta shall not 5. For the purposes of this Quotation, Intellectual Property means all information, data, artistic and be responsible for any damage, which is a natural or necessary result of any testing procedure.

literary works, concepts, designs, processes, software, algorithms and inventions, including, without limitation, those that could be the subject of patent, copyright, industrial design, trade secret or other forms of protection. Intellectual Property which was owned by either InnoTech Alberta or the Client prior to the signing of this Agreement remains the property of that party. Nothing in this Agreement shall operate as a license, permission or grant of any other rights to either InnoTech Alberta's or the

6.All data, reports and other information relating to the Services shall be treated by InnoTech Alberta as the confidential property of the Client, and InnoTech Alberta will use reasonable efforts to ensure that its employees, contractors and agents will not disclose the same to any other person, firm or corporation during the term of this Agreement and for a period of five (5) years after the date of termination of the Agreement. The obligation of confidentiality set out herein shall not apply to any information that was in InnoTech Alberta's possession prior to receipt from the Client or which is or becomes part of the public domain through no act or failure on the part of InnoTech Alberta. The obligation of confidentiality set out in this Section shall not prevent the disclosure of information to any any applicable law. Any records required to be maintained by InnoTech Alberta pursuant to this level of government having jurisdiction to make lawful demand therefor, or required to be disclosed by Agreement are subject to the protection and access provisions of the Freedom of Information and Protection of Privacy Act (Alberta).

7.The reported results of any InnoTech Alberta tests or evaluations performed on samples or items provided by the Client shall be interpreted as being specific to the sample or item tested. InnoTech Alberta makes no representation that any similar or related untested samples or items would produce

8.The Client shall not use InnoTech Alberta's name in any advertising material, sale offer, news releases, public statements or announcements, whether written or oral relating to the Services or the results thereof, without the prior written consent of InnoTech Alberta.

9.Records, test data, reports and samples, except where shipped to the Client after completion of the work shall be retained by InnoTech Alberta according to InnoTech Alberta's approved Records

10. Prices quoted are in Canadian Dollars unless otherwise stated in writing and are exclusive of any provincial, municipal, sales, use or goods and services tax.

11. Prices quoted do not include shipping, insurance or cost of consumables. The Client shall be responsible for all costs incurred by InnoTech Alberta in collecting any item for testing and returning the item to the Client after testing and shall be responsible for all necessary incidental costs incurred by InnoTech Alberta in providing the Services. InnoTech Alberta will not be responsible for any damage or loss to items during shipping and it is the responsibility of the Client to arrange and nay for any

Sample ID: 23050378-001 Priority: Normal

VOCs and TNMOC Test #842 Clean Harbours Cust Samp ID: Customer ID:

12.Any test samples or other materials supplied by the Client to InnoTech Alberta may, at InnoTech (a)be responsible for all costs associated with the handling, transportation and disposal of such Alberta's option, be returned by InnoTech Alberta to the Client. The Client shall:

(b)reimburse InnoTech Alberta for any costs incurred by InnoTech Alberta associated with the

(c)indemnify and hold InnoTech Alberta harmless from any and all claims, damages or actions associated with the handling, transportation and disposal of such materials. handling, transportation and disposal of such materials; and

13.The Client shall pay all invoices rendered by InnoTech Alberta to the Client within thirty (30) days from the date of invoice, without deduction or set-off.

14.If the Client fails to pay any amount under this Agreement, such unpaid amount shall bear interest at a rate per month equal to one (1%) percent (or 12.6825% per annum) with interest on

purpose of any goods or products to be delivered pursuant to this Agreement. The Client accepts 15.InnoTech Alberta makes no representation, warranties or conditions, either expressed or implied, statutory or otherwise and does not warrant the quality, state, merchantability or fitness for any the results of these Services or items tested as is, and acknowledges that any use or interpretation of the information contained is at the Client's own risk.

16.In no event shall InnoTech Alberta be liable for any indirect or consequential damage or loss suffered by the Client, including loss of anticipated profits.

17.The Client shall indemnify and hold harmless InnoTech Alberta from any and all claims, demands, actions and costs (including legal costs on a solicitor-client basis) that may arise out of: (a)any dangerous defect or content in the item being tested, whether apparent or not, which dangerous defect or content was not disclosed in writing to InnoTech Alberta by the Client at the

(b)differences between those items actually tested and items previously or subsequently produced (c)any use of the tested item or any item incorporating the tested item, whether by the Client or a which are purported to be identical to the item tested; or

The hold harmless shall survive this Agreement. third party following its return to the Client.

insuring its operation in an amount not less than \$2,000,000 inclusive per occurrence, insuring against bodily injury, and property damage including loss of use thereof. Further, the Client is 18. The Client shall, at its own expense and without limiting its liabilities herein, be responsible for InnoTech Alberta shall have no liability for any loss or damage to such property. 19.InnoTech Alberta shall maintain the following insurance: (i) commercial general liability insurance (including cross liability, severability of interests, non-owned automobile liability) in the amount of two million dollars responsible for insuring all owned property directly or indirectly related to this Agreement and (\$2,000,000.00) per occurrence, and; (ii) professional liability and errors and omissions insurance in the amount of one million dollars (\$1,000,000.00) per claim, and two million dollars (\$2,000,000.00)in the aggregate. In addition, InnoTech Alberta shall maintain all workers' compensation coverage required by applicable laws. Notwithstanding the foregoing, InnoTech Alberta reserves the right to supplement or add insurance coverage from time to time as may be required in its sole discretion. InnoTech Alberta may provide certificates of insurance for coverages outlined in (i) and (ii) above. 20. The Client agrees to comply with all InnoTech Alberta Safety & Security regulations in effect while on InnoTech Alberta premises.

21. This Agreement represents the entire agreement between the parties and shall supersede all prior agreements relative to this transaction.

22.InnoTech Alberta shall not be liable to the Client for any failure or delay in performance of its obligations caused by circumstances beyond its control, including but not limited to acts of God, strikes, laws imposed after the fact, governmental restrictions, riots, wars, civil disorder, rebellion, sabotage, fire, flood, explosion, earthquake or other disasters.

23. InnoTech Alberta may assign this Quotation to an "affiliated" (as that term is defined at Section 24. This Quotation and rights and parties thereto shall be governed by and construed according to the laws of the Province of Alberta. The parties hereby submit to the jurisdiction of the Courts of 2 of the Business Corporations Act (Alberta)) or successor entity on written notice to the Client.

Sample ID: 23050415-001 Priority: Normal

Customer ID: Cust Samp ID: Clean Harbours

VOCs and TNMOC Test Number: 843

HAIN OF CUSTODY FORM

Vegreville, AB T9C 1T4 Highway 16A & 75 Street Environmental Analytical Services

Phone: 780-632-8403 www.innotechalberta.ca Email: EAS.Reception@innotechalberta.ca

Samp ID: VOCs and TNMOC Test Number: 843		
Client Reporting Information	Client Billing Information	Turnaround Time
Company: Clean Harbors Canada, Inc	Contact: Stephanie Dennis	X Normal (10 business days)
Address: PO Box 390, 50114 Range Road 173, Ryley, AB TOB 4A0	Phone: 780-663-3828	Rush
Contact: Todd Webb or Stan Yuha	Email: Dennis.Stephanie@cleanharbors.com	Note: Rush service not available for all tests.
Phone: 780-663-2513 or 780-663-3828	Project ID: Test 843	Confirm rush requests with InnoTech Alberta.
Email: Webb.Todd@cleanharbors.com, Yuha.Stan@cleanharbors.com	PO #: 0000233432	
Special Instructions/Comments:		Date Received – Lab Use Only
*If either PM10 or HI-VOL filter exceeds its trigger weight, then both filters are analyzed for metals	n both filters are analyzed for metals	
If neither filter exceeds its trigger weight, neither filter is analyzed for metals	yzed for metals	COOC OC VAM
If metals analysis is required, please report on the same report as filter weights and VOCs/TNMOC	t as filter weights and VOCs/TNMOC	MAY 3 U 2U23
Trigger Weight for Analysis (PM10): 1.15 mg		3 3 3 3 3 3 3 3 3 4 4 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
Trigger Weight for Analysis (HI-VOL): 88.3 mg		

ור המומנב weißlic					Can con in	
EIT Darticulate Weight	7:52	26/05/23	C9700088	DM10 Filter	PM10 Oliarter 2 Field Blank	
	Total: 24.00hrs					
Particulate Weight (& metals if over trigger weight)*	00:00	25/05/23		HI-VOL Filter	HI-VOL Test Number: 843	
	00:00	24/05/23	HVF-23-03-10			
over trigger weight)*	00:00	25/05/23				
FLT Particulate Weight (& metals if	00:00	24/05/23	C1169901	PM10 filter	PM10 Test Number: 843	
VOC FAIVIJ & INIVIOC	00:00	25/05/23		Callister	Number: 843	
VOC BANAS & THINADO	00:00	24/05/23	28904		VOCs and TNMOC Test	
Analysis Requested	(24 hour) From / To	(dd/mm/yy) From / To	Sampler ID	Description	Client Sample ID	Lab Sample No.
	Time Sampled	Date Sampled				

Client Authorization:

(Signature)

This "Chain of Custody" form is subject to InnoTech Alberta standard terms and conditions.

Laboratory Personnel:

(Signature)

{00004084;2}

TERMS AND CONDITIONS

The attached document entitled "Chain of Custody Form" is subject to the following Terms and Conditions, unless otherwise specified on the Quotation. InnoTech Alberta's commencement of the Services shall be deemed acceptance of the terms and conditions by the Client.

1.Any proposal contained herein is prepared for the consideration of the Client only. Its contents may not be used or disclosed to any other party without prior written consent of the INNOTECH ALBERTA INC. (hereinafter referred to as "InnoTech Alberta").

InnoTech Alberta will perform the Services in accordance with normal professional standards.

3. The delivery time for performance of the Services (as set out on the front page of this Quotation) is approximate and may be changed by InnoTech Alberta giving written notice to the Client.

4.InnoTech Alberta will exercise due care and proficiency in testing items submitted by a Client. InnoTech Alberta shall not, however, be liable to the Client for any damage or loss caused to the item being tested or for any damage, loss or expense caused by any delay in carrying out the test, including any damage, loss or expense resulting from InnoTech Alberta's negligence. InnoTech Alberta shall not be responsible for any damage, which is a natural or necessary result of any testing procedure.

5.For the purposes of this Quotation, Intellectual Property means all information, data, artistic and literary works, concepts, designs, processes, software, algorithms and inventions, including, without limitation, those that could be the subject of patent, copyright, industrial design, trade secret or other forms of protection. Intellectual Property which was owned by either InnoTech Alberta or the Client prior to the signing of this Agreement remains the property of that party. Nothing in this Agreement shall operate as a license, permission or grant of any other rights to either InnoTech Alberta's or the Client's Intellectual Property.

6.All data, reports and other information relating to the Services shall be treated by InnoTech Alberta as the confidential property of the Client, and InnoTech Alberta will use reasonable efforts to ensure that its employees, contractors and agents will not disclose the same to any other person, firm or corporation during the term of this Agreement and for a period of five (5) years after the date of termination of the Agreement. The obligation of confidentiality set out herein shall not apply to any information that was in InnoTech Alberta's possession prior to receipt from the Client or which is or becomes part of the public domain through no act or failure on the part of InnoTech Alberta. The obligation of confidentiality set out in this Section shall not prevent the disclosure of information to any level of government having jurisdiction to make lawful demand therefor, or required to be disclosed by any applicable law. Any records required to be maintained by InnoTech Alberta pursuant to this Agreement are subject to the protection and access provisions of the Freedom of Information and Protection of Privacy Act (Alberta).

7.The reported results of any InnoTech Alberta tests or evaluations performed on samples or items provided by the Client shall be interpreted as being specific to the sample or item tested. InnoTech Alberta makes no representation that any similar or related untested samples or items would produce the same results.

8. The Client shall not use InnoTech Alberta's name in any advertising material, sale offer, news releases, public statements or announcements, whether written or oral relating to the Services or the results thereof, without the prior written consent of InnoTech Alberta.

9.Records, test data, reports and samples, except where shipped to the Client after completion of the work shall be retained by InnoTech Alberta according to InnoTech Alberta's approved Records Retention and Disposition Schedule.

10. Prices quoted are in Canadian Dollars unless otherwise stated in writing and are exclusive of any provincial, municipal, sales, use or goods and services tax.

11. Prices quoted do not include shipping, insurance or cost of consumables. The Client shall be responsible for all costs incurred by InnoTech Alberta in collecting any item for testing and returning the item to the Client after testing and shall be responsible for all necessary incidental costs incurred by InnoTech Alberta in providing the Services. InnoTech Alberta will not be responsible for any damage or loss to items during shipping and it is the responsibility of the Client to arrange and pay for any insurance it deems necessary.

12.Any test samples or other materials supplied by the Client to InnoTech Alberta may, at InnoTech Alberta's option, be returned by InnoTech Alberta to the Client. The Client shall:

(a)be responsible for all costs associated with the handling, transportation and disposal of such materials;

(b)reimburse InnoTech Alberta for any costs incurred by InnoTech Alberta associated with the

handling, transportation and disposal of such materials; and (c)indemnify and hold InnoTech Alberta harmless from any and all claims, damages or actions

associated with the handling, transportation and disposal of such materials.

13.The Client shall pay all invoices rendered by InnoTech Alberta to the Client within thirty (30) days from the date of invoice, without deduction or set-off.

14.If the Client fails to pay any amount under this Agreement, such unpaid amount shall bear interest at a rate per month equal to one (1%) percent (or 12.6825% per annum) with interest on

overdue interest at the same rate.

15.InnoTech Alberta makes no representation, warranties or conditions, either expressed or implied, statutory or otherwise and does not warrant the quality, state, merchantability or fitness for any purpose of any goods or products to be delivered pursuant to this Agreement. The Client accepts the results of these Services or items tested as is, and acknowledges that any use or interpretation of the information contained is at the Client's own risk.

16.In no event shall InnoTech Alberta be liable for any indirect or consequential damage or loss suffered by the Client, including loss of anticipated profits.

17.The Client shall indemnify and hold harmless InnoTech Alberta from any and all claims, demands, actions and costs (including legal costs on a solicitor-client basis) that may arise out of: (a)any dangerous defect or content in the item being tested, whether apparent or not, which dangerous defect or content was not disclosed in writing to InnoTech Alberta by the Client at the time the item was submitted for testing;

(b)differences between those items actually tested and items previously or subsequently produced which are purported to be identical to the item tested; or

(c)any use of the tested item or any item incorporating the tested item, whether by the Client or a third party following its return to the Client.

The hold harmless shall survive this Agreement.

18.The Client shall, at its own expense and without limiting its liabilities herein, be responsible for insuring its operation in an amount not less than \$2,000,000 inclusive per occurrence, insuring against bodily injury, and property damage including loss of use thereof. Further, the Client is responsible for insuring all owned property directly or indirectly related to this Agreement and InnoTech Alberta shall have no liability for any loss or damage to such property. 19.InnoTech Alberta shall maintain the following insurance: (i) commercial general liability insurance (including cross liability, severability of interests, non-owned automobile liability) in the amount of two million dollars (\$2,000,000.00) per occurrence, and; (ii) professional liability and errors and omissions insurance in the amount of one million dollars (\$1,000,000.00) per claim, and two million dollars (\$2,000,000.00) in the aggregate. In addition, InnoTech Alberta shall maintain all workers' compensation coverage required by applicable laws. Notwithstanding the foregoing, InnoTech Alberta reserves the right to supplement or add insurance coverage from time to time as may be required in its sole discretion. InnoTech Alberta may provide certificates of insurance for coverages outlined in (i) and (ii) above. 20.The Client agrees to comply with all InnoTech Alberta Safety & Security regulations in effect while on InnoTech Alberta premises.

21. This Agreement represents the entire agreement between the parties and shall supersede all prior agreements relative to this transaction.22. InnoTech Alberta shall not be liable to the Client for any failure or delay in performance of its

cz. Initol ech Alberta shall not be liable to the Client for any failure or delay in performance or its obligations caused by circumstances beyond its control, including but not limited to acts of God, strikes, laws imposed after the fact, governmental restrictions, riots, wars, civil disorder, rebellion, sabotage, fire, flood, explosion, earthquake or other disasters.

23. InnoTech Alberta may assign this Quotation to an "affiliated" (as that term is defined at Section 2 of the Business Corporations Act (Alberta)) or successor entity on written notice to the Client.

24. This Quotation and rights and parties thereto shall be governed by and construed according to the laws of the Province of Alberta. The parties hereby submit to the jurisdiction of the Courts of Alberta.

Sample ID: 23050415-001 Priority: Normal

Customer ID: Clean Harbours

Cust Samp ID:

VOCs and TNMOC Test Number: 843

Sent To:

Clean Harbors

PO Box 390

(1/2 mile north, Hwy 854)

Ryley, AB T0B 4A0

780-663-2513 Todd Webb

Filter Shipping Record

RECEIVED

Date:

Clean Harbors

Project:

Prepared by:

Filter Size 47 mm # of Filters in Cassettes 0116990 Filter IDs

Returns: coolers, large and small containers may be shipped to: Innotech, PO Bag 4000, HWY 16A & 75th Street, Vegreville, AB T9C 1T4

Sample ID: 23050415-002 Priority: Normal

Cust Samp ID:

Sent To:

Clean Harbors

PO Box 390

(1/2 mile north, Hwy 854) Ryley, AB T0B 4A0

780-663-2513 Todd Webb Clean Harbours PM10 Test Number: 843

Filter Shipping Record

Date:

RECEIVED

Project:

Prepared by:

					47 mm	Filter Size
					_	# of Filters in Cassettes
					C9700088	Filter
					Otrz Field blank	Filter IDs

Returns: coolers, large and small containers may be shipped to: Innotech, PO Bag 4000, HWY 16A & 75th Street, Vegreville, AB T9C 1T4

Sample 1D: 23050415

Canister ID: 28904 InnoTech	Sample ID: Test 843
ALBERTA This cleaned canister meets or exceeds TO-15 Method Specifications Proofed by: SQV on: MAR N 8 2023	Sampled By: T. Webb
Evacuated: APR 2 6 2023 Recertified:	Starting Vacuum: End Vacuum:

Sample ID: 23050415-001 Priority: Normal

THE REPORT OF THE PERSON OF TH

Customer ID: Clean Harbours

Cust Samp ID: VOCs and TNMOC Test Number: 843

Clean Harbours

Cust Samp ID:

Company:

Address:

Ryley, AB TOB 4A0

Todd Webb or Stan Yuha

PO Box 390, 50114 Range Road 173,

VOCs and TNMOC Test # 844

IN OF CUSTODY FORM

Environmental Analytical Services Vegreville, AB T9C 1T4 Highway 16A & 75 Street

Phone: 780-632-8403

Email: EAS.Reception@innotechalberta.ca www.innotechalberta.ca

Client Reporting Information Clean Harbors Canada, Inc Contact: **Client Billing Information** Stephanie Dennis

Phone: 780-663-3828

Email:

Dennis.Stephanie@cleanharbors.com

PO #: 0000233432

Project ID:

Test 844

Email:

Phone: Contact:

Special Instructions/Comments:

Yuha.Stan@cleanharbors.com

Webb.Todd@cleanharbors.com, 780-663-2513 or 780-663-3828

Confirm rush requests with InnoTech Alberta.

Note: Rush service not available for all tests.

X Normal (10 business days)

Rush

Turnaround Time

Date Received – Lab Use Only

RECEIVED JUN 0 2 2023

Trigger Weight for Analysis (HI-VOL): 87.6 mg If metals analysis is required, please report on the same report as filter weights and VOCs/TNMOC If neither filter exceeds its trigger weight, neither filter is analyzed for metals Trigger Weight for Analysis (PM10): 1.13 mg

*If either PM10 or HI-VOL filter exceeds its trigger weight, then both filters are analyzed for metals

				11.1		
00 - 1	Total: 23.81 hrs					
Particulate Weight (& metals if over trigger weight)*	00:00	31/05/23		HI-VOL Filter	HI-VOL Test Number: 844	
	00:00	30/05/23	HVF-23-03-08			
over trigger weight)*	00:00	31/05/23				
FLT Particulate Weight (& metals if	00:00	30/05/23	C1169902	PM10 filter	PM10 Test Number: 844	
VOC FAIRIS & LINIVIOC	00:00	31/05/23		כמווואנים	Number: 844	
VOC BANAC & THINADO	00:00	30/05/23	31818		VOCs and TNMOC Test	
Analysis Requested	From / To	From / To	Sampler ID	Description	Client Sample ID	Lab Sample No.
	(24 hour)	(dd/mm/yy)	Canister Number/	Sample Source/		
	Time Sampled	Date Sampled				
				-		

<u>-</u>	
π)
Ξ	5
-	•
۲	?
ξ	÷
Ξ	2
2	2
7	÷
۵	,
Ξ	<u>.</u>
\overline{c}	2
-	:

(Signature)

(Signature)

Laboratory Personnel:

This "Chain of Custody" form is subject to InnoTech Alberta standard terms and conditions.

Customer ID: Cust Samp ID: Clean Harbours
VOCs and TNMOC Test # 844 Filter Shipping Record

Sent To:

Clean Harbors PO Box 390

Todd Webb 780-663-2513 Ryley, AB T0B 4A0 (1/2 mile north, Hwy 854)

Sample ID: 23060018-001 Priority: Normal

RECEIVED
JUN 02 2023

Date:

Project:

5

Prepared by:

Cléán Harbors

							r
			N. Carlotte				Filter Size
C							# of Filters in Cassettes
		- 5				\bigcirc	
		·		. 3		1/60	
						C1169902	
						9	a a
			2				Filter IDs
		,					
				2			3
						test 844	
		-				王	

{00004084;2}

TERMS AND CONDITIONS

The attached document entitled "Chain of Custody Form" is subject to the following Terms and Conditions, unless otherwise specified on the Quotation. InnoTech Alberta's commencement of the Services shall be deemed acceptance of the terms and conditions by the Client

- 1.Any proposal contained herein is prepared for the consideration of the Client only. Its contents may not be used or disclosed to any other party without prior written consent of the INNOTECH ALBERTA INC. (hereinafter referred to as "InnoTech Alberta").
- InnoTech Alberta will perform the Services in accordance with normal professional standards.
- 3.The delivery time for performance of the Services (as set out on the front page of this Quotation) is approximate and may be changed by InnoTech Alberta giving written notice to the Client.
- 4.InnoTech Alberta will exercise due care and proficiency in testing items submitted by a Client. InnoTech Alberta shall not, however, be liable to the Client for any damage or loss caused to the item being tested or for any damage, loss or expense caused by any delay in carrying out the test, including any damage, loss or expense resulting from InnoTech Alberta's negligence. InnoTech Alberta shall not be responsible for any damage, which is a natural or necessary result of any testing procedure.

5.For the purposes of this Quotation, Intellectual Property means all information, data, artistic and literary works, concepts, designs, processes, software, algorithms and inventions, including, without limitation, those that could be the subject of patent, copyright, industrial design, trade secret or other forms of protection. Intellectual Property which was owned by either InnoTech Alberta or the Client prior to the signing of this Agreement remains the property of that party. Nothing in this Agreement shall operate as a license, permission or grant of any other rights to either InnoTech Alberta's or the Client's Intellectual Property.

6.All data, reports and other information relating to the Services shall be treated by InnoTech Alberta as the confidential property of the Client, and InnoTech Alberta will use reasonable efforts to ensure that its employees, contractors and agents will not disclose the same to any other person, firm or corporation during the term of this Agreement and for a period of five (5) years after the date of termination of the Agreement. The obligation of confidentiality set out herein shall not apply to any information that was in InnoTech Alberta's possession prior to receipt from the Client or which is or becomes part of the public domain through no act or failure on the part of InnoTech Alberta. The obligation of confidentiality set out in this Section shall not prevent the disclosure of information to any level of government having jurisdiction to make lawful demand therefor, or required to be disclosed by any applicable law. Any records required to be maintained by InnoTech Alberta pursuant to this Agreement are subject to the protection and access provisions of the Freedom of Information and Protection of Privacy Act (Alberta).

7.The reported results of any InnoTech Alberta tests or evaluations performed on samples or items provided by the Client shall be interpreted as being specific to the sample or item tested. InnoTech Alberta makes no representation that any similar or related untested samples or items would produce the same results.

8.The Client shall not use InnoTech Alberta's name in any advertising material, sale offer, news releases, public statements or announcements, whether written or oral relating to the Services or the results thereof, without the prior written consent of InnoTech Alberta.

9.Records, test data, reports and samples, except where shipped to the Client after completion of the work shall be retained by InnoTech Alberta according to InnoTech Alberta's approved Records Retention and Disposition Schedule.

10. Prices quoted are in Canadian Dollars unless otherwise stated in writing and are exclusive of any provincial, municipal, sales, use or goods and services tax.

11. Prices quoted do not include shipping, insurance or cost of consumables. The Client shall be responsible for all costs incurred by InnoTech Alberta in collecting any item for testing and returning the item to the Client after testing and shall be responsible for all necessary incidental costs incurred by InnoTech Alberta in providing the Services. InnoTech Alberta will not be responsible for any damage or loss to items during shipping and it is the responsibility of the Client to arrange and pay for any insurance it deems necessary.

- 12.Any test samples or other materials supplied by the Client to InnoTech Alberta may, at InnoTech Alberta's option, be returned by InnoTech Alberta to the Client. The Client shall:
- (a)be responsible for all costs associated with the handling, transportation and disposal of such materials;
- (b)reimburse InnoTech Alberta for any costs incurred by InnoTech Alberta associated with the handling, transportation and disposal of such materials; and
- handling, transportation and disposal of such materials; and (c)indemnify and hold InnoTech Alberta harmless from any and all claims, damages or actions
- associated with the handling, transportation and disposal of such materials.

 13.The Client shall pay all invoices rendered by InnoTech Alberta to the Client within thirty (30) days from the date of invoice, without deduction or set-off.
- 14.If the Client fails to pay any amount under this Agreement, such unpaid amount shall bear interest at a rate per month equal to one (1%) percent (or 12.6825% per annum) with interest on

overdue interest at the same rate.

- 15. InnoTech Alberta makes no representation, warranties or conditions, either expressed or implied, statutory or otherwise and does not warrant the quality, state, merchantability or fitness for any purpose of any goods or products to be delivered pursuant to this Agreement. The Client accepts the results of these Services or items tested as is, and acknowledges that any use or interpretation of the information contained is at the Client's own risk.
- 16.In no event shall InnoTech Alberta be liable for any indirect or consequential damage or loss suffered by the Client, including loss of anticipated profits.
- 17. The Client shall indemnify and hold harmless InnoTech Alberta from any and all claims, demands, actions and costs (including legal costs on a solicitor-client basis) that may arise out of: (a) any dangerous defect or content in the item being tested, whether apparent or not, which dangerous defect or content was not disclosed in writing to InnoTech Alberta by the Client at the time the item was submitted for testing;
- (b)differences between those items actually tested and items previously or subsequently produced which are purported to be identical to the item tested; or
- (c)any use of the tested item or any item incorporating the tested item, whether by the Client or a third party following its return to the Client.

The hold harmless shall survive this Agreement.

18.The Client shall, at its own expense and without limiting its liabilities herein, be responsible for insuring its operation in an amount not less than \$2,000,000 inclusive per occurrence, insuring against bodily injury, and property damage including loss of use thereof. Further, the Client is responsible for insuring all owned property directly or indirectly related to this Agreement and InnoTech Alberta shall have no liability for any loss or damage to such property. 19.InnoTech Alberta shall maintain the following insurance: (i) commercial general liability insurance (including cross liability, severability of interests, non-owned automobile liability) in the amount of two million dollars (\$2,000,000.00) per occurrence, and; (ii) professional liability and errors and omissions insurance in the amount of one million dollars (\$1,000,000.00) per claim, and two million dollars (\$2,000,000.00) in the aggregate. In addition, InnoTech Alberta shall maintain all workers' compensation coverage required by applicable laws. Notwithstanding the foregoing, InnoTech Alberta reserves the right to supplement or add insurance coverage from time to time as may be required in its sole discretion. InnoTech Alberta may provide certificates of insurance for coverages outlined in (i) and (ii) above.

20. The Client agrees to comply with all InnoTech Alberta Safety & Security regulations in effect

- while on InnoTech Alberta premises.

 21.This Agreement represents the entire agreement between the parties and shall supersede all prior agreements relative to this transaction.
- 22. InnoTech Alberta shall not be liable to the Client for any failure or delay in performance of its obligations caused by circumstances beyond its control, including but not limited to acts of God, strikes, laws imposed after the fact, governmental restrictions, riots, wars, civil disorder, rebellion, sabotage, fire, flood, explosion, earthquake or other disasters.
- 23.InnoTech Alberta may assign this Quotation to an "affiliated" (as that term is defined at Section 2 of the Business Corporations Act (Alberta)) or successor entity on written notice to the Client.
- 24. This Quotation and rights and parties thereto shall be governed by and construed according to the laws of the Province of Alberta. The parties hereby submit to the jurisdiction of the Courts of Alberta.

Canister ID: 3/8/8 InnoTech ALBERTA This cleaned canister meets or exceeds TO-15 Method	Sample ID: Test 844
Proofed by: / Soy on: APR 1 2 2023	Sampled By: T. Webb
Evacuated: APR 2 6 2023 Recertified: (Use within: 3 months from evacuation or recertification date) Laboratory Contact Number: 780-632-8403	Starting Vacuum: End Vacuum: Mw -27-1 "Hg "Hg/psig

Sample ID: 23060018-001 Priority: Normal

Customer ID:

Clean Harbours

Cust Samp ID: VOCs and

VOCs and TNMOC Test # 844