

July 31, 2023

Alberta Environment and Protected Areas (AEPA) Monitoring Branch 11th Floor Oxbridge Place 9820-106 Street Edmonton, Alberta T5K 2J6

RE: Monthly Ambient Air Monitoring Report

June 2023

Clean Harbors Canada, Inc. Approval 10348-03-01

To whom it may concern:

Clean Harbors Canada, Inc. (Clean Harbors) is presenting this Monthly Ambient Air Monitoring Report, which was prepared by GHD Limited (Consultant), for the reporting period of June 2023, to Alberta Environment and Protected Areas (AEPA). The Clean Harbors Ryley Industrial Waste Management Facility (Facility) is located in SE 09-050-17 W4M near Ryley, Alberta.

This ambient air monitoring program is conducted in accordance with the requirements outlined in the facility's amended Environmental Protection and Enhancement Act (EPEA) Approval, Approval No. 10348-03-01 (Approval). Clean Harbors' original Ambient Air Monitoring Program for Approval No. 10348-03-00 was initially approved on June 24, 2009. As part of the amended Approval requirements, the Facility submitted an Enhanced Ambient Air Quality Monitoring Program to AEPA (formerly AEP) on September 14, 2022 (no formal approval has been provided by AEPA). Operating under the Approval and the submitted program, Clean Harbors operates the following ambient air monitoring stations:

Wind

- Facility Meteorological Station AEPA Station ID 00010348-C-1
- Facility Site Station AEPA Station ID 00010348-C-2
- Ryley School Station AEPA Station ID 00010348-C-3

TSP

- Facility Site Station AEPA Station ID 00010348-I-2
- Ryley School Station AEPA Station ID 00010348-I-3
- Highway 854 Lift Station AEPA Station ID 00010348-I-1
- PM₁₀
 - Highway 854 Lift Station AEPA Station ID 00010348-I-1

Included in this report are the following:

- Summary of the ambient air monitoring program for June 2023
- Summary of AMD Electronic Transfer System submittals
- Results for Total Suspended Particulate Matter (TSP) reported in μg/m³
- Results for Particulate Matter < 10 microns (PM₁₀) reported in μg/m³
- Results for metals if the TSP or PM₁₀ results were >50 μg/m³
- Results for Total Non-Methane Organic Compounds (TNMOC) and Volatile Organic Compounds (VOC)
- Wind frequency distribution tables, wind rose and monthly uptime

Should there be any questions and comments regarding this report, please do not hesitate to contact the undersigned.

Yours truly,

CLEAN HARBORS CANADA INC.

Gan Yuha

Stan Yuha

Facility Manager Ryley Facility

Alberta Environment and Protected Areas (AEPA) Monthly Ambient Air Monitoring Report June 2023 Report Completed on July 31, 2023

Clean Harbors Environmental Services Inc.

Approval Number: 10348-03-01

Ryley Facility, Alberta

Table of Contents

1.	Intro	duction		1
	1.1	Contact	Information	3
2.	Sum	mary of Ar	mbient Air Monitoring Activities	4
3.	Sum	mary of El	ectronic Transfer System (ETS) Submittals	5
	3.1	AMD XM	1L Schema	5
	3.2	Ambient	Air Monitoring Program Laboratory Reports	6
	3.3	Ambient	Air Monitoring Program Calibration Reports	6
4.	Calib	ration and	Operation & Maintenance (O&M) Activities	6
	4.1		Meteorological Station for Wind Speed and Direction (AEPA Station ID labels)	6
	4.2	Facility S	Site Station for Wind Speed and Direction (AEPA Station ID 00010348-C-2)	6
	4.3	Ryley So	chool Station for Wind Speed and Direction (AEPA Station ID 00010348-C-3)	7
	4.4	Facility S	Site Station TSP Hi-Vol Sampler (AEPA Station ID 00010348-I-2)	7
	4.5	Ryley So	chool Station TSP Hi-Vol Sampler (AEPA Station ID 00010348-I-3)	7
	4.6	Highway	854 Lift Station TSP Hi-Vol Sampler (AEPA Station ID 00010348-I-1)	7
	4.7	Highway	854 Lift Station PM ₁₀ Sampler (AEPA Station ID 00010348-I-1)	7
5.	Amb	ient Air Mo	onitoring Results	8
	5.1	Meteoro	logical Data for Wind Speed and Direction	8
		5.1.1 5.1.2	Facility Meteorological Station Data Verification and Validation and Uptime (AEPA Station ID 00010348-C-1)Facility Site Station Data Verification and Validation and Uptime (AEPA	
		5.1.3	Station ID 00010348-C-2)Ryley School Station Data Verification and Validation and Uptime (AEPA Station ID 00010348-C-3)	
	5.2	TSP Cor	ncentrations	
		5.2.1 5.2.2 5.2.3	Facility Site Station (AEPA Station ID 00010348-I-2)	9
	5.3	PM ₁₀ Co	ncentrations	9
		5.3.1	Highway 854 Lift Station (AEPA Station ID 00010348-I-1)	9
	5.4	VOC and	d TNMOC Concentrations	10
		5.4.1	Highway 854 Lift Station (AEPA Station ID 00010348-I-1)	10
	5.5	Metal Co	oncentrations	10
		5.5.1 5.5.2 5.5.3	Facility Site Station (AEPA Station ID 00010348-I-2)	10
	5.6	Dust Sup	ppression	11
6	Conc	clusions		11

Table Index

Table 1	Average Wind Speed – Facility Meteorological Station
Table 2	Average Wind Speed – Facility Site Station
Table 3	Average Wind Speed – Ryley School Station
Table 4	Most Frequent Wind Direction – Facility Meteorological Station
Table 5	Most Frequent Wind Direction – Facility Site Station
Table 6	Most Frequent Wind Direction – Ryley School Station
Table 7	Frequency Distribution – Facility Meteorological Station
Table 8	Frequency Distribution – Facility Site Station
Table 9	Frequency Distribution – Ryley School Station
Table 10	TSP Concentrations – Facility Site Station
Table 11	TSP Concentrations – Ryley School Station
Table 12	TSP Concentrations – Highway 854 Lift Station
Table 13	PM ₁₀ Concentrations – Highway 854 Lift Station
Table 14	VOC and TNMOC – Highway 854 Lift Station
Table 15	TSP Metals Analysis – Facility Site Station
Table 16	TSP Metals Analysis – Ryley School Station
Table 17	TSP Metals Analysis – Highway 854 Lift Station
Table 18	PM ₁₀ Metals Analysis – Highway 854 Lift Station

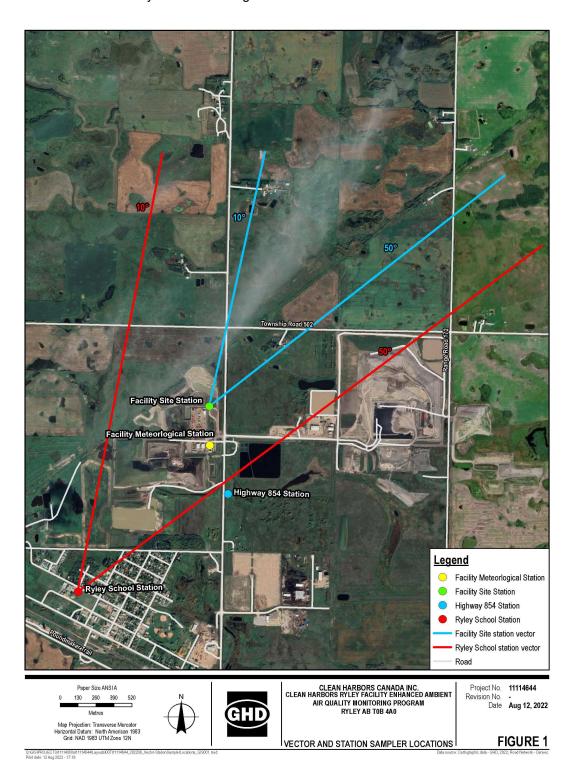
Figure Index

Figure 1 Vector and Sampler Station Locations

Appendices

Appendix A Meteorological Station Calibration Reports

Appendix B Sampling Field Sheets


Appendix C Wind Class Frequency Distribution Graphs and Wind Rose

Appendix D Chain of Custody Forms and Laboratory Analytical Reports

Appendix E June Quarterly Audit

1. Introduction

The Facility operates the following ambient air monitoring stations to assess ambient air quality at and around the Facility as shown in Figure 1.

- Upwind intermittent ambient air quality monitoring station, known as the Facility Site Station (AEPA Station ID 00010348-I-2), located at 50114 Range Road 173, Ryley, Alberta (53°18'13.11"N and 112°25'5.81"W). At this location, a Tisch TE-5170V VFC High Volume TSP Sampler (TSP Hi-Vol Sampler) is located against the Facility perimeter fence, north of the vehicle staging road.
- 2. Downwind intermittent ambient air quality monitoring station, known as the Ryley School Station (AEPA Station ID 00010348-I-3), located at 5211 52 Avenue, Ryley, Alberta (53°17'28.99"N and 112°25'55.81"W). At this location, a TSP Hi-Vol Sampler is located on the roof of the Ryley School.

For these two locations, samples are collected and analyzed for the following: total suspended particulate matter (TSP) (typically with diameter less than 35 microns (μ m)). Additionally, TSP samples that exceed 50 micrograms per cubic metre (50 μ g/m³) are analyzed for a target list of metals. The samplers are programmed to run for approximately 24-hours. All samples are collected for a total of 24-hours by intermittent sampling when the wind speed is greater than 5 km/hr and wind direction is blowing from the northeast towards the southwest.

- 3. Intermittent monitoring station, known as the Highway 854 Lift Station (AEPA Station ID 00010348-I-1), located on Secondary Road 854, approximately 350 metres southeast of the Facility (Latitude: 53°17′52.66″N, Longitude: 112°24′57.87″W). At this location, a TSP Hi-Vol Sampler and a Partisol FRM 2000 PM₁0 Sampler (PM₁0 Sampler) will be located on the roof of the lift station. Samples are collected and analyzed for the following: TSP, particulate matter less than or equal to 10 μm in diameter (PM₁0), volatile organic compounds (VOCs), and total non-methane organic compounds (TNMOC). Additionally, TSP or PM₁0 samples that exceed 50 μg/m³ are analyzed for a target list of metals. Sampling is conducted once every 6-days for a 24-hour sampling period (midnight to midnight) as required by the Facility's Approval. The 6-day sampling frequency will be in alignment with the Government of Canada, National Air Pollution Surveillance Program Canada.ca). To correlate PM₁0 data with TSP data, Clean Harbors will continue PM₁0 sampling at the station for a two-year period.
- 4. Continuous meteorological stations that collect wind speed and wind direction data are also located at the Facility Meteorological Station (AEPA Station ID 00010348-C-1), Upwind Facility Site Station (AEPA Station ID 00010348-C-2), and Downwind Ryley School Station (AEPA Station ID 00010348-C-3). The anemometer equipment used to measure this data includes three R. M. Young 05305-10A Wind Monitor-Ags.

All sampling and monitoring is conducted in accordance with the Facility's amended Approval (Approval No. 10348-03-01) and the Alberta Air Monitoring Directive, 2016 (AMD).

1.1 Contact Information

As required by AMD Chapter 9, Section 2, contact information is provided for the following Facility personnel and Contractors that assisted with the performance of the Facility's Air Monitoring Program.

	Contact Information
Name	Mr. Stan Yuha
Title	Plant Manager
Company	Clean Harbors
Responsibilities	Report Certifier/ETS Submitter
Address	PO Box 390, Ryley, AB T0B 4A0
Phone	780-663-2509
Email	yuha.stan@cleanharbors.com
Name	Mr. Todd Webb
Title	Laboratory Chemist
Company	Clean Harbors
Responsibilities	Station Field Operator and Field Sampler
Address	PO Box 390, Ryley, AB T0B 4A0
Phone	780-663-2513
Email	webb.todd@cleanharbors.com
Name	Mr. Pooya Shariaty
Title	Senior Air Quality Engineer/Project Manager
Company	GHD Limited
Responsibilities	Senior QA/QC
Address	3445-114 th Ave. SE, Suite 103 Calgary, AB
Phone	403-538-7479
Email	Pooya.shariaty@ghd.com
Name	Ms. Stepheney Davey
Title	Air Quality Engineer in Training
Company	GHD Limited
Deeperalbilities	Maintenance/Calibration Services/Report Preparer/ETS
Responsibilities	Submitter
Address	10250 101 Street NW, Suite 640, Edmonton, AB
Phone	780-229-3687
Email	Stepheney.davey@ghd.com
Company	Innotech
Responsibilities	Laboratory Analytical Services
Address	PO Bag 4000, Vegreville, Alberta
Phone	780-632-8211
Email	EAS.Results@albertainnovates.ca

2. Summary of Ambient Air Monitoring Activities

The following ambient air monitoring activities were conducted during the month of June 2023.

Activity	Completed	Date(s)
	(Y/N)	
	cility Meteorolo	gical Station
Wind Speed/Direction Sensor Calibration	N	June 30, 2023 ⁽¹⁾
Changes to the Wind Speed/Direction Sensor	N	-
Wind	- Facility Site	Station
Wind Speed/Direction Sensor Calibration	N	Anemometer Error ⁽²⁾
Changes to the Wind Speed/Direction Sensor	N	-
Wind	- Ryley School	Station
Wind Speed/Direction Sensor Calibration	Y	June 30, 2023
Changes to the Wind Speed/Direction Sensor	N	-
TSP	- Facility Site S	Station
TSP Hi-Vol Sampler Calibration	Υ	June 30, 2023
Changes to the TSP Hi-Vol Sampler	N	-
TSP Samples Collected	Y	June 1 – July 1, 2023
TSP Metal Analysis Conducted	Υ	July 1, 2023
TSP Sampler Maintenance	Υ	June 30, 2023
Activities	Ť	July 1, 2023
TSP -	- Ryley School	Station
TSP Hi-Vol Sampler Calibration	Υ	June 30, 2023
Changes to the TSP Hi-Vol Sampler	N	-
TSP Samples Collected	Y	June 1 – July 1, 2023
TSP Metal Analysis Conducted	Y	July 1, 2023
TSP Sampler Maintenance	Y	June 30, 2023
Activities		July 1, 2023
-		hway 854 Lift Station
TSP Hi-Vol Sampler Calibration	Y	June 30, 2023
PM ₁₀ Sampler Calibration	Y	June 30, 2023
Changes to the TSP Hi-Vol Sampler	N	-
Changes to the PM ₁₀ Sampling Station	N	-
		June 5, 2023
TOD 0		June 11, 2023
TSP Samples Collected	Y	June 17, 2023
		June 23, 2023
DM Comples Collected	V	June 29, 2023
PM ₁₀ Samples Collected	Y	June 5, 2023

Activity	Completed (Y/N)	Date(s)
		June 11, 2023
		June 17, 2023
		June 23, 2023
		June 29, 2023
		June 5, 2023
VOC and TNMOC Samples		June 11, 2023
VOC and TNMOC Samples Collected	Y	June 17, 2023
Collected		June 23, 2023
		June 29, 2023
		June 5, 2023
TSP Metal Analysis Conducted	Y	June 11, 2023
		June 29, 2023
		June 5, 2023
PM ₁₀ Metal Analysis Conducted	Y	June 11, 2023
		June 29, 2023
		June 5, 2023
		June 11, 2023
TSP Sampler Maintenance	Y	June 17, 2023
Activities	T I	June 23, 2023
		June 29, 2023
		June 30, 2023
		June 5, 2023
		June 11, 2023
PM ₁₀ Sampler Maintenance	Y	June 17, 2023
Activities	ī	June 23, 2023
		June 29, 2023
		June 30, 2023
	Other	
Dust Suppression Activities	N	-

Note: (1) The wind speed/direction sensor on the Facility Site Meteorological Station was checked for calibration on June 30, 2023 and was shown to be within the allowable tolerances and was then re-installed after calibration.

3. Summary of Electronic Transfer System (ETS) Submittals

In addition to the June 2023 monthly report, the following summarized items were submitted to the ETS:

3.1 AMD XML Schema

An XML formatted Schema file was submitted to the AEPA via the ETS portal. The XML Schema file contains the results from:

⁽²⁾ Instrument is not currently reporting due to an emometer program corruption. The instrument was calibrated prior to install in the Fall of 2014 for voluntary reporting.

Wind

- Facility Meteorological Station AEPA Station ID 00010348-C-1.
- Facility Site Station AEPA Station ID 00010348-C-2.
- Ryley School Station AEPA Station ID 00010348-C-3.

TSP

- Facility Site Station AEPA Station ID 00010348-I-2.
- Ryley School Station AEPA Station ID 00010348-I-3.
- Highway 854 Lift Station AEPA Station ID 00010348-I-1.
- PM₁₀
 - Highway 854 Lift Station AEPA Station ID 00010348-I-1.

3.2 Ambient Air Monitoring Program Laboratory Reports

One laboratory report in PDF file format was submitted to the AEPA via the ETS portal. The PDF file contains the results from AEPA Station ID 00010348-I-1, AEPA Station ID 00010348-I-2, and AEPA Station ID 00010348-I-3.

3.3 Ambient Air Monitoring Program Calibration Reports

One calibration report in PDF file format was submitted to the AEPA via the ETS portal. The PDF file contains the results from AEPA Station ID 00010348-C-1.

4. Calibration and Operation & Maintenance (O&M) Activities

4.1 Facility Meteorological Station for Wind Speed and Direction (AEPA Station ID 00010348-C-1)

The Facility Meteorological Station was taken down and calibrated on June 30, 2023. The station was shown to be within all allowable tolerances, as required by the manufacturer, and was then reinstalled after calibration. Provided in Appendix A is the calibration report and record of installation.

4.2 Facility Site Station for Wind Speed and Direction (AEPA Station ID 00010348-C-2)

The Facility Site Station was last calibrated upon installation. When installed, the station was shown to be within all allowable tolerances, as required by the manufacturer.

During May 2023, Clean Harbors chose to swap the Ryley School Station (AEPA Station ID 00010348-C-3) anemometer with the Facility Site Station (AEPA Station ID 00010348-C-2) anemometer due to AEPA Station ID 00010348-C-3 anemometer program corruption. Per Approval No. 10348-03-01, Clean Harbors is only required to report "a minimum of one (1) meteorological

station in each of the Ryley School and Facility Site intermittent ambient air quality monitoring stations" thus, reporting from Station ID 00010348-C-2 is not required as Clean Harbors reports from the Facility Meteorological Station (Station ID 00010348-C-1).

4.3 Ryley School Station for Wind Speed and Direction (AEPA Station ID 00010348-C-3)

The Ryley School Station was taken down and calibrated on June 30, 2023. The station was shown to be within all allowable tolerances, as required by the manufacturer, and was then re-installed after calibration. Provided in Appendix A is the calibration report.

4.4 Facility Site Station TSP Hi-Vol Sampler (AEPA Station ID 00010348-I-2)

The sampling activities for the Tisch TE-5170V VFC High Volume TSP Sampler (TSP Hi-Vol Sampler) are recorded in the field sampling sheets provided in Appendix B.

On a quarterly basis, performance audits are completed on the TSP Hi-Vol Sampler. A quarterly audit was performed on June 30, 2023.

4.5 Ryley School Station TSP Hi-Vol Sampler (AEPA Station ID 00010348-I-3)

The sampling activities for the TSP Hi-Vol Sampler are recorded in the field sampling sheets provided in Appendix B.

On a quarterly basis, performance audits are completed on the TSP Hi-Vol Sampler. A quarterly audit was performed on June 30, 2023.

4.6 Highway 854 Lift Station TSP Hi-Vol Sampler (AEPA Station ID 00010348-I-1)

The sampling activities for the TSP Hi-Vol Sampler are recorded in the field sampling sheets provided in Appendix B.

On a quarterly basis, performance audits are completed on the TSP Hi-Vol Sampler. A quarterly audit was performed on June 30, 2023.

4.7 Highway 854 Lift Station PM₁₀ Sampler (AEPA Station ID 00010348-I-1)

Maintenance activities for the Thermo Scientific™ Partisol 2000i-Federal Reference Method (FRM) PM₁0 Sampler included inlet cleaning and leak checks that were conducted before each sampling event in June 2023. The pre-sampling maintenance activities are recorded in the field sampling sheets provided in Appendix B.

On a quarterly basis, performance audits are completed on the TSP Hi-Vol Sampler. A quarterly audit was performed on June 30, 2023.

5. Ambient Air Monitoring Results

The following section presents the results from the ambient air monitoring program for the Facility Meteorological Station (AEPA Station ID 00010348-C-1), Facility Site Station (AEPA Station ID 00010348-C-2), Ryley School Station (AEPA Station ID 00010348-C-3), Highway 854 Lift Station (AEPA Station ID 00010348-I-1), Facility Site Station (AEPA Station ID 00010348-I-2), and Ryley School Station (AEPA Station ID 00010348-I-3) conducted in June 2023. Where applicable, comparisons were made to Alberta Ambient Air Quality Objectives (AAAQO) for parameters that had 24-hour average objectives. These parameters are TSP and some of the VOCs including o,m,p-xylene, hexane, and toluene. For the parameter objectives with averaging periods other than 24-hours, Section 7.1.2 of the Air Quality Model Guideline was used to covert the measured values to the corresponding AAAQO averaging periods prior to comparison. For all other parameters, AAAQO have not been established.

5.1 Meteorological Data for Wind Speed and Direction

In accordance with the Approval and the AMD, the Facility is required to collect wind speed and directional data continuously for the Facility Meteorological Station, Facility Site Station, and Ryley School Station. Tables 1 - 3 present the hourly and 24-hour average wind speeds, Tables 4 - 6 present the hourly and 24-hour most frequent wind direction data (degrees from north), and Tables 7 - 9 present the Wind Class Frequency Distribution for June 2023 from the Facility Meteorological Station, Facility Site Station, and Ryley School Station, respectively. Appendix C provides graphical representations of the Wind Class Frequency Distribution and the Wind Roses based on Tables 1 – 9.

5.1.1 Facility Meteorological Station Data Verification and Validation and Uptime (AEPA Station ID 00010348-C-1)

Based on the verification and validation process conducted for the meteorological data that was collected in June 2023, it was determined that 99.79 percent of the data is valid, which represents 99.79 percent uptime of the meteorological station. This is above the 90 percent uptime limit required for compliance, as per the Approval.

5.1.2 Facility Site Station Data Verification and Validation and Uptime (AEPA Station ID 00010348-C-2)

As noted above, Clean Harbors chose to swap the Ryley School Station (AEPA Station ID 00010348-C-3) anemometer with the Facility Site Station (AEPA Station ID 00010348-C-2) anemometer due to AEPA Station ID 00010348-C-3 anemometer program corruption. Per Approval No. 10348-03-01, Clean Harbors is only required to report "a minimum of one (1) meteorological station in each of the Ryley School and Facility Site intermittent ambient air quality monitoring stations" thus, reporting from Station ID 00010348-C-2 is not required as Clean Harbors reports from the Facility Meteorological Station (Station ID 00010348-C-1).

5.1.3 Ryley School Station Data Verification and Validation and Uptime (AEPA Station ID 00010348-C-3)

Based on the verification and validation process conducted for the meteorological data that was collected in June 2023, it was determined that 99.70 percent of the data is valid, which represents 99.70 percent uptime of the meteorological station. This is above the 90 percent uptime limit required for compliance, as per the Approval.

5.2 TSP Concentrations

AAAQO are specified for TSP at 100 μ g/m³ (24-hour averaging period). In accordance with the Facility's Approval, TSP samples that exceed 50 μ g/m³ are analyzed for a target list of metals. Appendix B provides the field sheets completed for each sampling event. Appendix D provides the chain of custody forms and laboratory analytical reports.

5.2.1 Facility Site Station (AEPA Station ID 00010348-I-2)

Table 10 presents the results of the sampling conducted for TSP from the Facility Site Station.

5.2.2 Ryley School Station (AEPA Station ID 00010348-I-3)

Table 11 presents the results of the sampling conducted for TSP from the Ryley School Station. The TSP sample collected in June 2023 was shown to have an elevated TSP concentration of 113.923 μ g/m³, which is above the 100 μ g/m³ AAAQO threshold. It should be noted that Alberta experienced an unprecedented number of wildfires during this time which led to numerous regional air quality advisories resulting from wildfire smoke. The TSP exceedance for June 2023 is likely a result of the background air quality and not related to the Facility. As such, no contravention form was submitted due to this exceedance.

5.2.3 Highway 854 Lift Station (AEPA Station ID 00010348-I-1)

Table 12 presents the results of the sampling conducted for TSP from the Highway 854 Lift Station.

5.3 PM₁₀ Concentrations

AAAQO are specified for TSP at 100 $\mu g/m^3$ and Particulate Matter ≤ 2.5 microns (PM_{2.5}) at 29 $\mu g/m^3$ (24-hour averaging period). There is currently no AAAQO specified for PM₁₀ for a 24-hour averaging period in Alberta. To correlate PM₁₀ data with TSP data, Clean Harbors will continue PM₁₀ sampling at the station for a two-year period. In accordance with the Facility's Approval, PM₁₀ samples that exceed 50 $\mu g/m^3$ are analyzed for a target list of metals. Appendix B provides the field sheets completed for each sampling event. Appendix D provides the chain of custody forms and laboratory analytical reports.

5.3.1 Highway 854 Lift Station (AEPA Station ID 00010348-I-1)

Table 13 presents the results of the sampling conducted for PM₁₀.

5.4 VOC and TNMOC Concentrations

There are three VOC parameters that have corresponding AAAQO with 24-hour averaging periods including o,p,m-xylene, hexane and toluene. Appendix B provides the field sheets completed for each sampling event. Appendix D provides the chain of custody forms and laboratory analytical reports.

5.4.1 Highway 854 Lift Station (AEPA Station ID 00010348-I-1)

Table 14 presents the VOC and TNMOC concentrations measured in June 2023. There were no exceedances for the parameters with AAAQO in June 2023.

5.5 Metal Concentrations

In accordance with the Facility's Approval, if collected TSP or PM_{10} samples show exceedances over 50 μ g/m³ after gravimetric analysis, a subsequent filter particulate analysis is done using inductively coupled plasma mass spectroscopy (ICP-MS) for 21 trace elements. There are four parameters that have corresponding AAAQO with 1 hour averaging periods including arsenic, chromium, lead, and nickel. The sample results were converted to a 1-hour averaging period for comparison with the sample AAAQO. If metal analysis was conducted, Appendix B provides the field sheets completed for each sampling event. Appendix D provides the chain of custody forms and laboratory analytical reports.

5.5.1 Facility Site Station (AEPA Station ID 00010348-I-2)

The TSP sample collected in June 2023 was above 50 μ g/m³ and as such, analysis for metals was conducted on the sample. Facility Test #103 (HV-23-02-05) was shown to have an elevated TSP concentration of 59.663 μ g/m³, which is over the 50 μ g/m³ threshold. This sample was sent for additional analysis and the results for this test can be found in Table 15 of this report. There were no exceedances for the parameters with AAAQO in June 2023.

5.5.2 Ryley School Station (AEPA Station ID 00010348-I-3)

The TSP sample collected in June 2023 was above 50 μ g/m³ and as such, analysis for metals was conducted on the sample. School Test #103 (HV-23-02-06) was shown to have an elevated TSP concentration of 113.923 μ g/m³, which is over the 50 μ g/m³ threshold. This sample was sent for additional analysis and the results for this test can be found in Table 16 of this report. There were no exceedances for the parameters with AAAQO in June 2023.

5.5.3 Highway 854 Lift Station (AEPA Station ID 00010348-I-1)

TSP

Three of the TSP samples collected in June 2023 were above 50 μ g/m³ and as such, analysis for metals was conducted on the samples. Facility Test #845 (HVF-23-03-05), Facility Test #846 (HVF-23-03-13), and Facility Test #849 (HVF-23-03-17) were shown to have elevated TSP concentrations of 85.962 μ g/m³, 68.770 μ g/m³, and 59.346 μ g/m³, respectively, which are over the 50 μ g/m³ threshold. These samples were sent for additional analysis and the results for Test #845, Test

#846, and Test #849 can be found in Table 17 of this report. There were no exceedances for the parameters with AAAQO in June 2023.

PM₁₀

None of the PM $_{10}$ samples collected in June 2023 was above 50 μ g/m 3 . The PM $_{10}$ concentrations measured for Facility Test #845 (C9700087), Facility Test #843 (C1170495), and Facility Test #849 (C1170491) were less than the 50 μ g/m 3 threshold, 34.489 μ g/m 3 , 44.619 μ g/m 3 , and 31.757 μ g/m 3 , respectively; however, as the TSP concentrations for these samples were above the 50 μ g/m 3 threshold (as noted above), the corresponding PM $_{10}$ samples were sent for additional analysis. The results for Test #845, Test #846, and Test #849 can be found in Table 18 of this report. There were no exceedances for the parameters with AAAQO in June 2023.

The remainder of the TSP and PM $_{10}$ samples collected in June 2023 were below 50 μ g/m 3 and as such analysis for metals was not conducted on those samples.

5.6 Dust Suppression

There were no dust suppression activities, which include using leachate spread on the surface of the active landfill, conducted during June 2023.

6. Conclusions

The following summarizes the Ambient Air Monitoring Program that was conducted in June 2023.

- During June 2023, the Facility Meteorological Station (AEPA Station ID 00010348-C-1) operated at 99.79 percent uptime. Based on the data verification and validation procedure conducted, this is in compliance with the minimum 90 percent uptime required by the AMD.
- 2 During June 2023, the continuous Facility Site wind Station was not operational. Per the approval, reporting from Station ID 00010348-C-2 is not required as Clean Harbors reports from the Facility Meteorological Station.
- 3 During June 2023, the continuous Ryley School wind Station operated at 99.70 percent uptime. Based on the data verification and validation procedure conducted, this is in compliance with the minimum 90 percent uptime required by the AMD.
- The TSP concentration measured at the intermittent Facility Site Station from June 1, 2023 to July 1, 2023 was $59.663 \mu g/m^3$.
- 5 The TSP concentration measured at the intermittent Ryley School Station from June 1, 2023 to July 1, 2023 was 113.923 μg/m³. The AAAQO exceedance for this month is likely a result of the background air quality due to wildfire smoke and not related to the Facility.
- 6 The TSP concentrations measured at the intermittent Highway 854 Lift Station (AEPA Station ID 00010348-I-1) on June 5, June 11, June 17, June 23, and June 29 were 85.962 μg/m³, 68.770 μg/m³, 49.157 μg/m³, 43.299 μg/m³, and 59.346 μg/m³, respectively.
- 7 The PM₁₀ concentrations measured at the intermittent Highway 854 Lift Station (AEPA Station ID 00010348-I-1) on June 5, June 11, June 17, June 23, and June 29 were 34.489 μg/m³, 44.619 μg/m³, 12.115 μg/m³, 20.929 μg/m³, and 31.757 μg/m³, respectively.

- 8 Based on the VOC and TMNOC results measured at the intermittent Highway 854 Lift Station (AEPA Station ID 00010348-I-1), no exceedances were detected for parameters with applicable AAAQO, which included o,m,p-xylene, hexane and toluene. There are no applicable AAAQO for other parameters that were monitored in June 2023.
- 9 The TSP concentration measured for Facility Test #103 (HV-23-02-05), conducted from June 1, 2023 to July 1, 2023, was above the 50 μg/m³ threshold outlined in the Facility's approval. Because of the elevated TSP concentration, this sample was sent for additional analysis of metals. The results of this test showed that all parameters were below any applicable AAAQO (arsenic, chromium, lead, and nickel).
- 10 The TSP concentration measured for School Test #102 (HV-23-02-06), conducted from June 1, 2023 to July 1, 2023, was above the 50 μg/m³ threshold outlined in the Facility's approval. Because of the elevated TSP concentration, this sample was sent for additional analysis of metals. The results of this test showed that all parameters were below any applicable AAAQO (arsenic, chromium, lead, and nickel).
- 11 The TSP concentrations measured for Facility Test #845 (HVF-23-03-05), Facility Test #846 (HVF-23-03-13), and Facility Test #849 (HVF-23-03-17) were over the 50 μg/m³ threshold outlined in the Facility's approval. Because of the elevated TSP concentration, these samples were sent for additional analysis of metals. The results of these tests showed that all parameters for Test #845, Test #846, and Test #849 were below any applicable AAAQO (arsenic, chromium, lead, and nickel).
- 12 None of the PM₁₀ concentrations measured were over the 50 μg/m³ threshold outlined in the Facility's approval. The PM₁₀ concentrations measured for Facility Test #845 (C9700087), Facility Test #843 (C1170495), and Facility Test #849 (C1170491) were less than the 50 μg/m³ threshold; however, as the TSP concentrations for these samples were above the 50 μg/m³ threshold, the corresponding PM₁₀ samples were sent for additional analysis. The results of these tests showed that all parameters for Test #845, Test #846, and Test #849 were below any applicable AAAQO (arsenic, chromium, lead, and nickel).

Clean Harbors will continue to perform their Facility's Ambient Air Monitoring Program in accordance with their Approval and the AMD and evaluate the data to determine impacts on the ambient air quality.

7. Certification

Per the requirements of AMD, Chapter 9, Section 2.3, the following certification is provided for the June 2023 Ambient Air Monitoring Report.

"I certify that I have reviewed and verified this report and that the information is complete, accurate and representative of the monitoring results, reporting timeframe and the specified analysis, summarization and reporting requirements."

Stan Yuha

Plant Manager/Report Certifier

Stan Yuha

END OF REPORT

Tables

TABLE 1

Average Wind Speed (metres/second)
AEPA Station ID 00010348-C-1
Clean Harbors Canada, Inc.
Monthly Ambient Air Monitoring Report
June 2023

							Ryley	Wind I	Direction	n Data (degree	s, blow	ing fron	n) - Mor	nth of J	une 202	23							
Day/Hour	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1	6.8	5.2	4.0	4.5	5.4	6.3	5.3	6.3	6.5	6.0	7.1	6.0	5.8	6.0	5.5	5.0	5.1	5.3	5.6	5.2	5.1	3.9	3.5	3.4
2	3.5	4.0	3.8	3.0	3.1	2.7	2.6	2.9	2.5	1.8	2.8	3.9	4.6	4.6	4.1	3.9	3.5	3.8	3.8	3.9	2.3	1.9	2.3	1.8
3	1.8	2.4	1.2	0.7	0.6	1.2	1.6	1.7	2.2	1.7	2.8	2.9	3.5	4.0	4.3	4.0	4.1	4.8	6.5	5.6	3.4	2.8	3.6	3.5
4	2.3	0.4	0.9	0.9	8.0	0.9	8.0	1.1	1.9	2.4	2.7	2.2	2.1	3.4	4.6	4.6	4.1	5.2	5.4	5.0	4.3	3.4	2.9	2.6
5	2.6	2.6	2.1	1.4	2.3	6.5	7.0	6.1	6.1	4.1	2.9	3.2	2.9	2.0	1.5	3.1	4.3	7.0	8.1	9.3	10.0	10.7	11.0	9.7
6	7.9	7.2	5.5	3.3	3.4	3.8	2.6	3.1	3.5	4.1	3.5	3.4	2.4	2.0	2.1	2.1	2.1	2.8	2.8	1.9	2.4	1.4	1.7	2.4
7	3.4	2.8	2.8	3.7	3.6	2.5	4.2	3.6	4.0	5.4	4.6	4.3	4.3	4.7	3.9	3.4	3.7	4.4	4.3	4.3	3.2	2.7	2.0	1.9
8	2.6	1.9	1.6	3.0	2.9	1.7	2.2	2.4	3.7	4.7	5.0	5.1	5.1	5.4	5.0	4.4	5.4	6.1	6.8	7.0	6.1	5.0	4.8	3.7
9	3.8	3.7	3.3	3.2	3.5	4.0	3.5	4.9	6.4	6.4	7.3	7.0	6.2	5.9	6.0	6.0	5.9	6.1	6.1	5.3	4.2	4.7	4.5	3.6
10	4.6	5.8	6.0	5.7	5.1	4.2	5.1	6.7	7.4	7.1	6.7	7.6	8.6	8.5	8.6	8.5	8.3	7.9	8.4	6.7	5.6	5.0	6.3	6.2
11	4.7	3.5	3.2	3.0	2.8	2.7	2.4	3.1	3.6	5.8	5.6	5.9	6.1	5.7	5.7	5.2	5.5	6.3	7.2	8.0	4.8	3.9	2.7	3.1
12	2.9	3.3	3.6	3.8	3.4	3.5	3.3	2.9	3.6	3.2	3.1	3.1	2.5	2.3	2.2	2.5	2.0	2.3	1.9	2.4	2.7	3.2	3.9	3.6
13	3.6	3.9	3.7	3.9	4.3	2.8	3.1	1.4	2.8	4.6	5.9	5.7	6.9	8.0	10.0	11.1	10.0	8.6	8.3	8.9	6.1	9.6	9.4	6.0
14	4.7	4.1	3.7	4.6	6.1	6.5	7.5	6.7	7.4	8.0	8.4	7.6	8.0	8.9	7.1	7.6	8.1	8.2	10.2	9.7	9.2	9.3	9.6	9.1
15	8.3	7.2	9.7	10.5	9.5	10.1	9.9	12.7	14.6	13.1	12.3	11.1	11.1	10.2	10.2	10.3	9.7	8.2	6.1	4.3	1.9	0.5	1.6	2.3
16	3.3	3.7	3.2	3.7	3.8	2.2	3.2	4.6	5.9	5.6	5.6	6.0	6.7	7.1	5.9	5.0	4.0	5.8	4.3	1.2	1.5	8.7	6.4	3.0
17	2.4	2.8	2.3	3.0	4.9	4.1	3.2	3.4	3.7	4.8	4.3	4.0	3.2	2.5	2.9	2.6	3.5	5.2	7.4	4.1	4.1	2.7	3.0	3.0
18	2.6	3.0	3.6	5.4	5.7	5.5	5.1	4.0	5.9	5.6	7.4	8.5	8.4	6.7	7.4	5.4	6.6	5.7	4.0	3.5	3.1	4.4	6.6	8.0
19	8.1	5.0	5.4	6.1	5.6	5.3	5.0	5.0	4.6	3.8	5.7	6.4	5.2	4.2	5.2	4.7	2.8	3.1	3.2	2.1	4.3	6.4	6.6	6.7
20	6.6	6.3	6.1	5.7	5.1	7.1	7.3	6.3	6.7	6.4	7.2	7.2	7.1	7.6	8.8	9.2	10.2	8.9	7.1	6.1	3.7	3.5	3.0	2.6
21	3.1	3.8	3.4	3.4	2.3	2.4	2.6	3.2	3.1	3.0	2.0	2.4	2.9	4.7	3.6	5.0	3.8	5.5	3.2	3.2	1.8	0.6	2.7	3.8
22	4.4	4.9	4.9	5.3	5.6	5.6	5.0	4.4	3.4	4.0	4.4	5.0	3.6	3.5	2.9	2.9	2.9	2.4	2.4	1.5	1.7	1.7	2.0	2.1
	1.9	1.4	1.6	1.9	1.0	2.7	2.8	1.6	2.1	2.6	2.8	2.0	1.7	1.6	2.0	2.3	2.2	2.6	1.7	1.9	1.2	1.2	1.9	1.9
24	1.6	0.7	0.5	0.9	1.0	1.0	1.4	0.8	2.7	1.8	0.9	1.6	1.8	2.6	3.4	3.0	3.9	3.7	3.8	2.8	1.7	0.6	1.5	3.1
25 26	2.7	2.7	3.7	4.4	4.8	4.0	4.0	4.6	5.9	6.4	6.3	6.2	6.0	6.3	6.2	5.8	6.1	5.1	4.8	9.3	6.1	4.6	2.2	1.4
26	1.5	1.3	2.7	2.7	2.6	2.5	3.7	2.8	2.5	2.9	2.9	4.2	3.6	3.1	3.3	2.7	3.1	2.6	2.9	1.8	1.3	2.3	2.8	3.7
	4.5	3.1	3.4	3.1	2.9	3.1	2.2	2.5	2.5	1.9	1.7	1.6	1.5	2.0	3.5	2.4	3.4	6.3	4.2	2.1	1.8	1.0	1.1	1.9
28	3.0	4.3	2.9	1.9	0.9	0.3	1.1	0.5	1.1	0.9	1.6	1.6	2.0	2.4	2.4	2.3	2.0	2.7	2.7	2.9	2.4	3.2	3.4	3.5
29 30	4.0 2.7	4.9 1.5	5.0 1.9	4.8 3.0	3.0 3.3	2.9 2.6	3.3 2.4	4.1 1.7	4.8 2.0	4.6 2.9	4.6 2.0	5.5 1.7	4.3 (C)	3.8 (C)	3.3 (C)	2.8 2.8	2.3 2.7	1.9 2.5	2.0 2.1	1.9 2.1	1.5 1.4	1.3 2.0	3.4 2.0	2.6 2.2

Notes:

- On June 30, 2023 the unit was calibrated
- (C) Equipment Calibration

TABLE 2

Average Wind Speed (metres/second) AEPA Station ID 00010348-C-2 Clean Harbors Canada, Inc. Monthly Ambient Air Monitoring Report June 2023

									Ryley Wi	nd Spe	ed Data	(m/s) - l	Month c	of June	2023									
Day/Hour	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
2	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
3	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
4	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
5	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
6	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
7	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
8	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
9	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
10	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
11	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
12	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
13	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
14	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
15	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
16	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
17	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
18	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
19	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
20	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
21	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
22	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
23	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
24	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
25	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
26	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
27	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
28	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
29	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								
30	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)								

Notes:

- (X) - Equipment Malfunction

TABLE 3

Average Wind Speed (metres/second)

AEPA Station ID 00010348-C-3

Clean Harbors Canada, Inc.

Monthly Ambient Air Monitoring Report
June 2023

									Ryley Wi	nd Spe	ed Data	(m/s) -	Month o	of June	2023									
Day/Hour	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1	3.1	2.9	2.0	2.6	3.0	3.1	2.4	2.8	3.2	3.2	3.5	2.4	2.9	2.3	1.8	2.3	2.4	2.7	3.1	2.6	2.8	2.5	1.6	1.0
2	1.3	1.2	1.4	1.5	1.7	1.1	1.5	1.9	1.5	1.2	1.7	2.1	2.2	2.3	2.7	2.4	2.2	2.2	1.8	1.9	8.0	0.6	0.6	0.3
3	8.0	1.2	0.6	0.4	0.4	0.5	0.7	0.9	1.1	1.0	1.6	1.8	2.3	2.8	3.2	3.0	2.9	3.6	4.7	4.0	2.5	1.5	1.8	1.6
4	1.4	0.3	0.4	0.0	0.1	0.4	0.7	1.2	1.6	2.2	2.1	2.0	2.7	2.8	4.3	4.2	3.7	4.5	4.6	4.4	3.4	2.6	2.2	2.2
5	2.4	2.6	1.5	0.9	1.2	3.7	3.1	2.5	2.5	1.9	1.8	1.7	1.8	1.4	1.2	2.3	2.6	4.3	4.9	5.6	5.7	6.1	5.5	5.3
6	4.2	3.8	3.1	2.3	2.2	2.5	0.9	1.8	1.9	2.1	1.9	2.3	1.6	1.4	1.3	1.2	1.5	1.7	1.5	1.3	1.7	0.4	0.9	1.7
7	3.0	2.3	2.5	2.7	2.5	2.9	3.5	3.6	3.9	4.3	3.0	3.3	3.3	3.5	2.1	2.2	1.9	2.5	3.1	2.3	0.7	8.0	0.6	0.5
8	1.4	0.6	0.9	1.2	0.9	0.2	1.0	1.3	1.9	2.2	2.6	3.0	3.3	3.3	3.2	3.0	2.7	3.4	4.6	4.5	3.6	2.8	2.7	2.2
9	2.3	2.3	1.9	2.2	2.8	3.1	3.3	4.2	5.2	6.0	5.3	6.0	4.7	4.9	4.8	5.2	5.1	5.1	4.9	4.3	3.3	3.6	3.5	3.4
10	4.1	4.6	5.1	5.0	4.4	4.4	5.6	6.0	6.5	6.4	6.5	6.6	7.6	7.5	7.5	7.4	6.7	6.8	7.0	5.6	4.0	3.3	5.0	5.2
11	3.9	3.2	3.2	3.0	2.5	2.1	2.1	2.3	1.8	3.3	3.1	3.3	3.2	3.3	3.3	3.2	3.7	3.7	4.5	4.4	3.1	2.7	1.5	1.5
12	0.9	1.7	2.0	2.0	1.6	1.5	1.6	1.8	2.1	1.6	1.8	2.0	1.5	1.7	1.6	1.7	1.6	1.1	1.1	1.1	1.0	1.5	2.5	2.7
13	3.0	3.0	2.9	3.7	3.7	3.0	2.0	1.0	2.5	3.8	4.6	4.6	5.8	6.9	7.8	8.7	6.8	6.2	6.0	6.3	4.8	6.5	5.2	2.9
14	2.2	1.8	2.4	2.9	3.7	4.8	4.6	4.4	4.4	4.3	5.2	5.0	4.8	4.6	4.2	3.7	4.1	5.2	5.1	5.0	4.7	3.9	3.5	3.1
15	3.0	2.5	4.3	4.6	5.1	4.8	6.1	6.8	7.9	7.3	6.5	6.3	6.0	6.3	6.0	5.7	5.3	4.1	3.8	2.2	0.5	0.1	0.4	1.4
16	1.4	2.1	1.8	3.3	2.9	2.6	3.0	4.5	4.8	4.6	4.5	5.1	5.9	5.7	4.4	3.8	3.1	3.6	1.8	0.6	0.7	5.0	2.6	1.6
17	0.5	0.3	0.3	0.3	0.3	0.3	0.3	0.5	2.2	3.0	2.5	2.3	2.2	1.7	1.6	1.6	2.2	2.9	4.8	1.9	1.7	1.2	2.0	1.5
18	1.5	1.0	2.4	3.2	2.6	2.5	2.2	1.7	2.1	1.8	3.9	3.5	3.6	2.7	3.1	2.6	3.8	2.6	2.0	1.6	1.4	2.4	3.5	3.9
19	3.1	2.6	4.4	5.0	4.6	4.1	3.8	3.9	4.1	3.1	4.1	5.4	4.2	3.3	4.3	4.0	1.4	1.7	1.1	0.6	2.1	2.3	2.8	3.8
20	3.4	3.4	3.4	3.5	3.1	3.7	3.6	3.5	2.6	3.1	3.3	4.0	3.5	3.8	4.0	4.6	4.2	3.9	2.7	2.5	2.0	1.9	1.3	1.0
21	1.4	0.7	1.5	1.8	8.0	0.2	0.4	1.0	1.3	1.1	1.4	1.0	1.6	2.9	1.9	2.8	1.6	2.9	1.8	2.2	0.9	0.4	0.6	0.7
22	0.6	1.0	1.1	0.7	0.9	1.0	0.5	0.6	0.5	0.9	1.4	1.9	1.6	1.8	1.6	2.5	2.5	2.4	1.2	1.4	1.6	1.5	1.7	1.7
23	1.6	1.1	1.1	1.0	0.4	2.2	2.2	1.1	1.6	2.4	2.3	1.8	1.1	1.1	1.4	1.6	0.9	0.9	8.0	8.0	0.7	8.0	8.0	0.3
24	0.6	0.1	0.2	0.4	0.4	0.2	0.6	0.5	1.7	1.1	1.0	1.4	1.3	1.5	1.7	2.0	1.5	1.0	0.9	0.9	0.9	0.1	1.4	1.1
25	1.0	0.7	1.1	0.6	0.3	0.6	1.4	2.5	3.8	3.7	3.6	3.7	3.3	2.6	3.4	2.9	3.0	2.9	2.6	7.7	5.1	3.3	1.6	0.4
26	0.4	8.0	2.3	2.1	1.9	1.8	0.7	0.4	0.9	1.5	2.4	3.7	2.9	2.1	2.6	2.2	2.0	1.8	1.8	1.2	1.0	1.7	1.5	0.3
27	0.2	1.2	0.2	0.8	0.7	1.5	1.3	1.6	1.5	1.4	1.1	1.1	1.3	1.4	1.0	1.3	1.8	3.1	1.8	1.2	0.7	0.2	0.3	0.4
28	0.2	0.4	0.3	0.2	0.3	0.0	0.2	0.5	0.5	0.9	1.4	1.3	1.8	1.7	2.3	1.7	2.0	2.4	2.4	2.2	2.1	2.6	2.5	3.3
29	3.6	4.2	4.2	4.1	2.9	2.7	3.2	4.3	4.5	3.6	4.3	4.6	4.2	3.8	2.8	2.1	1.5	1.1	1.2	0.6	0.6	0.7	2.1	8.0
30	1.2	0.5	0.9	1.3	1.5	1.5	1.5	8.0	1.3	(C)	(C)	(C)	1.4	1.5	1.5	1.8	1.4	1.4	1.1	1.0	0.6	1.3	0.9	1.5

Notes:

- On June 30, 2023 the unit was calibrated
- (C) Equipment Calibration

TABLE 4

Average Wind Direction (degrees from North)
 AEPA Station ID 00010348-C-1
 Clean Harbors Canada, Inc.
 Monthly Ambient Air Monitoring Report
 June 2023

							Ryle	y Wind	Direction	n Data (degrees	, blowii	ng from) - Mon	th of Ju	ıne 202	3							
Day/Hour	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1	38	326	338	329	337	338	342	337	339	342	345	349	346	203	249	346	346	341	334	328	329	308	290	283
2	285	280	284	298	301	292	300	302	312	323	298	284	256	301	246	97	171	50	49	30	14	42	98	131
3	121	114	122	166	240	280	307	222	109	66	69	69	69	83	91	86	100	101	106	102	103	99	86	91
4	109	150	163	259	266	214	152	203	198	177	180	209	173	166	153	156	159	162	146	147	155	142	135	135
5	140	148	172	220	290	327	349	266	277	115	258	317	310	188	153	246	325	329	322	321	322	322	331	335
6	342	330	326	314	303	302	289	311	311	316	215	267	238	177	211	233	199	231	224	201	204	214	163	162
7	166	162	179	186	188	177	199	207	206	208	216	212	206	216	231	232	264	291	306	333	300	11	31	73
8	132	176	266	320	316	155	65	69	70	77	71	80	75	81	81	78	74	80	106	102	90	96	98	102
9	104	106	107	120	121	124	135	141	144	153	138	136	135	132	130	123	128	126	124	126	124	126	133	133
10	134	143	149	155	154	151	162	156	157	161	162	157	158	157	156	163	158	170	155	153	143	141	149	166
11	175	163	148	162	148	170	175	179	250	332	333	305	310	306	313	310	320	324	326	321	322	314	310	299
12	295	299	303	306	301	297	293	305	256	87	72	126	75	189	194	202	145	84	82	54	69	100	110	126
13	139	148	145	157	156	154	227	195	155	135	142	141	137	145	149	134	116	111	105	110	120	277	326	338
14	334	318	303	309	326	322	319	320	323	330	320	318	320	328	335	329	281	323	335	341	341	347	329	238
15	215	268	349	348	345	335	334	330	331	326	328	324	327	321	318	325	329	328	316	248	257	235	163	185
16	200	213	203	195	205	194	202	200	200	196	195	201	196	202	215	209	210	237	314	175	172	268	274	268
17	281	275	270	247	245	248	266	249	295	321	325	310	301	286	119	82	94	45	279	341	100	157	117	100
18	110	88	109	96	85	85	76	86	68	74	88	75	76	75	79	81	93	47	42	52	49	26	26	43
19	50	90	186	178	165	152	146	144	137	148	165	155	148	149	147	164	191	305	291	263	187	186	321	337
20	340	340	328	322	324	333	341	348	299	336	345	342	343	343	345	342	343	346	347	332	330	298	317	296
21	295	274	290	319	295	273	251	234	239	244	244	252	281	310	298	312	264	321	303	311	295	208	230	239
22	237	234	232	231	231	232	236	240	253	245	238	231	247	260	238	208	200	192	213	199	180	180	175	169
23	163	185	263	159	140	138	159	93	103	124	128	169	187	208	263	248	234	253	232	235	217	200	186	178
24	172	191	221	197	209	255	204	239	313	281	273	223	232	235	234	231	253	248	254	281	315	289	177	208
25	206	217	267	256	256	274	280	289	318	325	324	334	304	300	320	321	317	322	312	166	195	183	190	234
26	189	174	147	164	175	199	236	249	245	230	207	194	203	219	215	223	193	223	215	221	201	203	220	236
27	249	292	260	284	292	300	322	329	297	308	150	268	203	289	262	275	308	260	25	43	47	120	291	283
28	274	273	287	284	134	142	196	219	274	110	124	116	128	132	109	128	159	159	158	187	166	152	159	163
29	161	171	168	175	164	169	165	165	170	180	177	183	186	184	188	190	234	222	282	315	339	315	320	171
30	317	159	226	296	296	326	274	322	271	331	170	197	(C)	(C)	(C)	279	280	103	28	56	36	84	99	104

Notes:

- On June 30, 2023 the unit was calibrated
- (C) Equipment Calibration

TABLE 5

Average Wind Direction (degrees from North) AEPA Station ID 00010348-C-2 Clean Harbors Canada, Inc. Monthly Ambient Air Monitoring Report June 2023

							Ryle	/ Wind	Direction	n Data (degrees	, blowir	g from) - Mon	th of Ju	ıne 202	23							
Day/Hour	1 (X)																							
1	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
2	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
3	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
4	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
5	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
6	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
7	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
8	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
9	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
10	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
11	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
12	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
13	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
14	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
15	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
16	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
17	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
18	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
19	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
20	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
21	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
22	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
23	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
24	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
25	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
26 27	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
28	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
29 30	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)
30	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)	(X)

Notes:

- (X) - Equipment Malfunction

TABLE 6

Most Frequent Wind Direction (degrees from North)
AEPA Station ID 00010348-C-3
Clean Harbors Canada, Inc.
Monthly Ambient Air Monitoring Report
June 2023

							Ryle	y Wind	Directio	n Data	degree	s, blowi	ng from) - Mon	th of Ju	ıne 202	:3							
Day/Hour	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1	83	321	330	319	329	331	306	326	328	331	333	341	334	260	284	331	332	331	328	322	320	303	291	284
2	288	284	286	293	301	289	297	308	301	283	278	258	241	248	275	166	143	70	51	25	58	45	119	134
3	108	106	101	215	282	291	305	205	175	85	49	57	82	91	106	95	107	105	109	109	104	103	92	94
4	116	169	254	296	276	175	135	207	206	191	204	180	154	172	160	148	153	152	136	141	145	134	133	133
5	136	137	182	215	263	322	340	274	261	130	264	249	293	227	240	217	282	322	319	312	318	317	322	327
6	330	324	317	304	298	303	276	316	307	300	224	281	163	231	261	252	194	243	224	197	201	206	146	154
7	155	154	155	164	160	173	199	214	212	211	222	202	213	206	231	238	258	300	311	314	246	92	49	98
8	112	192	293	331	250	108	152	71	62	68	70	78	82	88	75	67	59	81	103	104	97	97	99	100
9	100	102	106	110	113	115	130	135	137	141	133	137	131	127	124	127	128	122	126	124	123	128	134	135
10	134	136	141	145	144	142	151	147	149	150	150	147	148	149	152	154	159	160	148	141	138	133	140	156
11	161	155	152	155	156	171	163	170	263	318	325	287	297	319	324	324	320	323	321	322	316	309	300	291
12	278	296	300	298	297	292	293	309	280	132	83	117	152	186	187	214	136	213	153	107	72	101	109	120
13	132	137	139	142	142	145	230	176	137	127	136	132	131	138	139	128	115	112	108	112	116	298	319	330
14	325	301	301	302	318	311	313	311	319	322	316	312	317	321	324	309	286	316	325	325	328	333	344	288
15	288	261	335	335	330	324	323	319	322	320	320	317	319	312	312	322	325	328	322	263	204	186	154	178
16	167	199	175	194	205	201	212	200	200	196	203	204	197	210	218	211	212	252	324	272	296	327	243	291
17	270	267	256	287	245	245	245	252	312	308	305	306	298	232	163	68	85	45	315	322	75	158	119	92
18	110	74	107	96	95	83	80	71	61	60	94	81	87	79	86	91	84	33	28	38	31	21	21	35
19	40	99	181	163	151	141	137	134	132	140	161	148	141	138	139	153	254	313	287	277	288	258	339	328
20	330	328	317	313	314	325	330	331	322	333	332	328	331	330	332	329	331	335	339	323	314	297	289	296
21	292	280	293	313	279	236	205	243	229	246	225	253	296	304	294	301	259	317	308	311	275	267	251	249
22	259	247	245	246	253	248	238	252	262	261	251	246	250	244	239	205	181	176	226	174	158	157	159	152
23	150	180	236	138	176	126	144	86	96	118	121	157	216	212	224	226	230	266	242	242	192	173	167	157
24	155	264	225	200	216	244	186	264	313	198	169	195	208	234	219	231	245	257	256	282	311	229	181	182
25	201	232	285	236	280	293	289	295	312	318	322	324	328	276	330	331	304	321	312	156	202	167	164	227
26	180	140	133	150	158	197	233	251	255	229	203	191	195	222	213	211	211	216	216	214	208	211	230	272
27	203	278	257	292	285	297	326	312	308	309	216	227	161	272	257	268	303	222	59	35	33	217	284	277
28	284	295	292	286	140	231	249	233	272	83	92	96	132	125	109	102	140	145	165	170	149	140	143	145
29	152	153	154	153	151	155	153	153	154	165	161	168	175	170	198	183	211	242	293	325	275	303	299	219
30	312	150	252	291	294	277	309	295	286	(C)	(C)	(C)	267	255	244	295	281	184	67	67	73	88	108	96

Notes:

- On June 30, 2023 the unit was calibrated
- (C) Equipment Calibration

TABLE 7

Wind Frequency Distribution
AEPA Station ID 00010348-C-1
Clean Harbors Canada, Inc.
Monthly Ambient Air Monitoring Report

June 2023

			Frequenc	y Distribution	Report: Ryle	y, Alberta - Ju	ne 2023			
			Wind Spe	eed (m/s) and	Number of Oc	curences (min	utes)			Total Occurrences
Direction	Angle	< 0.5	0.5 to < 2.1	2.1 to < 3.6	3.6 to < 5.7	5.7 to < 8.8	8.8 to < 11.1	>= 11.1	%	by Direction
North	> 337.5 - 22.5	107	976	964	1461	1897	483	139	14.0%	6027
Northeast	> 22.5 - 67.5	82	559	655	623	303	41	2	5.2%	2265
East	> 67.5 - 112.5	71	477	1091	1239	852	151	20	9.0%	3901
Southeast	> 112.5 - 157.5	80	835	1703	1950	1393	237	76	14.5%	6274
South	> 157.5 - 202.5	115	1539	2082	1664	897	133	28	14.9%	6458
Southwest	> 202.5 - 247.5	99	879	1499	1611	316	6	0	10.2%	4410
West	> 247.5 - 292.5	72	967	1710	1081	71	16	7	9.1%	3924
Northwest	> 292.5 - 337.5	112	1183	2798	2281	2128	810	538	22.8%	9850
Missing/Inv	valid Hours								0.2%	91
Total Occurer	ices by Speed	738	7415	12502	11910	7857	1877	810		43200
Occuren	ces by %	1.7%	17.2%	28.9%	27.6%	18.2%	4.3%	1.9%	100.00%	

TABLE 8

Wind Frequency Distribution AEPA Station ID 00010348-C-2 Clean Harbors Canada, Inc. Monthly Ambient Air Monitoring Report June 2023

Frequency Distribution Report: Ryley, Alberta - June 2023										
			Wind Sp	eed (m/s) and		Total Occurrences				
Direction	Angle	< 0.5	0.5 to < 2.1	2.1 to < 3.6	3.6 to < 5.7	5.7 to < 8.8	8.8 to < 11.1	>= 11.1	%	by Direction
			- -	-	-	-	-			
North	> 337.5 - 22.5	0	0	0	0	0	0	0	0.0%	0
Northeast	> 22.5 - 67.5	0	0	0	0	0	0	0	0.0%	0
East	> 67.5 - 112.5	0	0	0	0	0	0	0	0.0%	0
Southeast	> 112.5 - 157.5	0	0	0	0	0	0	0	0.0%	0
South	> 157.5 - 202.5	0	0	0	0	0	0	0	0.0%	0
Southwest	> 202.5 - 247.5	0	0	0	0	0	0	0	0.0%	0
West	> 247.5 - 292.5	0	0	0	0	0	0	0	0.0%	0
Northwest	> 292.5 - 337.5	0	0	0	0	0	0	0	0.0%	0
Missing/Inv	Missing/Invalid Hours					100%	43200			
Total Occurer	nces by Speed	0	0	0	0	0	0	0		43200
Occuren	ces by %	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	100.00%	

TABLE 9

Wind Frequency Distribution AEPA Station ID 00010348-C-3 Clean Harbors Canada, Inc. Monthly Ambient Air Monitoring Report June 2023

Frequency Distribution Report: Ryley, Alberta - June 2023										
			Wind Spe	eed (m/s) and			Total Occurrences			
Direction	Angle	< 0.5	0.5 to < 2.1	2.1 to < 3.6	3.6 to < 5.7	5.7 to < 8.8	8.8 to < 11.1	>= 11.1	%	by Direction
North	> 337.5 - 22.5	567	2027	1043	387	38	0	0	9.4%	4062
Northeast	> 22.5 - 67.5	311	1236	489	142	9	0	0	5.1%	2187
East	> 67.5 - 112.5	230	1636	1180	639	188	14	2	9.0%	3889
Southeast	> 112.5 - 157.5	356	1897	2688	2535	1144	153	26	20.4%	8799
South	> 157.5 - 202.5	283	1299	1088	816	285	25	1	8.8%	3797
Southwest	> 202.5 - 247.5	674	1736	871	445	88	1	0	8.8%	3815
West	> 247.5 - 292.5	1278	2513	242	36	9	0	0	9.4%	4078
Northwest	> 292.5 - 337.5	770	3944	3772	2837	1015	97	10	28.8%	12445
Missing/Inv	Missing/Invalid Hours						0.3%	128		
Total Occuren	ices by Speed	4469	16288	11373	7837	2776	290	39		43200
Occurent	ces by %	10.3%	37.7%	26.3%	18.1%	6.4%	0.7%	0.1%	100.00%	

TABLE 10

Total Suspended Particulate (TSP) Matter Results AEPA Station ID 00010348-I-2 Clean Harbors Canada, Inc. Monthly Ambient Air Monitoring Report June 2023

Filter ID	HV-23-02-05
Test ID	Facility Test # 103
Sample Start Date/Time	23/06/01 13:00:00
Sample End Date/Time	23/07/01 13:00:00
Sampling Time (hours)	32.13
Flow Rate (m³/min)	1.304
Volume (m³)	2514.1
TSP Mass (mg)	150
TSP Concentration (ug/m³)	59.663
Sampler Name	TE-5170V / P8580 TSP VFC

TABLE 11

Total Suspended Particulate (TSP) Matter Results AEPA Station ID 00010348-I-3 Clean Harbors Canada, Inc. Monthly Ambient Air Monitoring Report June 2023

Filter ID	HV-23-02-06
Test ID	School Test # 103
Sample Start Date/Time	23/06/01 13:00:00
Sample End Date/Time	23/07/01 13:00:00
Sampling Time (hours)	28.02
Flow Rate (m³/min)	1.295
Volume (m³)	2176.9
TSP Mass (mg)	248
TSP Concentration (ug/m³)	113.923
Sampler Name	TE-5170V / P8581 TSP VFC

TABLE 12

Total Suspended Particulate (TSP) Matter Results AEPA Station ID 00010348-I-1 Clean Harbors Canada, Inc. Monthly Ambient Air Monitoring Report June 2023

Filter ID	HVF-23-03-05	HVF-23-03-13	HVF-23-03-19	HVF-23-03-20	HVF-23-03-17
Test ID	845	846	847	848	849
Sample Start Date/Time	23/06/05 00:00:00	23/06/11 00:00:00	23/06/17 00:00:00	23/06/23 00:00:00	23/06/29 00:00:00
Sample End Date/Time	23/06/06 00:00:00	23/06/12 00:00:00	23/06/18 00:00:00	23/06/24 00:00:00	23/06/30 00:00:00
Sampling Time (hours)	23.86	23.9	24.04	24.03	24.49
Flow Rate (m³/min)	1.227	1.227	1.227	1.227	1.227
Volume (m³)	1756.60	1759.50	1769.82	1769.09	1803.00
TSP Mass (mg)	151	121	87.0	76.6	107
TSP Concentration (ug/m³)	85.962	68.770	49.157	43.299	59.346
Sampler Name	TE-5170V / P11162 TSP VFC	TE-5170V / P11162 TSP VFC		TE-5170V / P11162 TSP VFC	TE-5170V / P11162 TSP VFC

TABLE 13

Particulate Matter PM₁₀ Results AEPA Station ID 00010348-I-1 Clean Harbors Canada, Inc. Monthly Ambient Air Monitoring Report June 2023

Filter ID	C9700087	C1170495	C1170492	C1170496	C1170491
Test ID	845	846	847	848	849
Sample Start Date/Time	23/06/05 00:00:00	23/06/11 00:00:00	23/06/17 00:00:00	23/06/23 00:00:00	23/06/29 00:00:00
Sample End Date/Time	23/06/06 00:00:00	23/06/12 00:00:00	23/06/18 00:00:00	23/06/24 00:00:00	23/06/30 00:00:00
Sampling Time (hours)	24	24	24	24	24
Flow Rate (I/min)	16.7	16.7	16.7	16.7	16.7
Volume (m³)	22.5	22.3	22.7	22.6	22.2
PM ₁₀ Mass (mg)	0.776	0.995	0.275	0.473	0.705
PM ₁₀ Concentration (ug/m ³)	34.489	44.619	12.115	20.929	31.757
Sampler Name			2000 FRM-AE / 200FB209860905	2000 FRM-AE / 200FB209860905	2000 FRM-AE / 200FB209860905

TABLE 14 **VOC and TNMOC Analytical Results**

AEPA Station ID 00010348-I-1 Clean Harbors Canada, Inc. **Monthly Ambient Air Monitoring Report** June 2023

Parameter	Units	Date Sample ID AAAQO ⁽¹⁾	5-Jun-23 845	11-Jun-23 846	17-Jun-23 847	23-Jun-23 848	29-Jun-23 849
		·					
Total Non-Methane Organic Carbon	ppmv	-	< 0.08	< 0.09	< 0.09	< 0.09	< 0.10
1,2,3-Trimethylbenzene	ppbv	-	< 0.08	< 0.09	< 0.09	< 0.09	0.12
1,2,4-Trimethylbenzene	ppbv	-	< 0.05	< 0.05	0.07	< 0.05	2.54
1,3,5-Trimethylbenzene	ppbv	-	< 0.05	< 0.05	< 0.05	< 0.05	1.09
1-Butene/Isobutylene	ppbv	-	< 0.10	< 0.10	< 0.10	< 0.11	< 0.12
1-Hexene/2-Methyl-1-pentene	ppbv	-	< 0.11	< 0.12	< 0.12	< 0.12	< 0.14
1-Pentene	ppbv	-	< 0.05	< 0.05	< 0.05	< 0.05	< 0.06
2,2,4-Trimethylpentane	ppbv	-	< 0.03	< 0.03	< 0.03	< 0.04	< 0.04
2,2-Dimethylbutane	ppbv	-	< 0.03	< 0.03	< 0.03	< 0.04	< 0.04
2,3,4-Trimethylpentane	ppbv	-	< 0.03	0.06	< 0.03	< 0.04	< 0.04
2,3-Dimethylbutane	ppbv	-	< 0.14	< 0.15	< 0.16	< 0.16	< 0.18
2,3-Dimethylpentane	ppbv	-	< 0.03	< 0.03	< 0.03	< 0.04	< 0.04
2,4-Dimethylpentane	ppbv	-	< 0.05	< 0.05	< 0.05	< 0.05	< 0.06
2-Methylheptane	ppbv	-	< 0.03	< 0.03	< 0.03	< 0.04	0.05
2-Methylhexane	ppbv	-	< 0.05	< 0.05	< 0.05	< 0.05	< 0.06
2-Methylpentane	ppbv	-	0.13	0.17	< 0.03	< 0.04	0.21
3-Methylheptane	ppbv	-	< 0.05	< 0.05	< 0.05	< 0.05	< 0.06
3-Methylhexane	ppbv	-	0.06	0.06	< 0.03	< 0.04	0.06
3-Methylpentane	ppbv	-	0.05	0.06	< 0.03	0.05	0.07
Benzene	ppbv	-	0.06	0.22	< 0.05	< 0.05	0.08
cis-2-Butene	ppbv	-	< 0.05	< 0.05	< 0.05	< 0.05	< 0.06
cis-2-Pentene	ppbv	-	< 0.03	< 0.03	< 0.03	< 0.04	< 0.04
Cyclohexane	ppbv	-	0.07	0.07	< 0.07	< 0.07	< 0.08
Cyclopentane	ppbv	-	< 0.03	< 0.03	0.04	< 0.04	< 0.04
Ethylbenzene	ppbv	-	< 0.05	< 0.05	< 0.05	< 0.05	0.38
Isobutane	ppbv	-	0.47	0.25	3.41	0.63	0.30
Isopentane	ppbv	-	0.39	0.51	0.23	0.41	0.60
Isoprene	ppbv	-	0.09	0.32	80.0	80.0	0.30
Isopropylbenzene	ppbv	-	< 0.06	< 0.07	< 0.07	< 0.07	< 0.08
m,p-Xylene	ppbv	161	0.20	0.17	0.31	0.09	1.37
m-Diethylbenzene	ppbv	-	< 0.03	< 0.03	< 0.03	< 0.04	< 0.04
m-Ethyltoluene	ppbv	-	< 0.05	< 0.05	< 0.05	< 0.05	0.14
Methylcyclohexane	ppbv	-	80.0	0.15	0.06	< 0.04	0.12
Methylcyclopentane	ppbv	-	< 0.08	0.09	< 0.09	< 0.09	< 0.10
n-Butane	ppbv	-	0.25	0.60	0.59	0.75	0.88
n-Decane	ppbv	-	< 0.10	< 0.10	< 0.10	< 0.11	0.14
n-Dodecane	ppbv	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0.6
n-Heptane	ppbv	-	< 0.06	0.11	0.08	< 0.07	0.13
n-Hexane	ppbv	1990	0.23	0.15	0.06	0.24	0.16
n-Nonane	ppbv	-	< 0.06	0.09	< 0.07	< 0.07	< 0.08
n-Octane	ppbv	-	0.04	0.09	< 0.03	< 0.04	0.07
n-Pentane	ppbv	-	0.29	0.38	0.14	0.20	0.32
n-Propylbenzene	ppbv	-	< 0.10	< 0.10	< 0.10	< 0.11	< 0.12
n-Undecane	ppbv	-	< 0.8	< 0.9	< 0.9	< 0.9	< 1.0
o-Ethyltoluene	ppbv	-	< 0.03	< 0.03	< 0.03	< 0.04	0.08
o-Xylene	ppbv	161	< 0.05	< 0.05	0.07	< 0.05	0.43
p-Diethylbenzene	ppbv	-	< 0.03	0.05	< 0.03	< 0.04	< 0.04
p-Ethyltoluene	ppbv	-	< 0.06	< 0.07	< 0.07	< 0.07	0.09
Styrene	ppbv	-	< 0.06	< 0.07	0.07	< 0.07	0.12
Toluene	ppbv	106	0.38	0.16	0.20	0.11	0.56
trans-2-Butene	ppbv	-	< 0.05	< 0.05	< 0.05	< 0.05	< 0.06
trans-2-Pentene	ppbv	-	< 0.03	< 0.03	< 0.03	< 0.04	< 0.04
Total VOCs (2)	ppbv	-	5.980	6.850	8.770	6.370	13.630
	-						

Notes:

- (1) Alberta Ambient Air Quality Objectives for a 24 hour averaging period.(2) Total VOCs are calculated under the assumption that values under the detection limit are equal to the detection limit, as per the AMD.

TABLE 15

TSP Metals Analytical Results AEPA Station ID 00010348-I-2 Clean Harbors Canada, Inc. Monthly Ambient Air Monitoring Report June 2023

	Dat	e 1	-Jul-23	
	Sample I	D HV-	-23-02-05	
Parameter	Lab Res	sults ⁽¹⁾	(ug/m ³) ⁽²⁾	AAAQO ⁽²⁾ (ug/m ³)
Antimony	218	ng/Filter	2.29E-04	-
Arsenic	1290	ng/Filter	1.36E-03	0.10
Barium	850000	ng/Filter	8.93E-01	-
Beryllium	25.4	ng/Filter	2.67E-05	-
Boron	9750000	ng/Filter	1.02E+01	-
Cadmium	661	ng/Filter	6.95E-04	-
Chromium	5330	ng/Filter	5.60E-03	1.0
Cobalt	908	ng/Filter	9.54E-04	-
Copper	119000	ng/Filter	1.25E-01	-
Iron	2160000	ng/Filter	2.27E+00	-
Lead	7710	ng/Filter	8.10E-03	1.5
Manganese	68200	ng/Filter	7.17E-02	-
Mercury	13.4	ng/Filter	1.41E-05	-
Nickel	6970	ng/Filter	7.32E-03	6
Selenium	1060	ng/Filter	1.11E-03	-
Silver	87.9	ng/Filter	9.24E-05	-
Thallium	28.9	ng/Filter	3.04E-05	-
Tin	1170	ng/Filter	1.23E-03	-
Uranium	104	ng/Filter	1.09E-04	-
Vanadium	6300	ng/Filter	6.62E-03	-
Zinc	809000	ng/Filter	8.50E-01	-
Sampling Time (hours)	32.13			
Flow Rate (m3/min)	1.304			
Volume Sampled (m³)	2514.10			

Notes:

⁽¹⁾ These results are from a 32.13 hour averaging period that took place on June 1 to July 1, 2023

⁽²⁾ Measured data have been converted from the measured 32.13 hour avering period to a 1 hour averaging period based on Alberta's Air Quality Model Guideline Section 7.1.2.

TABLE 16

TSP Metals Analytical Results AEPA Station ID 00010348-I-3 Clean Harbors Canada, Inc. Monthly Ambient Air Monitoring Report June 2023

	Dat	e 1-	Jul-23	
	Sample II	D HV-2	23-02-06	
Parameter	Lab Res	sults ⁽¹⁾	(ug/m³) ⁽²⁾	AAAQO ⁽²⁾ (ug/m ³)
Antimony	334	ng/Filter	3.90E-04	_
Arsenic	4780	ng/Filter	5.58E-03	0.10
Barium	< 300	ng/Filter	3.50E-04	-
Beryllium	5.20	ng/Filter	6.07E-06	_
Boron	< 600	ng/Filter	7.01E-04	_
Cadmium	619	ng/Filter	7.23E-04	_
Chromium	4410	ng/Filter	5.15E-03	1.0
Cobalt	783	ng/Filter	9.15E-04	-
Copper	245000	ng/Filter	2.86E-01	-
Iron	1920000	ng/Filter	2.24E+00	-
Lead	6000	ng/Filter	7.01E-03	1.5
Manganese	68700	ng/Filter	8.02E-02	-
Mercury	18.4	ng/Filter	2.15E-05	-
Nickel	6840	ng/Filter	7.99E-03	6
Selenium	1690	ng/Filter	1.97E-03	-
Silver	126	ng/Filter	1.47E-04	-
Thallium	< 0.20	ng/Filter	2.34E-07	-
Tin	212	ng/Filter	2.48E-04	-
Uranium	< 0.200	ng/Filter	2.34E-07	-
Vanadium	3860	ng/Filter	4.51E-03	-
Zinc	< 1000	ng/Filter	1.17E-03	-
Sampling Time (hours)	28.02			
Flow Rate (m3/min)	1.295			
Volume Sampled (m³)	2176.90			

Notes:

⁽¹⁾ These results are from a 28.02 hour averaging period that took place on June 1 to July 1, 2023

⁽²⁾ Measured data have been converted from the measured 28.02 hour avering period to a 1 hour averaging period based on Alberta's Air Quality Model Guideline Section 7.1.2.

TABLE 17

TSP Metals Analytical Results EPA Station ID 00010348-I-1 Clean Harbors Canada, Inc. Monthly Ambient Air Monitoring Report June 2023

	Date Sample II		Jun-23 845	Date Sample ID		1-Jun-23 846	Date Sample II		29-Jun-23 849	
Parameter	Lab Res		(ug/m³) ⁽³⁾	•	esults ⁽¹⁾	(ug/m³) ⁽³⁾	•	sults ⁽¹⁾	(ug/m³) ⁽³⁾	AAAQO ⁽³⁾ (ug/m ³)
Antimony	320	ng/Filter	4.43E-04	347	ng/Filter	4.80E-04	343	ng/Filte	r 4.66E-04	-
Arsenic	7010	ng/Filter	9.70E-03	7210	ng/Filter	9.97E-03	5300	ng/Filte	r 7.20E-03	0.10
Barium	< 300	ng/Filter	4.15E-04	1810000	ng/Filter	2.50E+00	< 300	ng/Filte	r 4.07E-04	-
Beryllium	14.9	ng/Filter	2.06E-05	43.5	ng/Filter	6.01E-05	< 0.60	ng/Filte	r 8.15E-07	-
Boron	6320000	ng/Filter	8.75E+00	12700000	ng/Filter	1.76E+01	1540000	ng/Filte	r 2.09E+00	-
Cadmium	270	ng/Filter	3.74E-04	458	ng/Filter	6.33E-04	143	ng/Filte	r 1.94E-04	-
Chromium	9690	ng/Filter	1.34E-02	7390	ng/Filter	1.02E-02	4270	ng/Filte		1.0
Cobalt	1560	ng/Filter	2.16E-03	740	ng/Filter	1.02E-03	901	ng/Filte	r 1.22E-03	-
Copper	273000	ng/Filter	3.78E-01	432000	ng/Filter	5.97E-01	492000	ng/Filte	r 6.68E-01	-
Iron	3130000	ng/Filter	4.33E+00	1530000	ng/Filter	2.11E+00	2200000	ng/Filte	r 2.99E+00	-
Lead	18500	ng/Filter	2.56E-02	11500	ng/Filter	1.59E-02	6260	ng/Filte	r 8.50E-03	1.5
Manganese	110000	ng/Filter	1.52E-01	67700	ng/Filter	9.36E-02	73900	ng/Filte	r 1.00E-01	-
Mercury	28.7	ng/Filter	3.97E-05	72.5	ng/Filter	1.00E-04	6.99	ng/Filte	r 9.49E-06	-
Nickel	12800	ng/Filter	1.77E-02	82900	ng/Filter	1.15E-01	3570	ng/Filte	r 4.85E-03	6
Selenium	1990	ng/Filter	2.75E-03	2080	ng/Filter	2.87E-03	1710	ng/Filte	r 2.32E-03	-
Silver	204	ng/Filter	2.82E-04	279	ng/Filter	3.86E-04	268	ng/Filte	r 3.64E-04	-
Thallium	< 0.20	ng/Filter	2.77E-07	< 0.20	ng/Filter	2.76E-07	< 0.20	ng/Filte	r 2.72E-07	-
Tin	175	ng/Filter	2.42E-04	292	ng/Filter	4.04E-04	146	ng/Filte	r 1.98E-04	-
Uranium	< 0.200	ng/Filter	2.77E-07	< 0.200	ng/Filter	2.76E-07	< 0.200	ng/Filte	r 2.72E-07	-
Vanadium	12700	ng/Filter	1.76E-02	6300	ng/Filter	8.71E-03	4400	ng/Filte	r 5.98E-03	-
Zinc	< 1000	ng/Filter	1.38E-03	1660000	ng/Filter	2.29E+00	< 1000	ng/Filte	r 1.36E-03	-
Sampling Time (hours)	23.86			23.9			24.49			
Flow Rate (I/min)	1.227			1.227			1.227			
Volume Sampled (m³)	1756.60			1759.50			1803.00			

Notes:

⁽¹⁾ These results are from an approximately 24 hour averaging period that took place on June 5, June 11, and June 29, 2023.

⁽²⁾ Measured data have been converted from the measured approximately 24 hour avering period to a 1 hour averaging period based on Alberta's Air Quality Model Guideline Section 7.1.2.

TABLE 18

PM10 Metals Analytical Results EPA Station ID 00010348-I-1 Clean Harbors Canada, Inc. Monthly Ambient Air Monitoring Report June 2023

	Da	te 5-	Jun-23	Dat	te 11	-Jun-23	Dat	te 2	9-Jun-23	
	Sample	ID	845	Sample I	D	846	Sample I	D	849	
Parameter	Lab Re	esults ⁽¹⁾	(ug/m³) ⁽²⁾	Lab Re	esults ⁽¹⁾	(ug/m³) ⁽²⁾	Lab R	esults ⁽¹⁾	(ug/m³) ⁽²⁾	AAAQO ⁽²⁾ (ug/m ³)
Antimony	2.72	ng/Filter	2.94E-04	2.53	ng/Filter	2.76E-04	3.64	ng/Filter	3.92E-04	-
Arsenic	16.0	ng/Filter	1.73E-03	13.3	ng/Filter	1.45E-03	7.69	ng/Filter	8.28E-04	0.10
Barium	372	ng/Filter	4.03E-02	197	ng/Filter	2.15E-02	275	ng/Filter	2.96E-02	-
Beryllium	0.74	ng/Filter	8.01E-05	0.39	ng/Filter	4.26E-05	0.34	ng/Filter	3.66E-05	-
Boron	149	ng/Filter	1.61E-02	342	ng/Filter	3.73E-02	210	ng/Filter	2.26E-02	-
Cadmium	1.57	ng/Filter	1.70E-04	3.44	ng/Filter	3.76E-04	0.56	ng/Filter	6.03E-05	-
Chromium	109	ng/Filter	1.18E-02	38	ng/Filter	4.15E-03	5	ng/Filter	5.39E-04	1.0
Cobalt	9.38	ng/Filter	1.02E-03	4.95	ng/Filter	5.40E-04	4.17	ng/Filter	4.49E-04	-
Copper	155	ng/Filter	1.68E-02	187	ng/Filter	2.04E-02	348	ng/Filter	3.75E-02	-
Iron	22100	ng/Filter	2.39E+00	12100	ng/Filter	1.32E+00	17800	ng/Filter	1.92E+00	-
Lead	88.5	ng/Filter	9.58E-03	45.0	ng/Filter	4.91E-03	6.39	ng/Filter	6.88E-04	1.5
Manganese	743	ng/Filter	8.04E-02	453	ng/Filter	4.95E-02	531	ng/Filter	5.72E-02	-
Mercury	0.37	ng/Filter	4.00E-05	0.86	ng/Filter	9.39E-05	0.30	ng/Filter	3.23E-05	-
Nickel	98.0	ng/Filter	1.06E-02	803	ng/Filter	8.77E-02	4.8	ng/Filter	5.17E-04	6
Selenium	21.4	ng/Filter	2.32E-03	25.0	ng/Filter	2.73E-03	14.1	ng/Filter	1.52E-03	-
Silver	0.49	ng/Filter	5.30E-05	0.70	ng/Filter	7.64E-05	0.33	ng/Filter	3.56E-05	-
Thallium	0.36	ng/Filter	3.90E-05	0.33	ng/Filter	3.60E-05	0.31	ng/Filter	3.34E-05	-
Tin	2.82	ng/Filter	3.05E-04	2.81	ng/Filter	3.07E-04	0.04	ng/Filter	4.31E-06	-
Uranium	1.18	ng/Filter	1.28E-04	0.746	ng/Filter	8.15E-05	0.395	ng/Filter	4.26E-05	-
Vanadium	95.3	ng/Filter	1.03E-02	62.8	ng/Filter	6.86E-03	7.13	ng/Filter	7.68E-04	-
Zinc	872	ng/Filter	9.44E-02	746	ng/Filter	8.15E-02	134	ng/Filter	1.44E-02	-
Sampling Time (hours)	24			24			24			
Flow Rate (I/min)	16.7			16.7			16.7			
Volume Sampled (m ³)	22.50			22.30			22.6			

Notes:

⁽¹⁾ These results are from an approximately 24 hour averaging period that took place on June 5, June 11, and June 29, 2023.

⁽²⁾ Measured data have been converted from the measured approximately 24 hour avering period to a 1 hour averaging period based on Alberta's Air Quality Model Guideline Section 7.1.2.

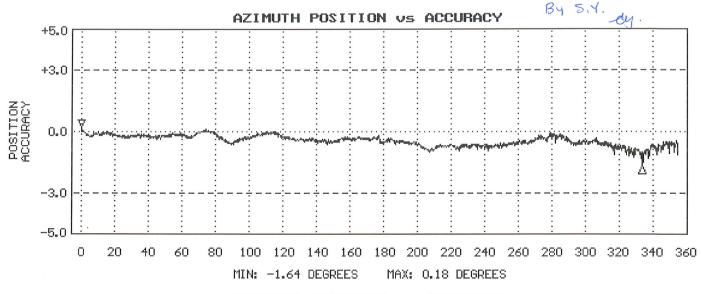
Appendix A Meteorological Station Calibration Report

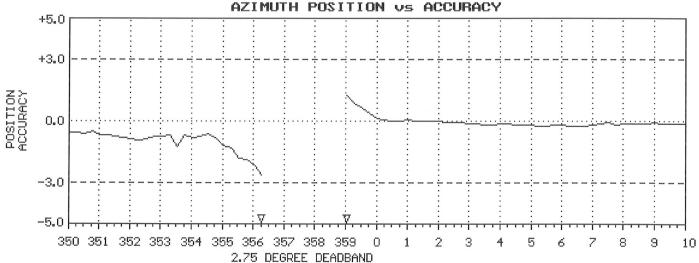
R. M. YOUNG COMPANY WIND SENSOR CALIBRATION CERTIFICATE

SENSOR: 05305-10A WIND MONITOR-AQ

SENSOR SERIAL NUMBER: WM149768

BEARINGS: SHIELDED/OIL LUBE


DATE: AUG 3 2016


WIND SPEED THRESHOLD TEST: PASS LOW WIND SPEED AMPLITUDE/FREQUENCY TEST: PASS HIGH WIND SPEED AMPLITUDE/FREQUENCY TEST: PASS

VANE TORQUE TEST: PASS

SPECIAL NOTES: SPECIAL NOTES:

Insp. By
Installed Nov. 8/16

NOTE: Azimuth Position vs Accuracy graphs are accurate to within 0.5 degrees. The accuracy shown in the potentiometer deadband region between 355 and 0 degrees is the result of no resistance change while position changes. The gap represents the actual deadband (open circuit).

GHD Wind Calibration Form

		Site and Instrur	ment Information		
	<u>Site</u>		<u>Win</u>	d Monitor	
Location:	Facility		Make:	RM Young	
Calibration Date:	Jun 30, 2023		Model:	05305	
Tech.:	P. Shariaty & S. Davey		Serial #:	149768	
Instrument:	Continuous Wind Monito	r	Calibration due:	Annually	
Time:	1:05 PM - 1:20 PM		Temperature:	25°C	
	re-Calibration Inspection			Y/N	
Is the wind dire	ction < +/- 10° from compas	ss observation?		N	
	Is siting aligned?			Υ	
•	propeller rotate 360° with n			Υ	
Does the	e vane rotate 360° with no t			Y	
	5. (1. (1.	Calibration	Information		
	Direction (degrees °)			Anemometer Speed	
Test Angle (°)	Recorded Angle (°)	Within +/- 5°? (Y/N)	. , ,	. , ,	Within +/- 3 (m/s)? (Y/N)
0	0	Y	26.1	26.0	Y
30	29	Y	24.6	24.5	Y
60	59	Y	23.0	22.9	Y
180	178	Y	20.5 18.9	20.4 18.9	Y
			41.0	40.8	Ϋ́
			41.0	40.0	'
	Comme	nts		Conversi	on Factors
				m/s	RPM
,	49768) was removed from	-		26.112	5100.0
	ne 30, 2023. Mechanical b	•	•	24.576	4800.0
	were cleaned of any dust	. •	•	23.040	4500.0
	ection calibration adjustme on. Other than cleaning and	•	•	20.480	4000.0
•	equired. It is recommended			18.944	3700.0
biannually and bear	ings checked and replaced ation check, wind monitor v	d (if required) at the i	next calibration	40.960	8000.0
	Calibration Adjustment	Required?: Yes			

GHD Wind Calibration Form

		Site and Instrur	nent Information		
	Site		Win	d Monitor	
Location:	Ryley School		Make:	RM Young	
Calibration Date:	Jun 30, 2023		Model:	05305	
Tech.:	P. Shariaty & S. Davey		Serial #:	183487	
Instrument:	Continuous Wind Monito	r	Calibration due:	Annually	
Time:	10:00 AM - 11:20 AM		Temperature:	22°C	
	re-Calibration Inspection			Y/N	
Is the wind dire	ction < +/- 10° from compas	ss observation?		N	
	Is siting aligned?			Υ	
	propeller rotate 360° with no			Υ	
Does the	e vane rotate 360° with no f			Y	
	5 1 (1 (1 6)	Calibration	Information		
	Direction (degrees °)			Anemometer Speed	` '
Test Angle (°)	Recorded Angle (°)	Within +/- 5°? (Y/N)	. , ,	• , ,	Within +/- 3 (m/s)? (Y/N)
0	1	Y	26.112	26.0	Y
30	29	Y	24.576	24.5	Y
330 60	332 57	Y	23.040 20.480	22.9	Y
90	86	Y	18.944	20.4 18.9	Y
0	1	\ \	40.960	40.8	Y
180	176	Y	40.000	40.0	'
260	256	Y			
	Commer	nts		Conversi	on Factors
Wind monitor (SN:1	83487) was removed from	tower, inspected an	d the calibration	m/s 26.112	RPM 5100.0
-	ne 30, 2023. Mechanical b			24.576	4800.0
inspected. Bearings	were cleaned of any dust	buildup. Alignment v	vas in good	23.040	4500.0
	ction calibration adjustme	-	-	20.480	4000.0
•	n. Other than cleaning and			18.944	3700.0
biannually and beari	equired. It is recommended ings checked and replaced libration check, the wind non.	d (if required) at the r	next calibration	40.960	8000.0
	Calibration Adjustment	Required?: Yes			

Appendix B Sampling Field Sheets

	FIELD SHEET			
PN	1 ₁₀ (Partisol Monitoring Uni	t)		
CL	EAN HARBORS CANADA IN	С		
	RYLEY, ALBERTA		1	Г
A) CENEDAL INECDMATION				
A) GENERAL INFORMATION				
Filter ID:	C9700087	+		
PO Number:	233992			
Partisol Sampler ID/Serial Number:	2000 FRM-AE / 200FB209	8609	905	
Test number :	Particulate Test 845			
Sample Date:	23/06/05		yy/mm/dd	
Shipping Date to Laboratory:	23/06/09		777	
PM10 Analysis Trigger Weight (mg):	1.13		weight which PM10 conc	. > 50 μg/m³
B) SAMPLING INFORMATION				
SAMPLE START				
Sampling Start Date:	23/06/05			
Sampling Start Time:	00:00			
Current Instrument Date:	23/05/31	_		
Current Instrument Time:	10:21	\perp		
Ambient Temperature °C:	20.9	4		
Barometric Pressure (mm Hg):	697	_		
Leak Check:	Pass		(Pass/Fail)	
Clean PM10 Inlet:	Yes	\perp	(Yes/No)	
Weather Conditions Sampling date :	Partly Cloudy			
Weather Conditions set up:	Scattered Clouds			
-				
SAMPLE RETRIEVAL	- w. I.			
Sampled by	T. Webb			
Sampling End Date:	23/06/06			
Sampling End Time:	00:00			
Current Instrument Date:	23/06/08			
Current Instrument Time: Run Status:	9:53 OK		(Ensure Run Status is OK)	
Total Sampling Time (Hours):	24		(Elisure Rull Status is OK)	
Volume Sampled (m^3):	22.5			
Average Flow Rate (L/min):	16.7 L/min			
AmbT °C:	26.8			
Barometric Pressure (mm Hg) :	703			
Sample Filter Temperature °C:	28.4			
Flow Rate Coefficient of Variation (%CV):	0			
Weather Conditions :	Partly Sunny			
Leak Check:	Pass		(Pass/Fail)	
FIELD BLANK			(Once every quarter)	
Was a field blank collected	No		(Yes/No)	
Filter ID:				
Filter Batch Number:				
Current Instrument Date:				
Current Instrument Time:		\perp		
		\perp		
C) OBSERVATIONS				
		_		
Was there significant precipitation (e.g., >1/2-inch	No			
rain) within 24 hours prior to (or during) the sampling event?	No			
Crenti		+		
		+		
Describe facility operations that may affect sampling		+		
event:				
		+		
		+		
Comments:		+		
Comments:				
		+		
<u> </u>			<u>l</u>	

Sample Identification Number:	Organic Test 845	<u>_</u>
Sample Canister Location:	Ryley Lift Station -Shed	
Sampled by	T.Webb	
Sampler Name:	Test 845	
Sample Date:	23/06/05	yy/mm/dd
Shipping Date to Laboratory:	23/06/09	
,,		
Canister Type (ie. 1 Litre/6 Litre/Other):	6L	
Canister Serial No.:	32184	
Flow Controller Serial No.:	H/L578699/A0334390-5	
B) SAMPLE SET UP		
	Set up Conditions	Sample Retrieval
Date:	23/05/31	23/06/08
Ambient Temperature °C (inside shed):	22.6	28.2
Barometric Pressure (mm Hg):	697	703
Canister Pressure Gauge Reading (- Inches Hg):	(-)27.1	(-)3
Sample Time:	24	24
C) OBSERVATIONS Was there significant precipitation (e.g., >1/2-inch rain) within 24 hours prior to (or during) the sampling event?	No	
Describe general weather conditions during sampling event:	Partly Cloudy	
Describe facility operations that may affect sampling event:	None	
Comments:		

1. SAMPLING INFORMATION

Sample ID	Test #845					
Lab Filter ID		HVF-23-03-05				
Start Sampling	6 mm	5 dd	0 hr	2023		
Stop Sampling	6 mm	6 dd	0 hr	2023	_	
Timer Initial:	_	608	3.17	_		
Timer Final:		632	2.03		_ _	
	-	23	.86		<u> </u>	
Total Sampling Time	23	hr	52	<u>min</u>	1432	
Average Flow Rate		cfm				
Actual m3/min	1.227					
Air Volume	1756.6	cubic metres				
Net TSP Weight		g				
TSP Concentration		mg/m3				
TSP Analysis Trigger Weight	87.8	mg	weight whic	h TSP conc. >	• 50 μg/m³	
3. OBSERVATIONS						
Comments:						

10-Mar-23

3. GUIDELINES

- Faceplate must be handtight.

Instrument Last Calibrated:

- Flow rate must be ±10 percent of established flow rate.
- Faceplate gasket must be in good condition.
- Rotameter must be free of foreign material.
- Rotameter operation must be stable.
- Sampler motor brushes must be changed every 400 hours of operation.
- TSP analysis triggers when concentration >0.05mg/m3

Sampler's Signature:	
Comments:	

	FIELD SHEET			
PN	1 ₁₀ (Partisol Monitoring Un	it)		
CL	EAN HARBORS CANADA IN	NC .		
	RYLEY, ALBERTA			
A) GENERAL INFORMATION				
Filter ID:	C1170495			
PO Number:	233992			
Partisol Sampler ID/Serial Number:	2000 FRM-AE / 200FB20	98609	05	
Test number :	Particulate Test 846			
Sample Date:	23/06/11		yy/mm/dd	
Shipping Date to Laboratory:	23/06/15			
PM10 Analysis Trigger Weight (mg):	1.12		weight which PM10 cond	c. > 50 μg/m³
B) SAMPLING INFORMATION				
SAMPLE START				
Sampling Start Date:	23/06/11			
Sampling Start Time:	00:00			
Current Instrument Date:	23/06/08			
Current Instrument Time:	10:02	_		
Ambient Temperature °C:	27.3	_		
Barometric Pressure (mm Hg):	703	_		
Leak Check:	Pass	_	(Pass/Fail)	
Clean PM10 Inlet:	Yes		(Yes/No)	
Weather Conditions Sampling date :	partly sunny	+		
Weather Conditions set up:	partly sunny			
CAMPLE DETRIEVAL				
SAMPLE RETRIEVAL	T Wohh			
Sampled by	T. Webb			
Sampling End Date: Sampling End Time:	23/06/12			
Current Instrument Date:	00:00			
Current Instrument Time:	23/06/13			
Run Status:	14:54 OK		(Ensure Run Status is OK)
Total Sampling Time (Hours):	24		(Elisare Rail Status is Ok	1
Volume Sampled (m^3):	22.3			
Average Flow Rate (L/min):	16.7 L/min			
AmbT °C:	27.3			
Barometric Pressure (mm Hg):	691			
Sample Filter Temperature °C :	27.9			
Flow Rate Coefficient of Variation (%CV):	0			
Weather Conditions :	Overcast			
Leak Check:	Pass		(Pass/Fail)	
FIELD BLANK			(Once every quarter)	
Was a field blank collected	No		(Yes/No)	
Filter ID:				
Filter Batch Number:				
Current Instrument Date:				
Current Instrument Time:				
C) OBSERVATIONS				
Was there significant precipitation (e.g., >1/2-inch	Na			
rain) within 24 hours prior to (or during) the sampling event?	No			
eventi				
Describe facility operations that may affect sampling				
event:				
2.0.00				
C				
Comments:				_
		- 1		1

Sample Identification Number:	Organic Test 846	_
Sample Canister Location:	Ryley Lift Station -Shed	
Sampled by	T.Webb	
Sampler Name:	Test 846	
Sample Date:	23/06/11	yy/mm/dd
Shipping Date to Laboratory:	23/06/15	
Canister Type (ie. 1 Litre/6 Litre/Other):	6L	
Canister Serial No.:	32197	
Flow Controller Serial No.:	H/L578699/A0334390-5	
B) SAMPLE SET UP	C. L. C. IVI	6 6 1
	Set up Conditions	Sample Retrieval
Date:	23/06/08	23/06/13
Ambient Temperature °C (inside shed):	28.2	35.5
Barometric Pressure (mm Hg):	703	691
Canister Pressure Gauge Reading (- Inches Hg):	(-)27.1	(-)5
Sample Time:	24	24
C) OBSERVATIONS		
Was there significant precipitation (e.g., >1/2-inch rain)		
within 24 hours prior to (or during) the sampling	No	
event?		
5 4 4 4 4 19 19		
Describe general weather conditions during sampling		
event:	partly sunny	
Describe facility appropriate that are a fifteen as a live		
Describe facility operations that may affect sampling	Nana	
event:	None	
Comments:		
Comments:		

1. SAMPLING INFORMATION

Sample ID	Test #846					
Lab Filter ID		_				
Start Sampling	6 mm	11 dd	0 hr	2023		
Stop Sampling	6 mm	12 dd	0 hr	2023	_	
Timer Initial: Timer Final:	_		2.03	-	_	
Total Sampling Time	23	nr	.90 54	min	 1434	
Average Flow Rate Actual m3/min	1.227	ofm				
Air Volume Net TSP Weight TSP Concentration	{	cubic metres				
TSP Analysis Trigger Weight	88.0	mg/m3 mg	weight which	n TSP conc. >	50 μg/m ³	
3. OBSERVATIONS						
Comments:						

10-Mar-23

3. GUIDELINES

- Faceplate must be handtight.

Instrument Last Calibrated:

- Flow rate must be ±10 percent of established flow rate.
- Faceplate gasket must be in good condition.
- Rotameter must be free of foreign material.
- Rotameter operation must be stable.
- Sampler motor brushes must be changed every 400 hours of operation.
- TSP analysis triggers when concentration >0.05mg/m3

Sampler's Signature:	
Comments:	

	FIELD SHEET			
PN	1 ₁₀ (Partisol Monitoring Un	it)		
CL	EAN HARBORS CANADA IN	C		
	RYLEY, ALBERTA			
A) GENERAL INFORMATION				
Filter ID:	C1170492			
PO Number:	233992			
Partisol Sampler ID/Serial Number:	2000 FRM-AE / 200FB209	98609	05	
Test number :	Particulate Test 847			
Sample Date:	23/06/17		yy/mm/dd	
Shipping Date to Laboratory:	23/06/20			
PM10 Analysis Trigger Weight (mg):	1.14		weight which PM10 conc.	. > 50 μg/m³
B) SAMPLING INFORMATION				
SAMPLE START				
Sampling Start Date:	23/06/17			
Sampling Start Time:	00:00			
Current Instrument Date:	23/06/13			
Current Instrument Time:	15:05	_		
Ambient Temperature °C:	28.3			
Barometric Pressure (mm Hg):	691	_		
Leak Check:	Pass		(Pass/Fail)	
Clean PM10 Inlet:	Yes	_	(Yes/No)	
Weather Conditions Sampling date :	partly sunny	\perp		
Weather Conditions set up:	broken clouds	_		
SAMPLE RETRIEVAL	- w. II			
Sampled by	T. Webb			
Sampling End Date:	23/06/18			
Sampling End Time:	00:00			
Current Instrument Date:	23/06/19			
Current Instrument Time:	9:52		(F D Ct-t i- OK)	
Run Status: Total Sampling Time (Hours):	OK 24		(Ensure Run Status is OK)	
Volume Sampled (m^3):	24			
Average Flow Rate (L/min):	22.7			
AmbT°C:	16.7 L/min			
Barometric Pressure (mm Hg) :	12.1			
Sample Filter Temperature °C:	686 12.2			
Flow Rate Coefficient of Variation (%CV):	0.1			
Weather Conditions :	Overcast			
Leak Check:	Pass		(Pass/Fail)	
250% 67765%	1 033		(1 433/1 411)	
FIELD BLANK			(Once every quarter)	
Was a field blank collected	No		(Yes/No)	
Filter ID:				
Filter Batch Number:				
Current Instrument Date:		1		
Current Instrument Time:				
C) OBSERVATIONS				
Was there significant precipitation (e.g., >1/2-inch				
rain) within 24 hours prior to (or during) the sampling	No			
event?				
		+		_
		+		
Describe facility operations that may affect sampling				
event:		-		
		+		
				1
Comments:				
				_

Sample Identification Number:	Organic Test 847	_
Sample Canister Location:	Ryley Lift Station -Shed	
Sampled by	T.Webb	
Sampler Name:	Test 847	
Sample Date:	23/06/17	yy/mm/dd
Shipping Date to Laboratory:	23/06/20	•
Canister Type (ie. 1 Litre/6 Litre/Other):	6L	
Canister Serial No.:	32264	
Flow Controller Serial No.:	H/L578699/A0334390-5	
B) SAMPLE SET UP		
	Set up Conditions	Sample Retrieval
Date:	23/06/13	23/06/19
Ambient Temperature °C (inside shed):	35.5	15.7
Barometric Pressure (mm Hg):	691	686
Canister Pressure Gauge Reading (- Inches Hg):	(-)27.1	(-)5
Sample Time:	24	24
C) OBSERVATIONS Was there significant precipitation (e.g., >1/2-inch rain) within 24 hours prior to (or during) the sampling event?	No	
Describe general weather conditions during sampling event:	partly sunny	
Describe facility operations that may affect sampling event:	None	
Comments:		

1. SAMPLING INFORMATION

Sample ID		Test	#847				
Lab Filter ID		HVF-23-03-19					
Start Sampling	6	17 dd	0 hr	2023			
	mm 						
Stop Sampling	6 mm	18 dd	0 hr	2023			
	111111			_			
Timer Initial:			5.93				
Timer Final:			9.97		_		
Total Campling Time	24.04 24 hr			2 min			
Total Sampling Time Average Flow Rate	24	cfm		<u>-</u> !!!!!!	1442		
Actual m3/min	1.227						
Air Volume		cubic metres					
Net TSP Weight		- g					
TSP Concentration		mg/m3					
TSP Analysis Trigger Weight	88.5	_mg	weight whic	h TSP conc.	> 50 μg/m ³		
3. OBSERVATIONS							
Comments:							

10-Mar-23

3. GUIDELINES

- Faceplate must be handtight.

Instrument Last Calibrated:

- Flow rate must be ±10 percent of established flow rate.
- Faceplate gasket must be in good condition.
- Rotameter must be free of foreign material.
- Rotameter operation must be stable.
- Sampler motor brushes must be changed every 400 hours of operation.
- TSP analysis triggers when concentration >0.05mg/m3

Sampler's Signature:	
Comments:	

FIELD SHEET						
PIV	PM ₁₀ (Partisol Monitoring Unit)					
	EAN HARBORS CANADA IN					
	RYLEY, ALBERTA					
A) GENERAL INFORMATION						
Filter ID:	C1170496					
PO Number:	233992					
Partisol Sampler ID/Serial Number:	2000 FRM-AE / 200FB209	9860905				
Test number :	Particulate Test 848					
Sample Date:	23/06/23	yy/mm/dd				
Shipping Date to Laboratory:	23/06/29		50 / 3			
PM10 Analysis Trigger Weight (mg):	1.13	weight which PM10 conc.	> 50 μg/m ⁻			
B) SAMPLING INFORMATION						
SAMPLE START						
Sampling Start Date:	23/06/23					
Sampling Start Time:	00:00					
Current Instrument Date:	23/06/22					
Current Instrument Time:	14:14					
Ambient Temperature °C:	23.9					
Barometric Pressure (mm Hg):	701					
Leak Check:	Pass	(Pass/Fail)				
Clean PM10 Inlet:	Yes	(Yes/No)				
Weather Conditions Sampling date :	partly sunny	(122,130)				
Weather Conditions set up:	partly cloudy					
	p ,					
SAMPLE RETRIEVAL						
Sampled by	T. Webb					
Sampling End Date:	23/06/24					
Sampling End Time:	00:00					
Current Instrument Date:	23/06/26					
Current Instrument Time:	10:00					
Run Status:	OK	(Ensure Run Status is OK)				
Total Sampling Time (Hours):	24					
Volume Sampled (m^3):	22.6					
Average Flow Rate (L/min):	16.7 L/min					
AmbT °C :	22.9					
Barometric Pressure (mm Hg):	700					
Sample Filter Temperature °C:	23.5					
Flow Rate Coefficient of Variation (%CV):	0					
Weather Conditions :	Sunny					
Leak Check:	Pass	(Pass/Fail)				
FIELD BLANK		(Once every quarter)				
Was a field blank collected	No	(Yes/No)				
Filter ID:						
Filter Batch Number: Current Instrument Date:						
Current Instrument Date: Current Instrument Time:						
Current instrument rime:						
C) OBSERVATIONS						
<u>G, GBSERVATIONS</u>						
Was there significant precipitation (e.g., >1/2-inch						
rain) within 24 hours prior to (or during) the sampling	No					
event?						
Describe facility operations that may affect sampling						
event:						
Comments:						

Sample Identification Number:	Organic Test 848	_
Sample Canister Location:	Ryley Lift Station -Shed	
Sampled by	T.Webb	
Sampler Name:	Test 848	
Sample Date:	23/06/23	yy/mm/dd
Shipping Date to Laboratory:	23/06/29	
Canister Type (ie. 1 Litre/6 Litre/Other):	6L	
Canister Serial No.:	28933	
Flow Controller Serial No.:	H/L578699/A0334390-5	
Tion controller serial tool	11/15/1005/11/1005	
B) SAMPLE SET UP		
	Set up Conditions	Sample Retrieval
Date:	23/06/22	23/06/26
Ambient Temperature °C (inside shed):	33.0	26.3
Barometric Pressure (mm Hg):	691	700
Canister Pressure Gauge Reading (- Inches Hg):	(-)27.1	(-)7
Sample Time:	24	24
C) OBSERVATIONS Was there significant precipitation (e.g., >1/2-inch rain) within 24 hours prior to (or during) the sampling event?	No 	
Describe general weather conditions during sampling event:	partly sunny	
Describe facility operations that may affect sampling event:	None	
Comments:		

1. SAMPLING INFORMATION

Sample ID	Test #848					
Lab Filter ID		<u> </u>				
Start Sampling	6	23	0	2023		
	mm	dd	hr			
Stop Sampling	6	24	0	2023	_	
	mm	dd	hr			
Timer Initial:		679	9.97	_		
Timer Final:		704	1.00			
		24	.03		<u> </u>	
Total Sampling Time	24	hr		<u>2</u> min	1442	
Average Flow Rate		cfm				
Actual m3/min	1.227	-				
Air Volume	1769.1	cubic metres				
Net TSP Weight		g				
TSP Concentration		mg/m3				
TSP Analysis Trigger Weight	88.5	mg	weight whic	h TSP conc. >	• 50 μg/m³	
3. OBSERVATIONS						
Comments:						

10-Mar-23

3. GUIDELINES

- Faceplate must be handtight.

Instrument Last Calibrated:

- Flow rate must be ±10 percent of established flow rate.
- Faceplate gasket must be in good condition.
- Rotameter must be free of foreign material.
- Rotameter operation must be stable.
- Sampler motor brushes must be changed every 400 hours of operation.
- TSP analysis triggers when concentration >0.05mg/m3

Sampler's Signature:	
Comments:	

	FIELD SHEET				
PM ₁₀ (Partisol Monitoring Unit)					
CL	EAN HARBORS CANADA IN	IC			
	RYLEY, ALBERTA		T		
A) CENEDAL INECOMATION					
A) GENERAL INFORMATION					
Filter ID:	C1170491	-			
PO Number:	233992				
Partisol Sampler ID/Serial Number:	2000 FRM-AE / 200FB209	98609	905		
Test number :	Particulate Test 849	10003			
Sample Date:	23/06/29		yy/mm/dd		
Shipping Date to Laboratory:	23/07/04		777		
PM10 Analysis Trigger Weight (mg):	1.11		weight which PM10 conc.	> 50 μg/m ³	
B) SAMPLING INFORMATION					
SAMPLE START					
Sampling Start Date:	23/06/29				
Sampling Start Time:	00:00				
Current Instrument Date:	23/06/26				
Current Instrument Time:	10:09				
Ambient Temperature °C:	22.9				
Barometric Pressure (mm Hg):	700				
Leak Check:	Pass		(Pass/Fail)		
Clean PM10 Inlet:	Yes		(Yes/No)		
Weather Conditions Sampling date :	Sunny				
Weather Conditions set up:	partly sunny				
SAMPLE RETRIEVAL					
Sampled by	T. Webb				
Sampling End Date:	23/06/30				
Sampling End Time:	00:00				
Current Instrument Date:	23/06/30				
Current Instrument Time:	7:30		(F		
Run Status:	OK		(Ensure Run Status is OK)		
Total Sampling Time (Hours):	24				
Volume Sampled (m^3): Average Flow Rate (L/min):	22.2				
Average Flow Rate (L/Hill). AmbT °C:	16.7 L/min				
Barometric Pressure (mm Hg) :	21.9				
Sample Filter Temperature °C:	700				
Flow Rate Coefficient of Variation (%CV):	21.5 0				
Weather Conditions :	partly cloudy	T			
Leak Check:	Pass		(Pass/Fail)		
	1 433		(1 055/1 011/		
FIELD BLANK			(Once every quarter)		
Was a field blank collected	No		(Yes/No)		
Filter ID:		1	/		
Filter Batch Number:		7			
Current Instrument Date:		1			
Current Instrument Time:					
C) OBSERVATIONS					
		floor			
Was there significant precipitation (e.g., >1/2-inch					
rain) within 24 hours prior to (or during) the sampling	No				
event?		-			
Parada fadh an da		+			
Describe facility operations that may affect sampling					
event:		+			
		+			
		\perp			
Comments:					
		+			

Sample Identification Number:	Organic Test 849	_
Sample Canister Location:	Ryley Lift Station -Shed	
Sampled by	T.Webb	
Sampler Name:	Test 849	
Sample Date:	23/06/29	yy/mm/dd
Shipping Date to Laboratory:	23/07/04	
	-	
Canister Type (ie. 1 Litre/6 Litre/Other):	6L	
Canister Serial No.:	29037	
Flow Controller Serial No.:	H/L578699/A0334390-5	
B) SAMPLE SET UP		
<u> </u>	Set up Conditions	Sample Retrieval
Date:	23/06/26	23/06/30
Ambient Temperature °C (inside shed):	26.3	20.2
Barometric Pressure (mm Hg):	700	700
Canister Pressure Gauge Reading (- Inches Hg):	(-)27.1	(-)7
Sample Time:	24	24
Was there significant precipitation (e.g., >1/2-inch rain) within 24 hours prior to (or during) the sampling event?	No	
Describe general weather conditions during sampling event:	Sunny	
Describe facility operations that may affect sampling event:	None	
Comments:		

1. SAMPLING INFORMATION

Sample ID	Test #849				
Lab Filter ID		HVF-23	3-03-17		_
Start Sampling	6 mm	29 dd	0 hr	2023	
Stop Sampling	6	30	0	2023	_
Stop Sumpling	mm	dd	hr	2023	
Timer Initial:		704	1.00	-	
Timer Final:	728.49				<u>-</u>
		24	.49		_
Total Sampling Time	24	<u>h</u> r	29	_min	1469
Average Flow Rate		_cfm			
Actual m3/min	1.227	, -			
Air Volume	1803.0	cubic metres			
Net TSP Weight		_g			
TSP Concentration		_mg/m3			
TSP Analysis Trigger Weight	90.1	_mg	weight which	າ TSP conc. >	50 μg/m ³
3. OBSERVATIONS					
Comments:					

10-Mar-23

3. GUIDELINES

- Faceplate must be handtight.

Instrument Last Calibrated:

- Flow rate must be ±10 percent of established flow rate.
- Faceplate gasket must be in good condition.
- Rotameter must be free of foreign material.
- Rotameter operation must be stable.
- Sampler motor brushes must be changed every 400 hours of operation.
- TSP analysis triggers when concentration >0.05mg/m3

FIELD SHEET

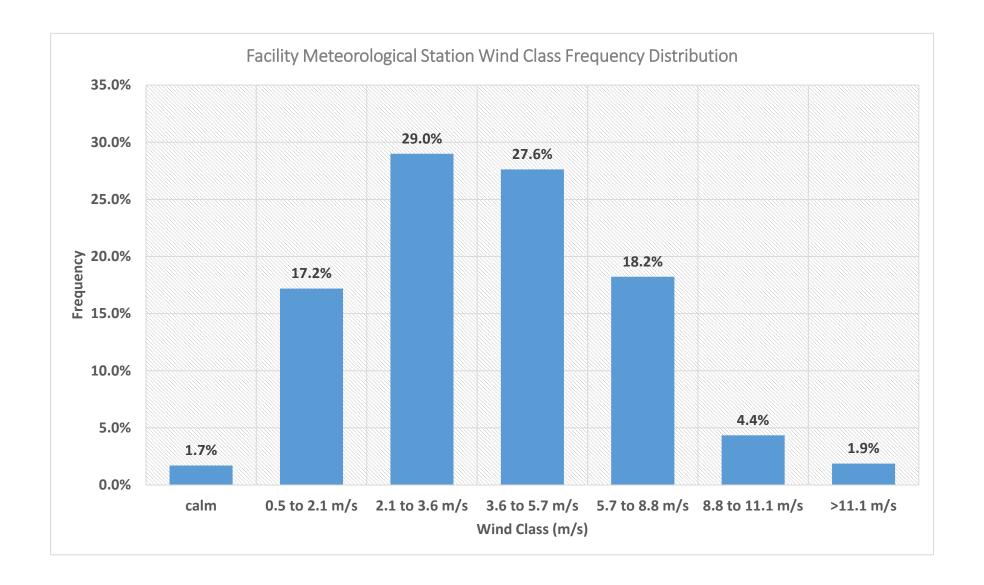
TSP (High Volume Monitoring Unit) CLEAN HARBORS CANADA INC RYLEY, ALBERTA

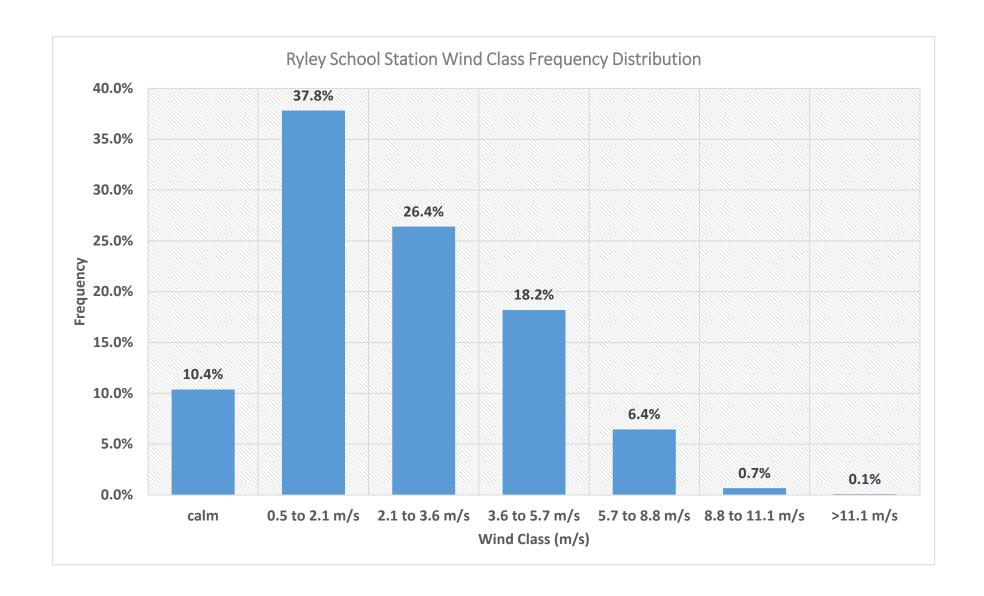
1. SAMPLING INFORMATION

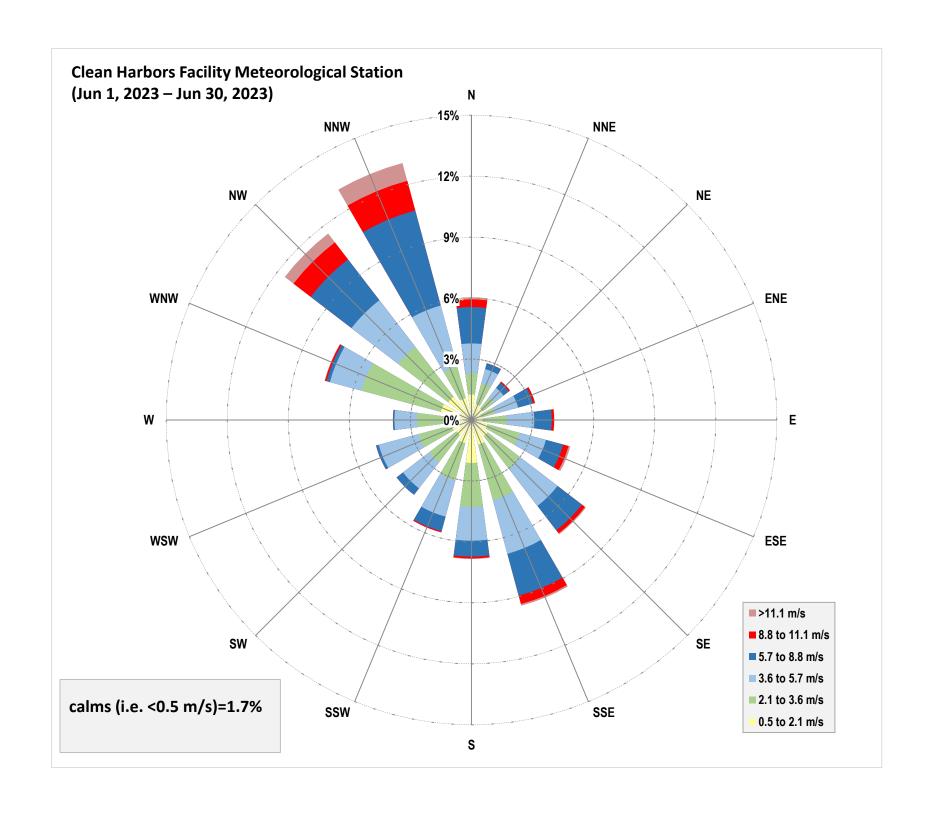
Sample ID	Facility Test # 103				
Lab Filter ID	HV-23-02-05				
Start Sampling	6 mm	1 dd	13 hr	2023	_
Stop Sampling	7 mm	1 dd	13 hr	2023	_
Timer Initial: Timer Final:	3091.14 3123.28				_
Total Sampling Time Average Flow Rate Actual m3/min Air Volume Net TSP Weight TSP Concentration	1.304 2514.1	hr cfm cubic metre g mg/m3		_min	 1928
3. OBSERVATIONS Comments:	The two stat		wapped loca	ations prior	to this
Instrument Last Calibrated:			30-Jun-23		

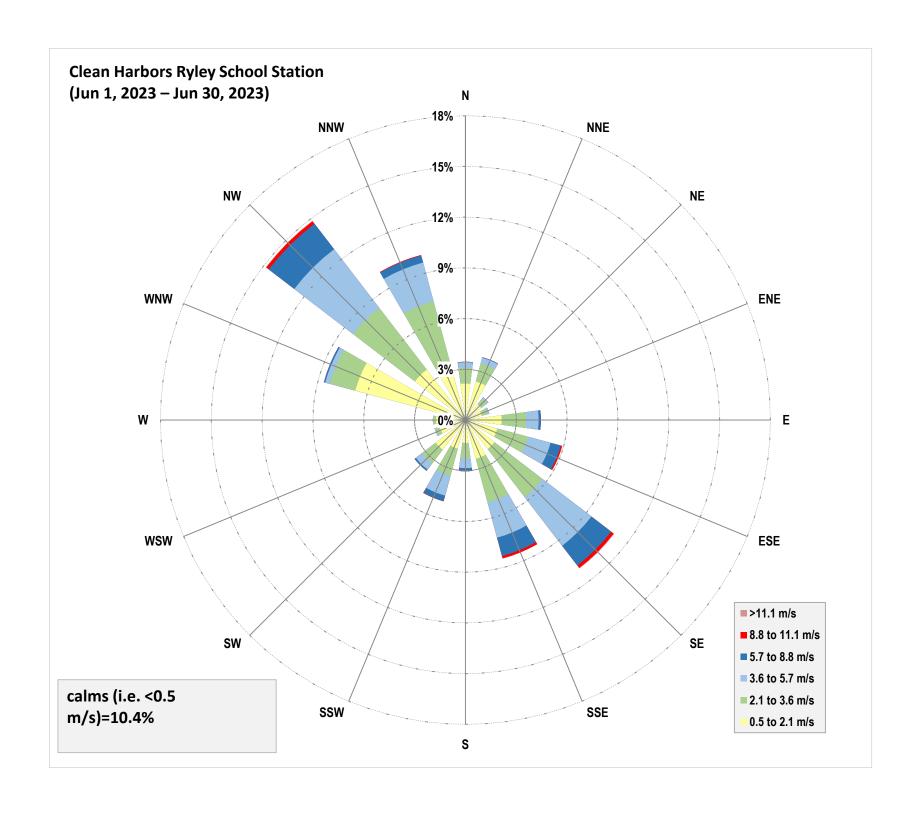
3. GUIDELINES

- Faceplate must be handtight.
- Flow rate must be ±10 percent of established flow rate.
- Faceplate gasket must be in good condition.
- Rotameter must be free of foreign material.
- Rotameter operation must be stable.
- Sampler motor brushes must be changed every 400 hours of operation.


Sampler's Signature:	Stan Yuka
Comments:	


2. SAMPLING INFORMATION


Sample ID	School Test # 103				
Lab Filter ID	HV-23-02-06				_
Start Sampling	6	1	13	2023	
	mm	dd	hr		
Stop Sampling	7	1	13	2023	-
	mm	dd	hr		
Timer Initial:	2497.5				
Timer Final:	2525.52				
Total Sampling Time	28			<u>1</u> min	1681
Average Flow Rate		cfm			
Actual m3/min	1.295				
Air Volume	2176.9 cubic metres				
Net TSP Weight		g			
TSP Concentration		mg/m3			


Sampler's Signature:	
Comments:	

Appendix C Wind Class Frequency Distribution Graphs and Wind Rose

Appendix D Chain of Custody Forms and Laboratory Analytical Reports

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 1 of 9

RESULTS: Todd Webb

Clean Harbors Environmental

PO Box 390

2 km N of Hwy 14 on Sec Road 854 50114 RR 173

Ryley

AB TOB 4A0

INVOICE: Stephanie Dennis

PO Box 390

2 km N of Hwy 14 on Sec Road 854 50114 RR 173

Ryley

AB TOB 4A0

CLIENT SAMPLE ID

Matrix Air Filter

06-Jul-23

Ryley Facility Test # 103 - HV-23-02-05

CANISTER ID:

PRIORITY: Normal

DESCRIPTION: Filter Number # HV-23-02-05

DATE SAMPLED: 06-Jun-23

REPORT CREATED: 26-Jul-23 **REPORT NUMBER:** 23070041

VERSION: Version 01

DATE RECEIVED:

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
23070041-001	Antimony		218 ng/Filter	0.30	AC-021	21-Jul-23
23070041-001	Arsenic		1290 ng/Filter	0.30	AC-021	21-Jul-23
23070041-001	Barium		850000 ng/Filter	300	AC-021	21-Jul-23
23070041-001	Beryllium		25.4 ng/Filter	0.60	AC-021	21-Jul-23
23070041-001	Boron		9750000 ng/Filter	600	AC-021	21-Jul-23
23070041-001	Cadmium		661 ng/Filter	0.80	AC-021	21-Jul-23
23070041-001	Chromium		5330 ng/Filter	20	AC-021	21-Jul-23
23070041-001	Cobalt		908 ng/Filter	0.50	AC-021	21-Jul-23
23070041-001	Copper		119000 ng/Filter	20	AC-021	21-Jul-23
23070041-001	Iron		2160000 ng/Filter	80	AC-021	21-Jul-23
23070041-001	Lead		7710 ng/Filter	0.70	AC-021	21-Jul-23
23070041-001	Manganese		68200 ng/Filter	1.0	AC-021	21-Jul-23
23070041-001	Mercury		13.4 ng/Filter	0.70	AC-021	21-Jul-23
23070041-001	Nickel		6970 ng/Filter	5.0	AC-021	21-Jul-23
23070041-001	Selenium		1060 ng/Filter	4.0	AC-021	21-Jul-23
23070041-001	Silver		87.9 ng/Filter	0.50	AC-021	21-Jul-23
23070041-001	Thallium		28.9 ng/Filter	0.20	AC-021	21-Jul-23

Report certified by: Andrea Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: July 26, 2023 E-mail: EAS.Results@innotechalberta.ca

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 2 of 9

CLIENT SAMPLE ID CANISTER ID Matrix DATE SAMPLED

Ryley Facility Test # 103 - HV-23-02-05 Air Filter 06-Jun-23

DESCRIPTION: Filter Number # HV-23-02-05

REPORT NUMBER: 23070041 REPORT CREATED: 26-Jul-23 VERSION: Version 01

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
23070041-001	Tin		1170 ng/Filter	0.20	AC-021	21-Jul-23
23070041-001	Uranium		104 ng/Filter	0.200	AC-021	21-Jul-23
23070041-001	Vanadium		6300 ng/Filter	0.40	AC-021	21-Jul-23
23070041-001	Zinc		809000 ng/Filter	1000	AC-021	21-Jul-23
23070041-001	Particulate Weight		150 mg	0.1	Research	10-Jul-23

Report certified by: Andrea Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: July 26, 2023 E-mail: EAS.Results@innotechalberta.ca

TEST REPORT Page 3 of 9

CLIENT SAMPLE ID CANISTER ID Matrix DATE SAMPLED

Ryley School Test # 103 - HV-23-02-06 Air Filter 06-Jun-23

DESCRIPTION: Filter Number # HV-23-02-06

REPORT NUMBER: 23070041 REPORT CREATED: 26-Jul-23 VERSION: Version 01

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
23070041-002	Antimony		334 ng/Filter	0.30	AC-021	21-Jul-23
23070041-002	Arsenic		4780 ng/Filter	0.30	AC-021	21-Jul-23
23070041-002	Barium	K, T, U	< 300 ng/Filter	300	AC-021	21-Jul-23
23070041-002	Beryllium		5.20 ng/Filter	0.60	AC-021	21-Jul-23
23070041-002	Boron	K, T, U	< 600 ng/Filter	600	AC-021	21-Jul-23
23070041-002	Cadmium		619 ng/Filter	0.80	AC-021	21-Jul-23
23070041-002	Chromium		4410 ng/Filter	20	AC-021	21-Jul-23
23070041-002	Cobalt		783 ng/Filter	0.50	AC-021	21-Jul-23
23070041-002	Copper		245000 ng/Filter	20	AC-021	21-Jul-23
23070041-002	Iron		1920000 ng/Filter	80	AC-021	21-Jul-23
23070041-002	Lead		6000 ng/Filter	0.70	AC-021	21-Jul-23
23070041-002	Manganese		68700 ng/Filter	1.0	AC-021	21-Jul-23
23070041-002	Mercury		18.4 ng/Filter	0.70	AC-021	21-Jul-23
23070041-002	Nickel		6840 ng/Filter	5.0	AC-021	21-Jul-23
23070041-002	Selenium		1690 ng/Filter	4.0	AC-021	21-Jul-23
23070041-002	Silver		126 ng/Filter	0.50	AC-021	21-Jul-23
23070041-002	Thallium	K, T, U	< 0.20 ng/Filter	0.20	AC-021	21-Jul-23
23070041-002	Tin		212 ng/Filter	0.20	AC-021	21-Jul-23
23070041-002	Uranium	K, T, U	< 0.200 ng/Filter	0.200	AC-021	21-Jul-23
23070041-002	Vanadium		3860 ng/Filter	0.40	AC-021	21-Jul-23
23070041-002	Zinc	K, T, U	< 1000 ng/Filter	1000	AC-021	21-Jul-23
23070041-002	Particulate Weight		248 mg	0.1	Research	10-Jul-23

Report certified by: Andrea Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: July 26, 2023 E-mail: EAS.Results@innotechalberta.ca

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 4 of 9

Revision History

Order ID	Ver	Date	Reason
23070041	01	26-Jul-23	Report created

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 5 of 9

Methods

M	ethod	Description
	C-021 search	Elemental Analysis Methodology of Filter-collected Airborne Particulate Matter (PM) by ICP-MS Research method

List of Analytical Method IDs within InnoTech's ISO/IEC 17025:2017 CALA Scope of Accreditation

Method ID	Description
AC-013	Mercury in Waters by Cold Vapor Atomic Fluorescence Detection (CVAFS)
AC-020	Ion Chromatographic Procedures using the Dionex ICS 3000 and 5000 Systems
AC-021	Elemental Analysis Methodology of Filter-collected Airborne Particulate Matter (PM) by ICP-MS
AC-026	Ion Chromatographic Procedures using the Dionex ICS 3000 and 5000 Systems
AC-029	Procedure for the Equilibration and Weighing of Membrane Filters and PUFs on the Mettler Toledo Micro Balance
AC-035	Analysis of Glyphosate, Aminomethylphosphonic Acid and Glufosinate in Water
AC-038	Trace Metal Analysis of Water Samples by ICP-MS
AC-048	Specific Conductance (Conductivity Meter Method)
AC-049	pH (Meter Method)
AC-054	Alkalinity Total and Phenolphthalein
AC-058	Determination of Volatile Organic Compounds in Ambient Air by Gas Chromatography Mass Spectrometry
AC-060	Trace Metal Analysis of Soil Sediment and Industrial Waste Samples by Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
AC-061	Trace Metal Analysis for Biological Samples by Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
AC-065	Analysis of Naphthenic Acids in Water by HPLC-Orbitrap-MS analysis
AC-074	Pesticides in Water
AC-079	Alkylated PAH in Soil and Sediment
AC-080	Alkylated PAH in Water (SPE Extraction)
NA-006	Determination of BTEX, F1 Hydrocarbons and F2, F3 and F4 Hydrocarbons in Water
NA-024	Analysis of Reduced Sulfur Compounds in Air

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 6 of 9

Qualifiers

Data Qualifier Translation

В	Blank contamination; Analyte detected above the method reporting limit in an associated blank
I	The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit
11	Reported value is estimated; Surrogate recoveries limits were exceeded
12	Reported value is estimated; No known QC criteria for this component
13	Reported value is estimated; The value failed to meet QC criteria for either precision or accuracy
14	Reported value is estimated; The sample matrix interfered with the analysis
K	Off-scale low. Actual value is known to be less than the value given
L	Off-scale high. Actual value is known to be greater than value given
V	Non-target analyte; Tentatively identified compound (using mass spectroscopy)
Q	Sample held beyond the accepted holding time
R	Rejected data; Not suitable for the projects intended use
Т	Value reported is less than the laboratory method detection limit
J	Compound was analyzed for but not detected
/	Analyte was detected in both the sample and the associated method blank

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 7 of 9

Order Comments

23070041

Quote ID: QT140005

TEST REPORT Page 8 of 9

Sample Comments

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 9 of 9

Result Comments

Note:

- 1. Results relate only to items tested and apply to the sample as received.
- 2. This report shall not be reproduced, except in full, without the explicit approval of the laboratory.

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 1 of 12

RESULTS: Todd Webb

Clean Harbors Environmental

PO Box 390

2 km N of Hwy 14 on Sec Road 854 50114 RR 173

Ryley

AB T0B 4A0

INVOICE: Stephanie Dennis

PO Box 390

2 km N of Hwy 14 on Sec Road 854 50114 RR 173

Ryley

AB T0B 4A0 **CLIENT SAMPLE ID**

HI-VOL Test # 845, HVF-23-03-05

CANISTER ID:

PRIORITY: Normal

DESCRIPTION: HI-VOL Filter

05-Jun-23 **DATE SAMPLED:** 0:00 **DATE RECEIVED:** 12-Jun-23

REPORT CREATED: 26-Jul-23 **REPORT NUMBER:** 23060160

> Version 01 **VERSION:**

Matrix Air Filter

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
23060160-003	Antimony		320 ng/Filter	0.30	AC-021	21-Jul-23
23060160-003	Arsenic		7010 ng/Filter	0.30	AC-021	21-Jul-23
23060160-003	Barium	K, T, U	< 300 ng/Filter	300	AC-021	21-Jul-23
23060160-003	Beryllium		14.9 ng/Filter	0.60	AC-021	21-Jul-23
23060160-003	Boron		6320000 ng/Filter	600	AC-021	21-Jul-23
23060160-003	Cadmium		270 ng/Filter	0.80	AC-021	21-Jul-23
23060160-003	Chromium		9690 ng/Filter	20	AC-021	21-Jul-23
23060160-003	Cobalt		1560 ng/Filter	0.50	AC-021	21-Jul-23
23060160-003	Copper		273000 ng/Filter	20	AC-021	21-Jul-23
23060160-003	Iron		3130000 ng/Filter	80	AC-021	21-Jul-23
23060160-003	Lead		18500 ng/Filter	0.70	AC-021	21-Jul-23
23060160-003	Manganese		110000 ng/Filter	1.0	AC-021	21-Jul-23
23060160-003	Mercury		28.7 ng/Filter	0.70	AC-021	21-Jul-23
23060160-003	Nickel		12800 ng/Filter	5.0	AC-021	21-Jul-23
23060160-003	Selenium		1990 ng/Filter	4.0	AC-021	21-Jul-23
23060160-003	Silver		204 ng/Filter	0.50	AC-021	21-Jul-23
23060160-003	Thallium	K, T, U	< 0.20 ng/Filter	0.20	AC-021	21-Jul-23

Report certified by: Andrea Conner, Admin Assistant

Date: July 26, 2023

On behalf of: Adam Malcolm, Manager, Chemical Testing

InnoTech's ISO/IEC 17025:2017 scope of accreditation can be located at https://directory.cala.ca//

Inquiries: (780) 632 8403

E-mail: EAS.Results@innotechalberta.ca

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 2 of 12

CLIENT SAMPLE ID CANISTER ID Matrix DATE SAMPLED

HI-VOL Test # 845, HVF-23-03-05 Air Filter 05-Jun-23 0:00

DESCRIPTION: HI-VOL Filter

REPORT NUMBER: 23060160 REPORT CREATED: 26-Jul-23 VERSION: Version 01

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
23060160-003	Tin		175 ng/Filter	0.20	AC-021	21-Jul-23
23060160-003	Uranium	K, T, U	< 0.200 ng/Filter	0.200	AC-021	21-Jul-23
23060160-003	Vanadium		12700 ng/Filter	0.40	AC-021	21-Jul-23
23060160-003	Zinc	K, T, U	< 1000 ng/Filter	1000	AC-021	21-Jul-23
23060160-003	Particulate Weight		151 mg	0.1	Research	

Report certified by: Andrea Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: July 26, 2023 E-mail: EAS.Results@innotechalberta.ca

TEST REPORT Page 3 of 12

CLIENT SAMPLE ID Matrix **CANISTER ID DATE SAMPLED** Air Filter PM10 Test # 845, C9700087 05-Jun-23 0:00

DESCRIPTION: PM10 Filter

REPORT NUMBER: 23060160 **REPORT CREATED: VERSION: Version 01** 26-Jul-23

23060160-002 Arsenic 16.0 ng/Filter 0.03 AC-021 18-Jul-23 23060160-002 Barium 372 ng/Filter 0.3 AC-021 18-Jul-23 23060160-002 Beryllium 0.74 ng/Filter 0.06 AC-021 18-Jul-23 23060160-002 Boron 149 ng/Filter 0.6 AC-021 18-Jul-23 23060160-002 Cadmium 1.57 ng/Filter 0.08 AC-021 18-Jul-23 23060160-002 Chromium 109 ng/Filter 2 AC-021 18-Jul-23 23060160-002 Cobalt 9.38 ng/Filter 0.05 AC-021 18-Jul-23 23060160-002 Copper 155 ng/Filter 2 AC-021 18-Jul-23 23060160-002 Iron 22100 ng/Filter 8 AC-021 18-Jul-23 23060160-002 Iron 22100 ng/Filter 0.07 AC-021 18-Jul-23 23060160-002 Iron 22100 ng/Filter 0.07 AC-021 18-Jul-23 23060160-002 Manganese 743 ng/Filter 0.07 AC-021 18-Jul-23 23060160-002 Nicke	Lab ID	Parameter C	Qualifier Re	esult Units	RDL	Method	Analysis Date
23060160-002 Barium 372 ng/Filter 0.3 AC-021 18-Jul-23 23060160-002 Beryllium 0.74 ng/Filter 0.06 AC-021 18-Jul-23 23060160-002 Boron 149 ng/Filter 0.6 AC-021 18-Jul-23 23060160-002 Cadmium 1.57 ng/Filter 0.8 AC-021 18-Jul-23 23060160-002 Chromium 109 ng/Filter 2 AC-021 18-Jul-23 23060160-002 Cobalt 9.38 ng/Filter 0.05 AC-021 18-Jul-23 23060160-002 Copper 155 ng/Filter 2 AC-021 18-Jul-23 23060160-002 Iron 22100 ng/Filter 8 AC-021 18-Jul-23 23060160-002 Lead 88.5 ng/Filter 0.07 AC-021 18-Jul-23 23060160-002 Manganese 743 ng/Filter 0.1 AC-021 18-Jul-23 23060160-002 Mickel 98.0 ng/Filter 0.5 AC-021 18-Jul-23 23060160-002 Nickel 98.0 ng/Filter 0.4 AC-021 18-Jul-23 23060160-002 Silver <td>23060160-002</td> <td>Antimony</td> <td></td> <td>2.72 ng/Filter</td> <td>0.03</td> <td>AC-021</td> <td>18-Jul-23</td>	23060160-002	Antimony		2.72 ng/Filter	0.03	AC-021	18-Jul-23
23060160-002 Beryllium 0.74 ng/Filter 0.06 AC-021 18-Jul-23 23060160-002 Boron 149 ng/Filter 0.6 AC-021 18-Jul-23 23060160-002 Cadmium 1.57 ng/Filter 0.08 AC-021 18-Jul-23 23060160-002 Chromium 109 ng/Filter 2 AC-021 18-Jul-23 23060160-002 Cobalt 9.38 ng/Filter 0.05 AC-021 18-Jul-23 23060160-002 Copper 155 ng/Filter 2 AC-021 18-Jul-23 23060160-002 Iron 22100 ng/Filter 8 AC-021 18-Jul-23 23060160-002 Lead 88.5 ng/Filter 0.07 AC-021 18-Jul-23 23060160-002 Manganese 743 ng/Filter 0.1 AC-021 18-Jul-23 23060160-002 Mercury 0.37 ng/Filter 0.5 AC-021 18-Jul-23 23060160-002 Nickel 98.0 ng/Filter 0.5 AC-021 18-Jul-23 23060160-002 Selenium 21.4 ng/Filter 0.4 AC-021 18-Jul-23 23060160-002 Silve	23060160-002	Arsenic		16.0 ng/Filter	0.03	AC-021	18-Jul-23
23060160-002 Boron 149 ng/Filter 0.6 AC-021 18-Jul-23 23060160-002 Cadmium 1.57 ng/Filter 0.08 AC-021 18-Jul-23 23060160-002 Chromium 109 ng/Filter 2 AC-021 18-Jul-23 23060160-002 Cobalt 9.38 ng/Filter 0.05 AC-021 18-Jul-23 23060160-002 Copper 155 ng/Filter 2 AC-021 18-Jul-23 23060160-002 Iron 22100 ng/Filter 8 AC-021 18-Jul-23 23060160-002 Lead 88.5 ng/Filter 0.07 AC-021 18-Jul-23 23060160-002 Manganese 743 ng/Filter 0.1 AC-021 18-Jul-23 23060160-002 Mercury 0.37 ng/Filter 0.07 AC-021 18-Jul-23 23060160-002 Nickel 98.0 ng/Filter 0.5 AC-021 18-Jul-23 23060160-002 Selenium 21.4 ng/Filter 0.4 AC-021 18-Jul-23 23060160-002 Silver 0.49 ng/Filter 0.05 AC-021 18-Jul-23 23060160-002 Thalliu	23060160-002	Barium		372 ng/Filter	0.3	AC-021	18-Jul-23
23060160-002 Cadmium 1.57 ng/Filter 0.08 AC-021 18-Jul-23 23060160-002 Chromium 109 ng/Filter 2 AC-021 18-Jul-23 23060160-002 Cobalt 9.38 ng/Filter 0.05 AC-021 18-Jul-23 23060160-002 Copper 155 ng/Filter 2 AC-021 18-Jul-23 23060160-002 Iron 22100 ng/Filter 8 AC-021 18-Jul-23 23060160-002 Lead 88.5 ng/Filter 0.07 AC-021 18-Jul-23 23060160-002 Manganese 743 ng/Filter 0.1 AC-021 18-Jul-23 23060160-002 Mercury 0.37 ng/Filter 0.5 AC-021 18-Jul-23 23060160-002 Nickel 98.0 ng/Filter 0.5 AC-021 18-Jul-23 23060160-002 Selenium 21.4 ng/Filter 0.4 AC-021 18-Jul-23 23060160-002 Silver 0.49 ng/Filter 0.05 AC-021 18-Jul-23 23060160-002 Thallium 0.36 ng/Filter 0.02 AC-021 18-Jul-23 23060160-002 Tra	23060160-002	Beryllium		0.74 ng/Filter	0.06	AC-021	18-Jul-23
23060160-002 Chromium 109 ng/Filter 2 AC-021 18-Jul-23 23060160-002 Cobalt 9.38 ng/Filter 0.05 AC-021 18-Jul-23 23060160-002 Copper 155 ng/Filter 2 AC-021 18-Jul-23 23060160-002 Iron 22100 ng/Filter 8 AC-021 18-Jul-23 23060160-002 Lead 88.5 ng/Filter 0.07 AC-021 18-Jul-23 23060160-002 Manganese 743 ng/Filter 0.1 AC-021 18-Jul-23 23060160-002 Mercury 0.37 ng/Filter 0.07 AC-021 18-Jul-23 23060160-002 Nickel 98.0 ng/Filter 0.5 AC-021 18-Jul-23 23060160-002 Selenium 21.4 ng/Filter 0.4 AC-021 18-Jul-23 23060160-002 Silver 0.49 ng/Filter 0.05 AC-021 18-Jul-23 23060160-002 Thallium 0.36 ng/Filter 0.02 AC-021 18-Jul-23 23060160-002 Tin 2.82 ng/Filter 0.02 AC-021 18-Jul-23 23060160-002 Vanadi	23060160-002	Boron		149 ng/Filter	0.6	AC-021	18-Jul-23
23060160-002 Cobalt 9.38 ng/Filter 0.05 AC-021 18-Jul-23 23060160-002 Copper 155 ng/Filter 2 AC-021 18-Jul-23 23060160-002 Iron 22100 ng/Filter 8 AC-021 18-Jul-23 23060160-002 Lead 88.5 ng/Filter 0.07 AC-021 18-Jul-23 23060160-002 Manganese 743 ng/Filter 0.1 AC-021 18-Jul-23 23060160-002 Mercury 0.37 ng/Filter 0.07 AC-021 18-Jul-23 23060160-002 Nickel 98.0 ng/Filter 0.5 AC-021 18-Jul-23 23060160-002 Selenium 21.4 ng/Filter 0.4 AC-021 18-Jul-23 23060160-002 Silver 0.49 ng/Filter 0.05 AC-021 18-Jul-23 23060160-002 Thallium 0.36 ng/Filter 0.02 AC-021 18-Jul-23 23060160-002 Tin 2.82 ng/Filter 0.02 AC-021 18-Jul-23 23060160-002 Uranium 1.18 ng/Filter 0.04 AC-021 18-Jul-23 23060160-002 Van	23060160-002	Cadmium		1.57 ng/Filter	0.08	AC-021	18-Jul-23
23060160-002 Copper 155 ng/Filter 2 AC-021 18-Jul-23 23060160-002 Iron 22100 ng/Filter 8 AC-021 18-Jul-23 23060160-002 Lead 88.5 ng/Filter 0.07 AC-021 18-Jul-23 23060160-002 Manganese 743 ng/Filter 0.1 AC-021 18-Jul-23 23060160-002 Mercury 0.37 ng/Filter 0.07 AC-021 18-Jul-23 23060160-002 Nickel 98.0 ng/Filter 0.5 AC-021 18-Jul-23 23060160-002 Selenium 21.4 ng/Filter 0.4 AC-021 18-Jul-23 23060160-002 Silver 0.49 ng/Filter 0.05 AC-021 18-Jul-23 23060160-002 Thallium 0.36 ng/Filter 0.02 AC-021 18-Jul-23 23060160-002 Tin 2.82 ng/Filter 0.02 AC-021 18-Jul-23 23060160-002 Vanadium 95.3 ng/Filter 0.04 AC-021 18-Jul-23 23060160-002 Zinc 872 ng/Filter 1 AC-021 18-Jul-23	23060160-002	Chromium		109 ng/Filter	2	AC-021	18-Jul-23
23060160-002 Iron 22100 ng/Filter 8 AC-021 18-Jul-23 23060160-002 Lead 88.5 ng/Filter 0.07 AC-021 18-Jul-23 23060160-002 Manganese 743 ng/Filter 0.1 AC-021 18-Jul-23 23060160-002 Mercury 0.37 ng/Filter 0.07 AC-021 18-Jul-23 23060160-002 Nickel 98.0 ng/Filter 0.5 AC-021 18-Jul-23 23060160-002 Selenium 21.4 ng/Filter 0.4 AC-021 18-Jul-23 23060160-002 Silver 0.49 ng/Filter 0.05 AC-021 18-Jul-23 23060160-002 Thallium 0.36 ng/Filter 0.02 AC-021 18-Jul-23 23060160-002 Tin 2.82 ng/Filter 0.02 AC-021 18-Jul-23 23060160-002 Uranium 1.18 ng/Filter 0.04 AC-021 18-Jul-23 23060160-002 Vanadium 95.3 ng/Filter 0.04 AC-021 18-Jul-23 23060160-002 Zinc 872 ng/Filter 1 AC-021 18-Jul-23	23060160-002	Cobalt		9.38 ng/Filter	0.05	AC-021	18-Jul-23
23060160-002 Lead 88.5 ng/Filter 0.07 AC-021 18-Jul-23 23060160-002 Manganese 743 ng/Filter 0.1 AC-021 18-Jul-23 23060160-002 Mercury 0.37 ng/Filter 0.07 AC-021 18-Jul-23 23060160-002 Nickel 98.0 ng/Filter 0.5 AC-021 18-Jul-23 23060160-002 Selenium 21.4 ng/Filter 0.4 AC-021 18-Jul-23 23060160-002 Silver 0.49 ng/Filter 0.05 AC-021 18-Jul-23 23060160-002 Thallium 0.36 ng/Filter 0.02 AC-021 18-Jul-23 23060160-002 Tin 2.82 ng/Filter 0.02 AC-021 18-Jul-23 23060160-002 Uranium 1.18 ng/Filter 0.02 AC-021 18-Jul-23 23060160-002 Vanadium 95.3 ng/Filter 0.04 AC-021 18-Jul-23 23060160-002 Zinc 872 ng/Filter 1 AC-021 18-Jul-23	23060160-002	Copper		155 ng/Filter	2	AC-021	18-Jul-23
23060160-002 Manganese 743 ng/Filter 0.1 AC-021 18-Jul-23 23060160-002 Mercury 0.37 ng/Filter 0.07 AC-021 18-Jul-23 23060160-002 Nickel 98.0 ng/Filter 0.5 AC-021 18-Jul-23 23060160-002 Selenium 21.4 ng/Filter 0.4 AC-021 18-Jul-23 23060160-002 Silver 0.49 ng/Filter 0.05 AC-021 18-Jul-23 23060160-002 Thallium 0.36 ng/Filter 0.02 AC-021 18-Jul-23 23060160-002 Tin 2.82 ng/Filter 0.02 AC-021 18-Jul-23 23060160-002 Uranium 1.18 ng/Filter 0.020 AC-021 18-Jul-23 23060160-002 Vanadium 95.3 ng/Filter 0.04 AC-021 18-Jul-23 23060160-002 Zinc 872 ng/Filter 1 AC-021 18-Jul-23	23060160-002	Iron	22	2100 ng/Filter	8	AC-021	18-Jul-23
23060160-002 Mercury 0.37 ng/Filter 0.07 AC-021 18-Jul-23 23060160-002 Nickel 98.0 ng/Filter 0.5 AC-021 18-Jul-23 23060160-002 Selenium 21.4 ng/Filter 0.4 AC-021 18-Jul-23 23060160-002 Silver 0.49 ng/Filter 0.05 AC-021 18-Jul-23 23060160-002 Thallium 0.36 ng/Filter 0.02 AC-021 18-Jul-23 23060160-002 Tin 2.82 ng/Filter 0.02 AC-021 18-Jul-23 23060160-002 Uranium 1.18 ng/Filter 0.020 AC-021 18-Jul-23 23060160-002 Vanadium 95.3 ng/Filter 0.04 AC-021 18-Jul-23 23060160-002 Zinc 872 ng/Filter 1 AC-021 18-Jul-23	23060160-002	Lead		88.5 ng/Filter	0.07	AC-021	18-Jul-23
23060160-002 Nickel 98.0 ng/Filter 0.5 AC-021 18-Jul-23 23060160-002 Selenium 21.4 ng/Filter 0.4 AC-021 18-Jul-23 23060160-002 Silver 0.49 ng/Filter 0.05 AC-021 18-Jul-23 23060160-002 Thallium 0.36 ng/Filter 0.02 AC-021 18-Jul-23 23060160-002 Tin 2.82 ng/Filter 0.02 AC-021 18-Jul-23 23060160-002 Uranium 1.18 ng/Filter 0.020 AC-021 18-Jul-23 23060160-002 Vanadium 95.3 ng/Filter 0.04 AC-021 18-Jul-23 23060160-002 Zinc 872 ng/Filter 1 AC-021 18-Jul-23	23060160-002	Manganese		743 ng/Filter	0.1	AC-021	18-Jul-23
23060160-002 Selenium 21.4 ng/Filter 0.4 AC-021 18-Jul-23 23060160-002 Silver 0.49 ng/Filter 0.05 AC-021 18-Jul-23 23060160-002 Thallium 0.36 ng/Filter 0.02 AC-021 18-Jul-23 23060160-002 Tin 2.82 ng/Filter 0.02 AC-021 18-Jul-23 23060160-002 Uranium 1.18 ng/Filter 0.020 AC-021 18-Jul-23 23060160-002 Vanadium 95.3 ng/Filter 0.04 AC-021 18-Jul-23 23060160-002 Zinc 872 ng/Filter 1 AC-021 18-Jul-23	23060160-002	Mercury		0.37 ng/Filter	0.07	AC-021	18-Jul-23
23060160-002 Silver 0.49 ng/Filter 0.05 AC-021 18-Jul-23 23060160-002 Thallium 0.36 ng/Filter 0.02 AC-021 18-Jul-23 23060160-002 Tin 2.82 ng/Filter 0.02 AC-021 18-Jul-23 23060160-002 Uranium 1.18 ng/Filter 0.020 AC-021 18-Jul-23 23060160-002 Vanadium 95.3 ng/Filter 0.04 AC-021 18-Jul-23 23060160-002 Zinc 872 ng/Filter 1 AC-021 18-Jul-23	23060160-002	Nickel		98.0 ng/Filter	0.5	AC-021	18-Jul-23
23060160-002 Thallium 0.36 ng/Filter 0.02 AC-021 18-Jul-23 23060160-002 Tin 2.82 ng/Filter 0.02 AC-021 18-Jul-23 23060160-002 Uranium 1.18 ng/Filter 0.020 AC-021 18-Jul-23 23060160-002 Vanadium 95.3 ng/Filter 0.04 AC-021 18-Jul-23 23060160-002 Zinc 872 ng/Filter 1 AC-021 18-Jul-23	23060160-002	Selenium		21.4 ng/Filter	0.4	AC-021	18-Jul-23
23060160-002 Tin 2.82 ng/Filter 0.02 AC-021 18-Jul-23 23060160-002 Uranium 1.18 ng/Filter 0.020 AC-021 18-Jul-23 23060160-002 Vanadium 95.3 ng/Filter 0.04 AC-021 18-Jul-23 23060160-002 Zinc 872 ng/Filter 1 AC-021 18-Jul-23	23060160-002	Silver		0.49 ng/Filter	0.05	AC-021	18-Jul-23
23060160-002 Uranium 1.18 ng/Filter 0.020 AC-021 18-Jul-23 23060160-002 Vanadium 95.3 ng/Filter 0.04 AC-021 18-Jul-23 23060160-002 Zinc 872 ng/Filter 1 AC-021 18-Jul-23	23060160-002	Thallium		0.36 ng/Filter	0.02	AC-021	18-Jul-23
23060160-002 Vanadium 95.3 ng/Filter 0.04 AC-021 18-Jul-23 23060160-002 Zinc 872 ng/Filter 1 AC-021 18-Jul-23	23060160-002	Tin		2.82 ng/Filter	0.02	AC-021	18-Jul-23
23060160-002 Zinc 872 ng/Filter 1 AC-021 18-Jul-23	23060160-002	Uranium		1.18 ng/Filter	0.020	AC-021	18-Jul-23
	23060160-002	Vanadium		95.3 ng/Filter	0.04	AC-021	18-Jul-23
23060160-002 Particulate Weight 0.776 mg 0.004 AC-029 14-Jun-23	23060160-002	Zinc		872 ng/Filter	1	AC-021	18-Jul-23
	23060160-002	Particulate Weight	0	.776 mg	0.004	AC-029	14-Jun-23

Report certified by: Andrea Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: July 26, 2023 E-mail: EAS.Results@innotechalberta.ca Inquiries: (780) 632 8403

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 4 of 12

CLIENT SAMPLE ID VOCs and TNMOC Test # 845	CANISTER ID	Matrix	DATE SAMPLED		
VOCs and TNMOC Test # 845	32184	Ambient Air	05-Jun-23 0:00		

DESCRIPTION: Canister

REPORT NUMBER: 23060160 REPORT CREATED: 26-Jul-23 VERSION: Version 01

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
23060160-001	Total Non-Methane Organic Carbon	K, T, U	< 0.08 ppmv	0.08	NA-028	13-Jun-23
23060160-001	1,2,3-Trimethylbenzene	K, T, U	< 0.08 ppbv	0.08	AC-058	15-Jun-23
23060160-001	1,2,4-Trimethylbenzene	K, T, U	< 0.05 ppbv	0.05	AC-058	15-Jun-23
23060160-001	1,3,5-Trimethylbenzene	K, T, U	< 0.05 ppbv	0.05	AC-058	15-Jun-23
23060160-001	1-Butene/Isobutylene	K, T, U	< 0.10 ppbv	0.10	AC-058	15-Jun-23
23060160-001	1-Hexene/2-Methyl-1-pentene	K, T, U	< 0.11 ppbv	0.11	AC-058	15-Jun-23
23060160-001	1-Pentene	K, T, U	< 0.05 ppbv	0.05	AC-058	15-Jun-23
23060160-001	2,2,4-Trimethylpentane	K, T, U	< 0.03 ppbv	0.03	AC-058	15-Jun-23
23060160-001	2,2-Dimethylbutane	K, T, U	< 0.03 ppbv	0.03	AC-058	15-Jun-23
23060160-001	2,3,4-Trimethylpentane	K, T, U	< 0.03 ppbv	0.03	AC-058	15-Jun-23
23060160-001	2,3-Dimethylbutane	K, T, U	< 0.14 ppbv	0.14	AC-058	15-Jun-23
23060160-001	2,3-Dimethylpentane	K, T, U	< 0.03 ppbv	0.03	AC-058	15-Jun-23
23060160-001	2,4-Dimethylpentane	K, T, U	< 0.05 ppbv	0.05	AC-058	15-Jun-23
23060160-001	2-Methylheptane	K, T, U	< 0.03 ppbv	0.03	AC-058	15-Jun-23
23060160-001	2-Methylhexane	K, T, U	< 0.05 ppbv	0.05	AC-058	15-Jun-23
23060160-001	2-Methylpentane	1	0.13 ppbv	0.03	AC-058	15-Jun-23
23060160-001	3-Methylheptane	K, T, U	< 0.05 ppbv	0.05	AC-058	15-Jun-23
23060160-001	3-Methylhexane	1	0.06 ppbv	0.03	AC-058	15-Jun-23
23060160-001	3-Methylpentane	1	0.05 ppbv	0.03	AC-058	15-Jun-23
23060160-001	Benzene	1	0.06 ppbv	0.05	AC-058	15-Jun-23
23060160-001	cis-2-Butene	K, T, U	< 0.05 ppbv	0.05	AC-058	15-Jun-23
23060160-001	cis-2-Pentene	K, T, U	< 0.03 ppbv	0.03	AC-058	15-Jun-23
23060160-001	Cyclohexane	1	0.07 ppbv	0.06	AC-058	15-Jun-23
23060160-001	Cyclopentane	K, T, U	< 0.03 ppbv	0.03	AC-058	15-Jun-23
23060160-001	Ethylbenzene	K, T, U	< 0.05 ppbv	0.05	AC-058	15-Jun-23
1						

Report certified by: Andrea Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: July 26, 2023 E-mail: EAS.Results@innotechalberta.ca

TEST REPORT Page 5 of 12

CLIENT SAMPLE ID Matrix **CANISTER ID DATE SAMPLED** VOCs and TNMOC Test # 845 Ambient Air 05-Jun-23 0:00 32184

DESCRIPTION: Canister

26-Jul-23 **VERSION: Version 01** REPORT NUMBER: 23060160 **REPORT CREATED:**

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
23060160-001	Isobutane		0.47 ppbv	0.05	AC-058	15-Jun-23
23060160-001	Isopentane		0.39 ppbv	0.06	AC-058	15-Jun-23
23060160-001	Isoprene	1	0.09 ppbv	0.03	AC-058	15-Jun-23
23060160-001	Isopropylbenzene	K, T, U	< 0.06 ppbv	0.06	AC-058	15-Jun-23
23060160-001	m,p-Xylene	I	0.20 ppbv	0.06	AC-058	15-Jun-23
23060160-001	m-Diethylbenzene	K, T, U	< 0.03 ppbv	0.03	AC-058	15-Jun-23
23060160-001	m-Ethyltoluene	K, T, U	< 0.05 ppbv	0.05	AC-058	15-Jun-23
23060160-001	Methylcyclohexane	I	0.08 ppbv	0.03	AC-058	15-Jun-23
23060160-001	Methylcyclopentane	K, T, U	< 0.08 ppbv	0.08	AC-058	15-Jun-23
23060160-001	n-Butane		0.25 ppbv	0.03	AC-058	15-Jun-23
23060160-001	n-Decane	K, T, U	< 0.10 ppbv	0.10	AC-058	15-Jun-23
23060160-001	n-Dodecane	K, T, U	< 0.5 ppbv	0.5	AC-058	15-Jun-23
23060160-001	n-Heptane	K, T, U	< 0.06 ppbv	0.06	AC-058	15-Jun-23
23060160-001	n-Hexane	I	0.23 ppbv	0.05	AC-058	15-Jun-23
23060160-001	n-Octane	I	0.04 ppbv	0.03	AC-058	15-Jun-23
23060160-001	n-Pentane		0.29 ppbv	0.06	AC-058	15-Jun-23
23060160-001	n-Propylbenzene	K, T, U	< 0.10 ppbv	0.10	AC-058	15-Jun-23
23060160-001	n-Undecane	K, T, U	< 0.8 ppbv	0.8	AC-058	15-Jun-23
23060160-001	n-Nonane	K, T, U	< 0.06 ppbv	0.06	AC-058	15-Jun-23
23060160-001	o-Ethyltoluene	K, T, U	< 0.03 ppbv	0.03	AC-058	15-Jun-23
23060160-001	o-Xylene	K, T, U	< 0.05 ppbv	0.05	AC-058	15-Jun-23
23060160-001	p-Diethylbenzene	K, T, U	< 0.03 ppbv	0.03	AC-058	15-Jun-23
23060160-001	p-Ethyltoluene	K, T, U	< 0.06 ppbv	0.06	AC-058	15-Jun-23
23060160-001	Styrene	K, T, U	< 0.06 ppbv	0.06	AC-058	15-Jun-23
23060160-001	Toluene		0.38 ppbv	0.05	AC-058	15-Jun-23

Report certified by: Andrea Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: July 26, 2023 E-mail: EAS.Results@innotechalberta.ca Inquiries: (780) 632 8403

ENVIRONMENTAL ANALYTICAL SERVICES

Page 6 of 12 **TEST REPORT**

CLIENT SAMPLE ID Matrix **CANISTER ID DATE SAMPLED** Ambient Air 05-Jun-23 0:00

VOCs and TNMOC Test # 845 32184

DESCRIPTION: Canister

REPORT NUMBER: 23060160 **REPORT CREATED:** 26-Jul-23 **VERSION: Version 01**

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
23060160-001	trans-2-Butene	K, T, U	< 0.05 ppbv	0.05	AC-058	15-Jun-23
23060160-001	trans-2-Pentene	K, T, U	< 0.03 ppbv	0.03	AC-058	15-Jun-23

Report certified by: Andrea Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: July 26, 2023 E-mail: EAS.Results@innotechalberta.ca Inquiries: (780) 632 8403

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 7 of 12

Revision History

Order ID	Ver	Date	Reason
23060160	01	26-Jul-23	Report created

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 8 of 12

Methods

Method	Description
AC-021	Elemental Analysis Methodology of Filter-collected Airborne Particulate Matter (PM) by ICP-MS
AC-029	Procedure for the Equilibration and Weighing of Membrane Filters and PUFs on the Mettler Toledo Micro Balance
AC-058	Determination of Volatile Organic Compounds in Ambient Air by Gas Chromatography Mass Spectrometry
NA-028	Determination of Total Non-methane Hydrocarbons and Total Hydrocarbons in Ambient Air by Gas Chromatography Flame Ionization Detector
Research	Research method

List of Analytical Method IDs within InnoTech's ISO/IEC 17025:2017 CALA Scope of Accreditation

Method ID	Description
AC-013	Mercury in Waters by Cold Vapor Atomic Fluorescence Detection (CVAFS)
AC-020	Ion Chromatographic Procedures using the Dionex ICS 3000 and 5000 Systems
AC-021	Elemental Analysis Methodology of Filter-collected Airborne Particulate Matter (PM) by ICP-MS
AC-026	Ion Chromatographic Procedures using the Dionex ICS 3000 and 5000 Systems
AC-029	Procedure for the Equilibration and Weighing of Membrane Filters and PUFs on the Mettler Toledo Micro Balance
AC-035	Analysis of Glyphosate, Aminomethylphosphonic Acid and Glufosinate in Water
AC-038	Trace Metal Analysis of Water Samples by ICP-MS
AC-048	Specific Conductance (Conductivity Meter Method)
AC-049	pH (Meter Method)
AC-054	Alkalinity Total and Phenolphthalein
AC-058	Determination of Volatile Organic Compounds in Ambient Air by Gas Chromatography Mass Spectrometry
AC-060	Trace Metal Analysis of Soil Sediment and Industrial Waste Samples by Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
AC-061	Trace Metal Analysis for Biological Samples by Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
AC-065	Analysis of Naphthenic Acids in Water by HPLC-Orbitrap-MS analysis
AC-074	Pesticides in Water
AC-079	Alkylated PAH in Soil and Sediment
AC-080	Alkylated PAH in Water (SPE Extraction)
NA-006	Determination of BTEX, F1 Hydrocarbons and F2, F3 and F4 Hydrocarbons in Water
NA-024	Analysis of Reduced Sulfur Compounds in Air

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 9 of 12

Qualifiers

Data Qualifier Translation

В	Blank contamination; Analyte detected above the method reporting limit in an associated blank
I	The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit
11	Reported value is estimated; Surrogate recoveries limits were exceeded
12	Reported value is estimated; No known QC criteria for this component
13	Reported value is estimated; The value failed to meet QC criteria for either precision or accuracy
14	Reported value is estimated; The sample matrix interfered with the analysis
K	Off-scale low. Actual value is known to be less than the value given
L	Off-scale high. Actual value is known to be greater than value given
V	Non-target analyte; Tentatively identified compound (using mass spectroscopy)
Q	Sample held beyond the accepted holding time
R	Rejected data; Not suitable for the projects intended use
Т	Value reported is less than the laboratory method detection limit
J	Compound was analyzed for but not detected
./	Analyte was detected in both the sample and the associated method blank

TEST REPORT Page 10 of 12

Order Comments

23060160

Project ID: Test 845. Send report to Yuha.Stan@cleanharbors.com.

TEST REPORT Page 11 of 12

Sample Comments

TEST REPORT Page 12 of 12

Result Comments

Note:

- 1. Results relate only to items tested and apply to the sample as received.
- 2. This report shall not be reproduced, except in full, without the explicit approval of the laboratory.

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 1 of 12

RESULTS: Todd Webb

Clean Harbors Environmental

PO Box 390

2 km N of Hwy 14 on Sec Road 854 50114 RR 173

Ryley

AB T0B 4A0

INVOICE: Stephanie Dennis

PO Box 390

2 km N of Hwy 14 on Sec Road 854 50114 RR 173

Ryley

AB T0B 4A0 **CLIENT SAMPLE ID**

Matrix Air Filter

20-Jun-23

HiVol Test # 846, HVF-23-03-13

CANISTER ID:

PRIORITY: Normal

DESCRIPTION: Hivol Filter

11-Jun-23 **DATE SAMPLED:** 0:00 **DATE RECEIVED:**

REPORT CREATED: 26-Jul-23 **REPORT NUMBER:** 23060295

> Version 01 **VERSION:**

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
23060295-003	Antimony		347 ng/Filter	0.30	AC-021	21-Jul-23
23060295-003	Arsenic		7210 ng/Filter	0.30	AC-021	21-Jul-23
23060295-003	Barium		1810000 ng/Filter	300	AC-021	21-Jul-23
23060295-003	Beryllium		43.5 ng/Filter	0.60	AC-021	21-Jul-23
23060295-003	Boron		12700000 ng/Filter	600	AC-021	21-Jul-23
23060295-003	Cadmium		458 ng/Filter	0.80	AC-021	21-Jul-23
23060295-003	Chromium		7390 ng/Filter	20	AC-021	21-Jul-23
23060295-003	Cobalt		740 ng/Filter	0.50	AC-021	21-Jul-23
23060295-003	Copper		432000 ng/Filter	20	AC-021	21-Jul-23
23060295-003	Iron		1530000 ng/Filter	80	AC-021	21-Jul-23
23060295-003	Lead		11500 ng/Filter	0.70	AC-021	21-Jul-23
23060295-003	Manganese		67700 ng/Filter	1.0	AC-021	21-Jul-23
23060295-003	Mercury		72.5 ng/Filter	0.70	AC-021	21-Jul-23
23060295-003	Nickel		82900 ng/Filter	5.0	AC-021	21-Jul-23
23060295-003	Selenium		2080 ng/Filter	4.0	AC-021	21-Jul-23
23060295-003	Silver		279 ng/Filter	0.50	AC-021	21-Jul-23
23060295-003	Thallium	K, T, U	< 0.20 ng/Filter	0.20	AC-021	21-Jul-23

Report certified by: Andrea Conner, Admin Assistant

On behalf of: Adam Malcolm, Manager, Chemical Testing Date: July 26, 2023 E-mail: EAS.Results@innotechalberta.ca Inquiries: (780) 632 8403

InnoTech's ISO/IEC 17025:2017 scope of accreditation can be located at https://directory.cala.ca//

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 2 of 12

CLIENT SAMPLE ID CANISTER ID Matrix DATE SAMPLED

HiVol Test # 846, HVF-23-03-13 Air Filter 11-Jun-23 0:00

DESCRIPTION: Hivol Filter

REPORT NUMBER: 23060295 REPORT CREATED: 26-Jul-23 VERSION: Version 01

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
23060295-003	Tin		292 ng/Filter	0.20	AC-021	21-Jul-23
23060295-003	Uranium	K, T, U	< 0.200 ng/Filter	0.200	AC-021	21-Jul-23
23060295-003	Vanadium		6300 ng/Filter	0.40	AC-021	21-Jul-23
23060295-003	Zinc		1660000 ng/Filter	1000	AC-021	21-Jul-23
23060295-003	Particulate Weight		121 mg	0.1	Research	

Report certified by: Andrea Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: July 26, 2023 E-mail: EAS.Results@innotechalberta.ca

TEST REPORT Page 3 of 12

 CLIENT SAMPLE ID
 CANISTER ID
 Matrix
 DATE SAMPLED

 PM10 Test # 846, C1170495
 Air Filter
 11-Jun-23
 0:00

DESCRIPTION: PM10 Filter

REPORT NUMBER: 23060295 REPORT CREATED: 26-Jul-23 VERSION: Version 01

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
23060295-002	Antimony		2.53 ng/Filter	0.03	AC-021	18-Jul-23
23060295-002	Arsenic		13.3 ng/Filter	0.03	AC-021	18-Jul-23
23060295-002	Barium		197 ng/Filter	0.3	AC-021	18-Jul-23
23060295-002	Beryllium		0.39 ng/Filter	0.06	AC-021	18-Jul-23
23060295-002	Boron		342 ng/Filter	0.6	AC-021	18-Jul-23
23060295-002	Cadmium		3.44 ng/Filter	0.08	AC-021	18-Jul-23
23060295-002	Chromium		38 ng/Filter	2	AC-021	18-Jul-23
23060295-002	Cobalt		4.95 ng/Filter	0.05	AC-021	18-Jul-23
23060295-002	Copper		187 ng/Filter	2	AC-021	18-Jul-23
23060295-002	Iron		12100 ng/Filter	8	AC-021	18-Jul-23
23060295-002	Lead		45.0 ng/Filter	0.07	AC-021	18-Jul-23
23060295-002	Manganese		453 ng/Filter	0.1	AC-021	18-Jul-23
23060295-002	Mercury		0.86 ng/Filter	0.07	AC-021	18-Jul-23
23060295-002	Nickel		803 ng/Filter	0.5	AC-021	18-Jul-23
23060295-002	Selenium		25.0 ng/Filter	0.4	AC-021	18-Jul-23
23060295-002	Silver		0.70 ng/Filter	0.05	AC-021	18-Jul-23
23060295-002	Thallium		0.33 ng/Filter	0.02	AC-021	18-Jul-23
23060295-002	Tin		2.81 ng/Filter	0.02	AC-021	18-Jul-23
23060295-002	Uranium		0.746 ng/Filter	0.020	AC-021	18-Jul-23
23060295-002	Vanadium		62.8 ng/Filter	0.04	AC-021	18-Jul-23
23060295-002	Zinc		746 ng/Filter	1	AC-021	18-Jul-23
23060295-002	Particulate Weight		0.995 mg	0.004	AC-029	21-Jun-23

Report certified by: Andrea Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: July 26, 2023 E-mail: EAS.Results@innotechalberta.ca

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 4 of 12

CLIENT SAMPLE ID Matrix **CANISTER ID DATE SAMPLED** VOCs and TNMOC Test #846 Ambient Air 0:00 11-Jun-23

DESCRIPTION: Air Canister

REPORT NUMBER: 23060295 **REPORT CREATED: VERSION: Version 01** 26-Jul-23

C 2000230		20 301 23			7211313111	V C 1 5 1 5 1 1 5 1	
Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date	
23060295-001	Total Non-Methane Organic Carbon	K, T, U	< 0.09 ppmv	0.09	NA-028	20-Jun-23	
23060295-001	1,2,3-Trimethylbenzene	K, T, U	< 0.09 ppbv	0.09	AC-058	22-Jun-23	
23060295-001	1,2,4-Trimethylbenzene	K, T, U	< 0.05 ppbv	0.05	AC-058	22-Jun-23	
23060295-001	1,3,5-Trimethylbenzene	K, T, U	< 0.05 ppbv	0.05	AC-058	22-Jun-23	
23060295-001	1-Butene/Isobutylene	K, T, U	< 0.10 ppbv	0.10	AC-058	22-Jun-23	
23060295-001	1-Hexene/2-Methyl-1-pentene	K, T, U	< 0.12 ppbv	0.12	AC-058	22-Jun-23	
23060295-001	1-Pentene	K, T, U	< 0.05 ppbv	0.05	AC-058	22-Jun-23	
23060295-001	2,2,4-Trimethylpentane	K, T, U	< 0.03 ppbv	0.03	AC-058	22-Jun-23	
23060295-001	2,2-Dimethylbutane	K, T, U	< 0.03 ppbv	0.03	AC-058	22-Jun-23	
23060295-001	2,3,4-Trimethylpentane	1	0.06 ppbv	0.03	AC-058	22-Jun-23	
23060295-001	2,3-Dimethylbutane	K, T, U	< 0.15 ppbv	0.15	AC-058	22-Jun-23	
23060295-001	2,3-Dimethylpentane	K, T, U	< 0.03 ppbv	0.03	AC-058	22-Jun-23	
23060295-001	2,4-Dimethylpentane	K, T, U	< 0.05 ppbv	0.05	AC-058	22-Jun-23	
23060295-001	2-Methylheptane	K, T, U	< 0.03 ppbv	0.03	AC-058	22-Jun-23	
23060295-001	2-Methylhexane	K, T, U	< 0.05 ppbv	0.05	AC-058	22-Jun-23	
23060295-001	2-Methylpentane		0.17 ppbv	0.03	AC-058	22-Jun-23	
23060295-001	3-Methylheptane	K, T, U	< 0.05 ppbv	0.05	AC-058	22-Jun-23	
23060295-001	3-Methylhexane	1	0.06 ppbv	0.03	AC-058	22-Jun-23	
23060295-001	3-Methylpentane	1	0.06 ppbv	0.03	AC-058	22-Jun-23	
23060295-001	Benzene	1	0.22 ppbv	0.05	AC-058	22-Jun-23	
23060295-001	cis-2-Butene	K, T, U	< 0.05 ppbv	0.05	AC-058	22-Jun-23	
23060295-001	cis-2-Pentene	K, T, U	< 0.03 ppbv	0.03	AC-058	22-Jun-23	
23060295-001	Cyclohexane	1	0.07 ppbv	0.07	AC-058	22-Jun-23	
23060295-001	Cyclopentane	K, T, U	< 0.03 ppbv	0.03	AC-058	22-Jun-23	
23060295-001	Ethylbenzene	K, T, U	< 0.05 ppbv	0.05	AC-058	22-Jun-23	

Report certified by: Andrea Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: July 26, 2023 E-mail: EAS.Results@innotechalberta.ca Inquiries: (780) 632 8403

TEST REPORT Page 5 of 12

CLIENT SAMPLE ID Matrix **CANISTER ID DATE SAMPLED** VOCs and TNMOC Test #846 Ambient Air 0:00 11-Jun-23

DESCRIPTION: Air Canister

23060295 **VERSION: Version 01** REPORT NUMBER: **REPORT CREATED:** 26-Jul-23

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
23060295-001	Isobutane		0.25 ppbv	0.05	AC-058	22-Jun-23
23060295-001	Isopentane		0.51 ppbv	0.07	AC-058	22-Jun-23
23060295-001	Isoprene		0.32 ppbv	0.03	AC-058	22-Jun-23
23060295-001	Isopropylbenzene	K, T, U	< 0.07 ppbv	0.07	AC-058	22-Jun-23
23060295-001	m,p-Xylene	1	0.17 ppbv	0.07	AC-058	22-Jun-23
23060295-001	m-Diethylbenzene	K, T, U	< 0.03 ppbv	0.03	AC-058	22-Jun-23
23060295-001	m-Ethyltoluene	K, T, U	< 0.05 ppbv	0.05	AC-058	22-Jun-23
23060295-001	Methylcyclohexane	1	0.15 ppbv	0.03	AC-058	22-Jun-23
23060295-001	Methylcyclopentane	1	0.09 ppbv	0.09	AC-058	22-Jun-23
23060295-001	n-Butane		0.60 ppbv	0.03	AC-058	22-Jun-23
23060295-001	n-Decane	K, T, U	< 0.10 ppbv	0.10	AC-058	22-Jun-23
23060295-001	n-Dodecane	K, T, U	< 0.5 ppbv	0.5	AC-058	22-Jun-23
23060295-001	n-Heptane	1	0.11 ppbv	0.07	AC-058	22-Jun-23
23060295-001	n-Hexane	1	0.15 ppbv	0.05	AC-058	22-Jun-23
23060295-001	n-Octane	1	0.09 ppbv	0.03	AC-058	22-Jun-23
23060295-001	n-Pentane		0.38 ppbv	0.07	AC-058	22-Jun-23
23060295-001	n-Propylbenzene	K, T, U	< 0.10 ppbv	0.10	AC-058	22-Jun-23
23060295-001	n-Undecane	K, T, U	< 0.9 ppbv	0.9	AC-058	22-Jun-23
23060295-001	n-Nonane	1	0.09 ppbv	0.07	AC-058	22-Jun-23
23060295-001	o-Ethyltoluene	K, T, U	< 0.03 ppbv	0.03	AC-058	22-Jun-23
23060295-001	o-Xylene	K, T, U	< 0.05 ppbv	0.05	AC-058	22-Jun-23
23060295-001	p-Diethylbenzene	1	0.05 ppbv	0.03	AC-058	22-Jun-23
23060295-001	p-Ethyltoluene	K, T, U	< 0.07 ppbv	0.07	AC-058	22-Jun-23
23060295-001	Styrene	K, T, U	< 0.07 ppbv	0.07	AC-058	22-Jun-23
23060295-001	Toluene	1	0.16 ppbv	0.05	AC-058	22-Jun-23

Report certified by: Andrea Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: July 26, 2023 E-mail: EAS.Results@innotechalberta.ca Inquiries: (780) 632 8403

CLIENT SAMPLE ID

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 6 of 12

CANISTER ID Matrix DATE SAMPLED

VOCs and TNMOC Test # 846 Ambient Air 11-Jun-23 0:00

DESCRIPTION: Air Canister

REPORT NUMBER: 23060295 REPORT CREATED: 26-Jul-23 VERSION: Version 01

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
23060295-001	trans-2-Butene	K, T, U	< 0.05 ppbv	0.05	AC-058	22-Jun-23
23060295-001	trans-2-Pentene	K, T, U	< 0.03 ppbv	0.03	AC-058	22-Jun-23

Report certified by: Andrea Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: July 26, 2023 E-mail: EAS.Results@innotechalberta.ca

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 7 of 12

Revision History

Order ID	Ver	Date	Reason
3060295	01	26-Jul-23	Report created

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 8 of 12

Methods

Method	Description
AC-021	Elemental Analysis Methodology of Filter-collected Airborne Particulate Matter (PM) by ICP-MS
AC-029	Procedure for the Equilibration and Weighing of Membrane Filters and PUFs on the Mettler Toledo Micro Balance
AC-058	Determination of Volatile Organic Compounds in Ambient Air by Gas Chromatography Mass Spectrometry
NA-028	Determination of Total Non-methane Hydrocarbons and Total Hydrocarbons in Ambient Air by Gas Chromatography Flame Ionization Detector
Research	Research method

List of Analytical Method IDs within InnoTech's ISO/IEC 17025:2017 CALA Scope of Accreditation

Method ID	Description
AC-013	Mercury in Waters by Cold Vapor Atomic Fluorescence Detection (CVAFS)
AC-020	Ion Chromatographic Procedures using the Dionex ICS 3000 and 5000 Systems
AC-021	Elemental Analysis Methodology of Filter-collected Airborne Particulate Matter (PM) by ICP-MS
AC-026	Ion Chromatographic Procedures using the Dionex ICS 3000 and 5000 Systems
AC-029	Procedure for the Equilibration and Weighing of Membrane Filters and PUFs on the Mettler Toledo Micro Balance
AC-035	Analysis of Glyphosate, Aminomethylphosphonic Acid and Glufosinate in Water
AC-038	Trace Metal Analysis of Water Samples by ICP-MS
AC-048	Specific Conductance (Conductivity Meter Method)
AC-049	pH (Meter Method)
AC-054	Alkalinity Total and Phenolphthalein
AC-058	Determination of Volatile Organic Compounds in Ambient Air by Gas Chromatography Mass Spectrometry
AC-060	Trace Metal Analysis of Soil Sediment and Industrial Waste Samples by Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
AC-061	Trace Metal Analysis for Biological Samples by Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
AC-065	Analysis of Naphthenic Acids in Water by HPLC-Orbitrap-MS analysis
AC-074	Pesticides in Water
AC-079	Alkylated PAH in Soil and Sediment
AC-080	Alkylated PAH in Water (SPE Extraction)
NA-006	Determination of BTEX, F1 Hydrocarbons and F2, F3 and F4 Hydrocarbons in Water
NA-024	Analysis of Reduced Sulfur Compounds in Air

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 9 of 12

Qualifiers

Data Qualifier Translation

В	Blank contamination; Analyte detected above the method reporting limit in an associated blank
I	The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit
11	Reported value is estimated; Surrogate recoveries limits were exceeded
12	Reported value is estimated; No known QC criteria for this component
13	Reported value is estimated; The value failed to meet QC criteria for either precision or accuracy
14	Reported value is estimated; The sample matrix interfered with the analysis
K	Off-scale low. Actual value is known to be less than the value given
L	Off-scale high. Actual value is known to be greater than value given
V	Non-target analyte; Tentatively identified compound (using mass spectroscopy)
Q	Sample held beyond the accepted holding time
R	Rejected data; Not suitable for the projects intended use
Т	Value reported is less than the laboratory method detection limit
J	Compound was analyzed for but not detected
./	Analyte was detected in both the sample and the associated method blank

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 10 of 12

Order Comments

23060295

Project ID: Test # 846. Send report to Stan Yuha.

TEST REPORT Page 11 of 12

Sample Comments

TEST REPORT Page 12 of 12

Result Comments

Note:

- 1. Results relate only to items tested and apply to the sample as received.
- 2. This report shall not be reproduced, except in full, without the explicit approval of the laboratory.

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 1 of 11

RESULTS: Todd Webb

Clean Harbors Environmental

PO Box 390

2 km N of Hwy 14 on Sec Road 854 50114 RR 173

Ryley

AB TOB 4A0

INVOICE: Stephanie Dennis

PO Box 390

2 km N of Hwy 14 on Sec Road 854 50114 RR 173

Ryley

AB TOB 4A0

CLIENT SAMPLE ID

Matrix

HI-VOL Test # 847 - HVF-23-03-19

Air Filter

CANISTER ID:

PRIORITY: Normal

DESCRIPTION: Test # 847

DATE SAMPLED: 17-Jun-23 0:00 **DATE RECEIVED:** 21-Jun-23

REPORT CREATED: 05-Jul-23 **REPORT NUMBER:** 23060317

VERSION: Version 01

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
23060317-003	Particulate Weight		87.0 mg	0.1	Research	

Report certified by: Andrea Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: July 5, 2023 E-mail: EAS.Results@innotechalberta.ca

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 2 of 11

CLIENT SAMPLE ID CANISTER ID Matrix DATE SAMPLED

PM10 Test # 847 - C1170492 Air Filter 17-Jun-23 0:00

DESCRIPTION: Test # 847

REPORT NUMBER: 23060317 REPORT CREATED: 05-Jul-23 VERSION: Version 01

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
23060317-002	Particulate Weight		0.275 mg	0.004	AC-029	23-Jun-23

Report certified by: Andrea Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: July 5, 2023 E-mail: EAS.Results@innotechalberta.ca

ENVIRONMENTAL ANALYTICAL SERVICES

Page 3 of 11 **TEST REPORT**

CLIENT SAMPLE ID	CANISTER ID	Matrix	DATE SAMPLED
VOCs and TNMOC Test # 847	32264	Ambient Air	17-Jun-23 0:00

DESCRIPTION: Test # 847

VERSION: Version 01 REPORT NUMBER: 23060317 **REPORT CREATED:** 05-Jul-23

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
23060317-001	Total Non-Methane Organic Carbon	K, T, U	< 0.09 ppmv	0.09	NA-028	22-Jun-23
23060317-001	1,2,3-Trimethylbenzene	K, T, U	< 0.09 ppbv	0.09	AC-058	23-Jun-23
23060317-001	1,2,4-Trimethylbenzene	1	0.07 ppbv	0.05	AC-058	23-Jun-23
23060317-001	1,3,5-Trimethylbenzene	K, T, U	< 0.05 ppbv	0.05	AC-058	23-Jun-23
23060317-001	1-Butene/Isobutylene	K, T, U	< 0.10 ppbv	0.10	AC-058	23-Jun-23
23060317-001	1-Hexene/2-Methyl-1-pentene	K, T, U	< 0.12 ppbv	0.12	AC-058	23-Jun-23
23060317-001	1-Pentene	K, T, U	< 0.05 ppbv	0.05	AC-058	23-Jun-23
23060317-001	2,2,4-Trimethylpentane	K, T, U	< 0.03 ppbv	0.03	AC-058	23-Jun-23
23060317-001	2,2-Dimethylbutane	K, T, U	< 0.03 ppbv	0.03	AC-058	23-Jun-23
23060317-001	2,3,4-Trimethylpentane	K, T, U	< 0.03 ppbv	0.03	AC-058	23-Jun-23
23060317-001	2,3-Dimethylbutane	K, T, U	< 0.16 ppbv	0.16	AC-058	23-Jun-23
23060317-001	2,3-Dimethylpentane	K, T, U	< 0.03 ppbv	0.03	AC-058	23-Jun-23
23060317-001	2,4-Dimethylpentane	K, T, U	< 0.05 ppbv	0.05	AC-058	23-Jun-23
23060317-001	2-Methylheptane	K, T, U	< 0.03 ppbv	0.03	AC-058	23-Jun-23
23060317-001	2-Methylhexane	K, T, U	< 0.05 ppbv	0.05	AC-058	23-Jun-23
23060317-001	2-Methylpentane	K, T, U	< 0.03 ppbv	0.03	AC-058	23-Jun-23
23060317-001	3-Methylheptane	K, T, U	< 0.05 ppbv	0.05	AC-058	23-Jun-23
23060317-001	3-Methylhexane	K, T, U	< 0.03 ppbv	0.03	AC-058	23-Jun-23
23060317-001	3-Methylpentane	K, T, U	< 0.03 ppbv	0.03	AC-058	23-Jun-23
23060317-001	Benzene	K, T, U	< 0.05 ppbv	0.05	AC-058	23-Jun-23
23060317-001	cis-2-Butene	K, T, U	< 0.05 ppbv	0.05	AC-058	23-Jun-23
23060317-001	cis-2-Pentene	K, T, U	< 0.03 ppbv	0.03	AC-058	23-Jun-23
23060317-001	Cyclohexane	K, T, U	< 0.07 ppbv	0.07	AC-058	23-Jun-23
23060317-001	Cyclopentane	1	0.04 ppbv	0.03	AC-058	23-Jun-23
23060317-001	Ethylbenzene	K, T, U	< 0.05 ppbv	0.05	AC-058	23-Jun-23

Report certified by: Andrea Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: July 5, 2023 Inquiries: (780) 632 8403 E-mail: EAS.Results@innotechalberta.ca

TEST REPORT Page 4 of 11

CLIENT SAMPLE IDCANISTER IDMatrixDATE SAMPLEDVOCs and TNMOC Test # 84732264Ambient Air17-Jun-230:00

DESCRIPTION: Test # 847

REPORT NUMBER: 23060317 REPORT CREATED: 05-Jul-23 VERSION: Version 01

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
23060317-001	Isobutane		3.41 ppbv	0.05	AC-058	23-Jun-23
23060317-001	Isopentane		0.23 ppbv	0.07	AC-058	23-Jun-23
23060317-001	Isoprene	1	0.08 ppbv	0.03	AC-058	23-Jun-23
23060317-001	Isopropylbenzene	K, T, U	< 0.07 ppbv	0.07	AC-058	23-Jun-23
23060317-001	m,p-Xylene	1	0.31 ppbv	0.07	AC-058	23-Jun-23
23060317-001	m-Diethylbenzene	K, T, U	< 0.03 ppbv	0.03	AC-058	23-Jun-23
23060317-001	m-Ethyltoluene	K, T, U	< 0.05 ppbv	0.05	AC-058	23-Jun-23
23060317-001	Methylcyclohexane	1	0.06 ppbv	0.03	AC-058	23-Jun-23
23060317-001	Methylcyclopentane	K, T, U	< 0.09 ppbv	0.09	AC-058	23-Jun-23
23060317-001	n-Butane		0.59 ppbv	0.03	AC-058	23-Jun-23
23060317-001	n-Decane	K, T, U	< 0.10 ppbv	0.10	AC-058	23-Jun-23
23060317-001	n-Dodecane	K, T, U	< 0.5 ppbv	0.5	AC-058	23-Jun-23
23060317-001	n-Heptane	1	0.08 ppbv	0.07	AC-058	23-Jun-23
23060317-001	n-Hexane	1	0.06 ppbv	0.05	AC-058	23-Jun-23
23060317-001	n-Octane	K, T, U	< 0.03 ppbv	0.03	AC-058	23-Jun-23
23060317-001	n-Pentane	1	0.14 ppbv	0.07	AC-058	23-Jun-23
23060317-001	n-Propylbenzene	K, T, U	< 0.10 ppbv	0.10	AC-058	23-Jun-23
23060317-001	n-Undecane	K, T, U	< 0.9 ppbv	0.9	AC-058	23-Jun-23
23060317-001	n-Nonane	K, T, U	< 0.07 ppbv	0.07	AC-058	23-Jun-23
23060317-001	o-Ethyltoluene	K, T, U	< 0.03 ppbv	0.03	AC-058	23-Jun-23
23060317-001	o-Xylene	1	0.07 ppbv	0.05	AC-058	23-Jun-23
23060317-001	p-Diethylbenzene	K, T, U	< 0.03 ppbv	0.03	AC-058	23-Jun-23
23060317-001	p-Ethyltoluene	K, T, U	< 0.07 ppbv	0.07	AC-058	23-Jun-23
23060317-001	Styrene	1	0.07 ppbv	0.07	AC-058	23-Jun-23
23060317-001	Toluene	1	0.20 ppbv	0.05	AC-058	23-Jun-23

Report certified by: Andrea Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: July 5, 2023 E-mail: EAS.Results@innotechalberta.ca

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 5 of 11

CLIENT SAMPLE ID CANISTER ID Matrix DATE SAMPLED

VOCs and TNMOC Test # 847 32264 Ambient Air 17-Jun-23 0:00

DESCRIPTION: Test # 847

REPORT NUMBER: 23060317 REPORT CREATED: 05-Jul-23 VERSION: Version 01

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
23060317-001	trans-2-Butene	K, T, U	< 0.05 ppbv	0.05	AC-058	23-Jun-23
23060317-001	trans-2-Pentene	K, T, U	< 0.03 ppbv	0.03	AC-058	23-Jun-23

Report certified by: Andrea Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: July 5, 2023 E-mail: EAS.Results@innotechalberta.ca

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 6 of 11

Revision History

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 7 of 11

<u>Methods</u>

Method	Description
AC-029	Procedure for the Equilibration and Weighing of Membrane Filters and PUFs on the Mettler Toledo Micro Balance
AC-058	Determination of Volatile Organic Compounds in Ambient Air by Gas Chromatography Mass Spectrometry
NA-028	Determination of Total Non-methane Hydrocarbons and Total Hydrocarbons in Ambient Air by Gas Chromatography Flame Ionization Detector
Research	Research method

List of Analytical Method IDs within InnoTech's ISO/IEC 17025:2017 CALA Scope of Accreditation

Method ID	Description
AC-013	Mercury in Waters by Cold Vapor Atomic Fluorescence Detection (CVAFS)
AC-020	Ion Chromatographic Procedures using the Dionex ICS 3000 and 5000 Systems
AC-021	Elemental Analysis Methodology of Filter-collected Airborne Particulate Matter (PM) by ICP-MS
AC-026	Ion Chromatographic Procedures using the Dionex ICS 3000 and 5000 Systems
AC-029	Procedure for the Equilibration and Weighing of Membrane Filters and PUFs on the Mettler Toledo Micro Balance
AC-035	Analysis of Glyphosate, Aminomethylphosphonic Acid and Glufosinate in Water
AC-038	Trace Metal Analysis of Water Samples by ICP-MS
AC-048	Specific Conductance (Conductivity Meter Method)
AC-049	pH (Meter Method)
AC-054	Alkalinity Total and Phenolphthalein
AC-058	Determination of Volatile Organic Compounds in Ambient Air by Gas Chromatography Mass Spectrometry
AC-060	Trace Metal Analysis of Soil Sediment and Industrial Waste Samples by Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
AC-061	Trace Metal Analysis for Biological Samples by Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
AC-065	Analysis of Naphthenic Acids in Water by HPLC-Orbitrap-MS analysis
AC-074	Pesticides in Water
AC-079	Alkylated PAH in Soil and Sediment
AC-080	Alkylated PAH in Water (SPE Extraction)
NA-006	Determination of BTEX, F1 Hydrocarbons and F2, F3 and F4 Hydrocarbons in Water
NA-024	Analysis of Reduced Sulfur Compounds in Air

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 8 of 11

Qualifiers

V

Data Qualifier Translation В Blank contamination; Analyte detected above the method reporting limit in an associated blank 1 The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit J1 Reported value is estimated; Surrogate recoveries limits were exceeded J2 Reported value is estimated; No known QC criteria for this component J3 Reported value is estimated; The value failed to meet QC criteria for either precision or accuracy J4 Reported value is estimated; The sample matrix interfered with the analysis Κ Off-scale low. Actual value is known to be less than the value given L Off-scale high. Actual value is known to be greater than value given Ν Non-target analyte; Tentatively identified compound (using mass spectroscopy) Q Sample held beyond the accepted holding time R Rejected data; Not suitable for the projects intended use Т Value reported is less than the laboratory method detection limit U Compound was analyzed for but not detected

Analyte was detected in both the sample and the associated method blank

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 9 of 11

Order Comments

23060317

Send report to Yuha.Stan@cleanharbours.com. Project ID Test 847

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 10 of 11

Sample Comments

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 11 of 11

Result Comments

Note:

- 1. Results relate only to items tested and apply to the sample as received.
- 2. This report shall not be reproduced, except in full, without the explicit approval of the laboratory.

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 1 of 11

RESULTS: Todd Webb

Clean Harbors Environmental

PO Box 390

2 km N of Hwy 14 on Sec Road 854 50114 RR 173

Ryley

AB **TOB 4A0**

INVOICE: Stephanie Dennis

PO Box 390

2 km N of Hwy 14 on Sec Road 854 50114 RR 173

Ryley

AB **TOB 4A0** **CLIENT SAMPLE ID**

17-Jul-23

HI-VOL Test # 848 - HVF-23-03-20

CANISTER ID:

PRIORITY: Normal

DESCRIPTION:

23-Jun-23 **DATE SAMPLED:**

REPORT CREATED:

0:00

DATE RECEIVED:

30-Jun-23 **REPORT NUMBER:** 23060459

Matrix

Air Filter

VERSION: Version 01

Lab ID Qualifier **Result Units** Method **Analysis Date Parameter RDL** 76.6 mg 23060459-003 Particulate Weight 0.1 Research

Report certified by: Andrea Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: July 17, 2023 E-mail: EAS.Results@innotechalberta.ca Inquiries: (780) 632 8403

InnoTech's ISO/IEC 17025:2017 scope of accreditation can be located at https://directory.cala.ca//

Vegreville, Alberta Canada T9C 1T4

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 2 of 11

CLIENT SAMPLE ID Matrix **CANISTER ID DATE SAMPLED**

Air Filter 23-Jun-23 0:00 PM10 Test # 848 - C1170496

DESCRIPTION:

17-Jul-23 **REPORT NUMBER:** 23060459 **REPORT CREATED: VERSION:** Version 01

Qualifier **Result Units** RDL Lab ID **Parameter** Method **Analysis Date** 23060459-002 Particulate Weight 0.473 mg 0.004 AC-029 04-Jul-23

Report certified by: Andrea Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: July 17, 2023 E-mail: EAS.Results@innotechalberta.ca Inquiries: (780) 632 8403

InnoTech's ISO/IEC 17025:2017 scope of accreditation can be located at https://directory.cala.ca//

TEST REPORT Page 3 of 11

CLIENT SAMPLE ID	CANISTER ID	Matrix	DATE SAMPLED
VOCs and TMNOC Test # 848	28933	Ambient Air	23-Jun-23 0:00

DESCRIPTION:

REPORT NUMBER: 23060459 REPORT CREATED: 17-Jul-23 VERSION: Version 01

KEPOKI NOIVID	DER. 25000459 REPORT CREATED.	17-Jui-25			VERSION.	version of
Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
23060459-001	Total Non-Methane Organic Carbon	K, T, U	< 0.09 ppmv	0.09	NA-028	30-Jun-23
23060459-001	1,2,3-Trimethylbenzene	K, T, U	< 0.09 ppbv	0.09	AC-058	05-Jul-23
23060459-001	1,2,4-Trimethylbenzene	K, T, U	< 0.05 ppbv	0.05	AC-058	05-Jul-23
23060459-001	1,3,5-Trimethylbenzene	K, T, U	< 0.05 ppbv	0.05	AC-058	05-Jul-23
23060459-001	1-Butene/Isobutylene	K, T, U	< 0.11 ppbv	0.11	AC-058	05-Jul-23
23060459-001	1-Hexene/2-Methyl-1-pentene	K, T, U	< 0.12 ppbv	0.12	AC-058	05-Jul-23
23060459-001	1-Pentene	K, T, U	< 0.05 ppbv	0.05	AC-058	05-Jul-23
23060459-001	2,2,4-Trimethylpentane	K, T, U	< 0.04 ppbv	0.04	AC-058	05-Jul-23
23060459-001	2,2-Dimethylbutane	K, T, U	< 0.04 ppbv	0.04	AC-058	05-Jul-23
23060459-001	2,3,4-Trimethylpentane	K, T, U	< 0.04 ppbv	0.04	AC-058	05-Jul-23
23060459-001	2,3-Dimethylbutane	K, T, U	< 0.16 ppbv	0.16	AC-058	05-Jul-23
23060459-001	2,3-Dimethylpentane	K, T, U	< 0.04 ppbv	0.04	AC-058	05-Jul-23
23060459-001	2,4-Dimethylpentane	K, T, U	< 0.05 ppbv	0.05	AC-058	05-Jul-23
23060459-001	2-Methylheptane	K, T, U	< 0.04 ppbv	0.04	AC-058	05-Jul-23
23060459-001	2-Methylhexane	K, T, U	< 0.05 ppbv	0.05	AC-058	05-Jul-23
23060459-001	2-Methylpentane	K, T, U	< 0.04 ppbv	0.04	AC-058	05-Jul-23
23060459-001	3-Methylheptane	K, T, U	< 0.05 ppbv	0.05	AC-058	05-Jul-23
23060459-001	3-Methylhexane	K, T, U	< 0.04 ppbv	0.04	AC-058	05-Jul-23
23060459-001	3-Methylpentane	1	0.05 ppbv	0.04	AC-058	05-Jul-23
23060459-001	Benzene	K, T, U	< 0.05 ppbv	0.05	AC-058	05-Jul-23
23060459-001	cis-2-Butene	K, T, U	< 0.05 ppbv	0.05	AC-058	05-Jul-23
23060459-001	cis-2-Pentene	K, T, U	< 0.04 ppbv	0.04	AC-058	05-Jul-23
23060459-001	Cyclohexane	K, T, U	< 0.07 ppbv	0.07	AC-058	05-Jul-23
23060459-001	Cyclopentane	K, T, U	< 0.04 ppbv	0.04	AC-058	05-Jul-23
23060459-001	Ethylbenzene	K, T, U	< 0.05 ppbv	0.05	AC-058	05-Jul-23
1						

Report certified by: Andrea Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: July 17, 2023 E-mail: EAS.Results@innotechalberta.ca

TEST REPORT Page 4 of 11

CLIENT SAMPLE ID	CANISTER ID	Matrix	DATE SAMPLED		
VOCs and TMNOC Test # 848	28933	Ambient Air	23-Jun-23	0:00	

DESCRIPTION:

REPORT NUMBER: 23060459 REPORT CREATED: 17-Jul-23 VERSION: Version 01

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
23060459-001	Isobutane		0.63 ppbv	0.05	AC-058	05-Jul-23
23060459-001	Isopentane		0.41 ppbv	0.07	AC-058	05-Jul-23
23060459-001	Isoprene	1	0.08 ppbv	0.04	AC-058	05-Jul-23
23060459-001	Isopropylbenzene	K, T, U	< 0.07 ppbv	0.07	AC-058	05-Jul-23
23060459-001	m,p-Xylene	1	0.09 ppbv	0.07	AC-058	05-Jul-23
23060459-001	m-Diethylbenzene	K, T, U	< 0.04 ppbv	0.04	AC-058	05-Jul-23
23060459-001	m-Ethyltoluene	K, T, U	< 0.05 ppbv	0.05	AC-058	05-Jul-23
23060459-001	Methylcyclohexane	K, T, U	< 0.04 ppbv	0.04	AC-058	05-Jul-23
23060459-001	Methylcyclopentane	K, T, U	< 0.09 ppbv	0.09	AC-058	05-Jul-23
23060459-001	n-Butane		0.75 ppbv	0.04	AC-058	05-Jul-23
23060459-001	n-Decane	K, T, U	< 0.11 ppbv	0.11	AC-058	05-Jul-23
23060459-001	n-Dodecane	K, T, U	< 0.5 ppbv	0.5	AC-058	05-Jul-23
23060459-001	n-Heptane	K, T, U	< 0.07 ppbv	0.07	AC-058	05-Jul-23
23060459-001	n-Hexane	I	0.24 ppbv	0.05	AC-058	05-Jul-23
23060459-001	n-Octane	K, T, U	< 0.04 ppbv	0.04	AC-058	05-Jul-23
23060459-001	n-Pentane		0.20 ppbv	0.07	AC-058	05-Jul-23
23060459-001	n-Propylbenzene	K, T, U	< 0.11 ppbv	0.11	AC-058	05-Jul-23
23060459-001	n-Undecane	K, T, U	< 0.9 ppbv	0.9	AC-058	05-Jul-23
23060459-001	n-Nonane	K, T, U	< 0.07 ppbv	0.07	AC-058	05-Jul-23
23060459-001	o-Ethyltoluene	K, T, U	< 0.04 ppbv	0.04	AC-058	05-Jul-23
23060459-001	o-Xylene	K, T, U	< 0.05 ppbv	0.05	AC-058	05-Jul-23
23060459-001	p-Diethylbenzene	K, T, U	< 0.04 ppbv	0.04	AC-058	05-Jul-23
23060459-001	p-Ethyltoluene	K, T, U	< 0.07 ppbv	0.07	AC-058	05-Jul-23
23060459-001	Styrene	K, T, U	< 0.07 ppbv	0.07	AC-058	05-Jul-23
23060459-001	Toluene	1	0.11 ppbv	0.05	AC-058	05-Jul-23

Report certified by: Andrea Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: July 17, 2023 E-mail: EAS.Results@innotechalberta.ca

TEST REPORT Page 5 of 11

CLIENT SAMPLE IDCANISTER IDMatrixDATE SAMPLEDVOCs and TMNOC Test # 84828933Ambient Air23-Jun-230:00

DESCRIPTION:

REPORT NUMBER: 23060459 REPORT CREATED: 17-Jul-23 VERSION: Version 01

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
23060459-001	trans-2-Butene	K, T, U	< 0.05 ppbv	0.05	AC-058	05-Jul-23
23060459-001	trans-2-Pentene	K, T, U	< 0.04 ppbv	0.04	AC-058	05-Jul-23

Report certified by: Andrea Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: July 17, 2023 E-mail: EAS.Results@innotechalberta.ca

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 6 of 11

Revision History

Order ID	Ver	Date	Reason	
23060459	01	17-Jul-23	Report created	

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 7 of 11

Methods

Method	Description
AC-029	Procedure for the Equilibration and Weighing of Membrane Filters and PUFs on the Mettler Toledo Micro Balance
AC-058	Determination of Volatile Organic Compounds in Ambient Air by Gas Chromatography Mass Spectrometry
NA-028	Determination of Total Non-methane Hydrocarbons and Total Hydrocarbons in Ambient Air by Gas Chromatography Flame Ionization Detector
Research	Research method

List of Analytical Method IDs within InnoTech's ISO/IEC 17025:2017 CALA Scope of Accreditation

Method ID	Description
AC-013	Mercury in Waters by Cold Vapor Atomic Fluorescence Detection (CVAFS)
AC-020	Ion Chromatographic Procedures using the Dionex ICS 3000 and 5000 Systems
AC-021	Elemental Analysis Methodology of Filter-collected Airborne Particulate Matter (PM) by ICP-MS
AC-026	Ion Chromatographic Procedures using the Dionex ICS 3000 and 5000 Systems
AC-029	Procedure for the Equilibration and Weighing of Membrane Filters and PUFs on the Mettler Toledo Micro Balance
AC-035	Analysis of Glyphosate, Aminomethylphosphonic Acid and Glufosinate in Water
AC-038	Trace Metal Analysis of Water Samples by ICP-MS
AC-048	Specific Conductance (Conductivity Meter Method)
AC-049	pH (Meter Method)
AC-054	Alkalinity Total and Phenolphthalein
AC-058	Determination of Volatile Organic Compounds in Ambient Air by Gas Chromatography Mass Spectrometry
AC-060	Trace Metal Analysis of Soil Sediment and Industrial Waste Samples by Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
AC-061	Trace Metal Analysis for Biological Samples by Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
AC-065	Analysis of Naphthenic Acids in Water by HPLC-Orbitrap-MS analysis
AC-074	Pesticides in Water
AC-079	Alkylated PAH in Soil and Sediment
AC-080	Alkylated PAH in Water (SPE Extraction)
NA-006	Determination of BTEX, F1 Hydrocarbons and F2, F3 and F4 Hydrocarbons in Water
NA-024	Analysis of Reduced Sulfur Compounds in Air

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 8 of 11

Qualifiers

Data Qualifier Translation

В	Blank contamination; Analyte detected above the method reporting limit in an associated blank
I	The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit
11	Reported value is estimated; Surrogate recoveries limits were exceeded
12	Reported value is estimated; No known QC criteria for this component
13	Reported value is estimated; The value failed to meet QC criteria for either precision or accuracy
14	Reported value is estimated; The sample matrix interfered with the analysis
K	Off-scale low. Actual value is known to be less than the value given
L	Off-scale high. Actual value is known to be greater than value given
V	Non-target analyte; Tentatively identified compound (using mass spectroscopy)
Q	Sample held beyond the accepted holding time
R	Rejected data; Not suitable for the projects intended use
Т	Value reported is less than the laboratory method detection limit
J	Compound was analyzed for but not detected
V	Analyte was detected in both the sample and the associated method blank

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 9 of 11

Order Comments

23060459

Send report to yuha.stan@cleanharbors.com. Project ID: Test 848

TEST REPORT Page 10 of 11

Sample Comments

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 11 of 11

Result Comments

Note:

- 1. Results relate only to items tested and apply to the sample as received.
- 2. This report shall not be reproduced, except in full, without the explicit approval of the laboratory.

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 1 of 12

RESULTS: Todd Webb

Clean Harbors Environmental

PO Box 390

2 km N of Hwy 14 on Sec Road 854 50114 RR 173

Ryley

AB T0B 4A0

INVOICE: Stephanie Dennis

PO Box 390

2 km N of Hwy 14 on Sec Road 854 50114 RR 173

Ryley

AB T0B 4A0 **CLIENT SAMPLE ID**

HI-VOL Test # 849 - HVF-23-03-17

CANISTER ID:

PRIORITY: Normal

DESCRIPTION:

29-Jun-23 **DATE SAMPLED:** 0:00

26-Jul-23 **REPORT CREATED:**

DATE RECEIVED: 06-Jul-23

REPORT NUMBER: 23070042

Version 01 **VERSION:**

Matrix Air Filter

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
23070042-003	Antimony		343 ng/Filter	0.30	AC-021	21-Jul-23
23070042-003	Arsenic		5300 ng/Filter	0.30	AC-021	21-Jul-23
23070042-003	Barium	K, T, U	< 300 ng/Filter	300	AC-021	21-Jul-23
23070042-003	Beryllium	K, T, U	< 0.60 ng/Filter	0.60	AC-021	21-Jul-23
23070042-003	Boron		1540000 ng/Filter	600	AC-021	21-Jul-23
23070042-003	Cadmium		143 ng/Filter	0.80	AC-021	21-Jul-23
23070042-003	Chromium		4270 ng/Filter	20	AC-021	21-Jul-23
23070042-003	Cobalt		901 ng/Filter	0.50	AC-021	21-Jul-23
23070042-003	Copper		492000 ng/Filter	20	AC-021	21-Jul-23
23070042-003	Iron		2200000 ng/Filter	80	AC-021	21-Jul-23
23070042-003	Lead		6260 ng/Filter	0.70	AC-021	21-Jul-23
23070042-003	Manganese		73900 ng/Filter	1.0	AC-021	21-Jul-23
23070042-003	Mercury		6.99 ng/Filter	0.70	AC-021	21-Jul-23
23070042-003	Nickel		3570 ng/Filter	5.0	AC-021	21-Jul-23
23070042-003	Selenium		1710 ng/Filter	4.0	AC-021	21-Jul-23
23070042-003	Silver		268 ng/Filter	0.50	AC-021	21-Jul-23
23070042-003	Thallium	K, T, U	< 0.20 ng/Filter	0.20	AC-021	21-Jul-23

Report certified by: Andrea Conner, Admin Assistant

On behalf of: Adam Malcolm, Manager, Chemical Testing Date: July 26, 2023

InnoTech's ISO/IEC 17025:2017 scope of accreditation can be located at https://directory.cala.ca//

Inquiries: (780) 632 8403

E-mail: EAS.Results@innotechalberta.ca

TEST REPORT Page 2 of 12

CLIENT SAMPLE IDCANISTER IDMatrixDATE SAMPLEDHI-VOL Test # 849 - HVF-23-03-17Air Filter29-Jun-230:00

DESCRIPTION:

REPORT NUMBER: 23070042 REPORT CREATED: 26-Jul-23 VERSION: Version 01

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
23070042-003	Tin		146 ng/Filter	0.20	AC-021	21-Jul-23
23070042-003	Uranium	K, T, U	< 0.200 ng/Filter	0.200	AC-021	21-Jul-23
23070042-003	Vanadium		4400 ng/Filter	0.40	AC-021	21-Jul-23
23070042-003	Zinc	K, T, U	< 1000 ng/Filter	1000	AC-021	21-Jul-23
23070042-003	Particulate Weight		107 mg	0.1	Research	

Report certified by: Andrea Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: July 26, 2023 E-mail: EAS.Results@innotechalberta.ca

TEST REPORT Page 3 of 12

CLIENT SAMPLE IDCANISTER IDMatrixDATE SAMPLEDPM10 Test # 849 - C1170491Air Filter29-Jun-230:00

DESCRIPTION:

REPORT NUMBER: 23070042 REPORT CREATED: 26-Jul-23 VERSION: Version 01

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
23070042-002	Antimony		3.64 ng/Filter	0.03	AC-021	18-Jul-23
23070042-002	Arsenic		7.69 ng/Filter	0.03	AC-021	18-Jul-23
23070042-002	Barium		275 ng/Filter	0.3	AC-021	18-Jul-23
23070042-002	Beryllium		0.34 ng/Filter	0.06	AC-021	18-Jul-23
23070042-002	Boron		210 ng/Filter	0.6	AC-021	18-Jul-23
23070042-002	Cadmium		0.56 ng/Filter	0.08	AC-021	18-Jul-23
23070042-002	Chromium	1	5 ng/Filter	2	AC-021	18-Jul-23
23070042-002	Cobalt		4.17 ng/Filter	0.05	AC-021	18-Jul-23
23070042-002	Copper		348 ng/Filter	2	AC-021	18-Jul-23
23070042-002	Iron		17800 ng/Filter	8	AC-021	18-Jul-23
23070042-002	Lead		6.39 ng/Filter	0.07	AC-021	18-Jul-23
23070042-002	Manganese		531 ng/Filter	0.1	AC-021	18-Jul-23
23070042-002	Mercury		0.30 ng/Filter	0.07	AC-021	18-Jul-23
23070042-002	Nickel		4.8 ng/Filter	0.5	AC-021	18-Jul-23
23070042-002	Selenium		14.1 ng/Filter	0.4	AC-021	18-Jul-23
23070042-002	Silver		0.33 ng/Filter	0.05	AC-021	18-Jul-23
23070042-002	Thallium		0.31 ng/Filter	0.02	AC-021	18-Jul-23
23070042-002	Tin	1	0.04 ng/Filter	0.02	AC-021	18-Jul-23
23070042-002	Uranium		0.395 ng/Filter	0.020	AC-021	18-Jul-23
23070042-002	Vanadium		7.13 ng/Filter	0.04	AC-021	18-Jul-23
23070042-002	Zinc		134 ng/Filter	1	AC-021	18-Jul-23
23070042-002	Particulate Weight		0.705 mg	0.004	AC-029	11-Jul-23

Report certified by: Andrea Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: July 26, 2023 E-mail: EAS.Results@innotechalberta.ca

TEST REPORT Page 4 of 12

CLIENT SAMPLE ID	CANISTER ID	Matrix	DATE SAMPLED	
VOCs and TMNOC Test # 849	29037	Ambient Air	29-Jun-23 0:00	

DESCRIPTION:

REPORT NUMBER: 23070042 REPORT CREATED: 26-Jul-23 VERSION: Version 01

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
23070042-001	Total Non-Methane Organic Carbon	K, T, U	< 0.10 ppmv	0.10	NA-028	07-Jul-23
23070042-001	1,2,3-Trimethylbenzene	1	0.12 ppbv	0.10	AC-058	11-Jul-23
23070042-001	1,2,4-Trimethylbenzene		2.54 ppbv	0.06	AC-058	11-Jul-23
23070042-001	1,3,5-Trimethylbenzene		1.09 ppbv	0.06	AC-058	11-Jul-23
23070042-001	1-Butene/Isobutylene	K, T, U	< 0.12 ppbv	0.12	AC-058	11-Jul-23
23070042-001	1-Hexene/2-Methyl-1-pentene	K, T, U	< 0.14 ppbv	0.14	AC-058	11-Jul-23
23070042-001	1-Pentene	K, T, U	< 0.06 ppbv	0.06	AC-058	11-Jul-23
23070042-001	2,2,4-Trimethylpentane	K, T, U	< 0.04 ppbv	0.04	AC-058	11-Jul-23
23070042-001	2,2-Dimethylbutane	K, T, U	< 0.04 ppbv	0.04	AC-058	11-Jul-23
23070042-001	2,3,4-Trimethylpentane	K, T, U	< 0.04 ppbv	0.04	AC-058	11-Jul-23
23070042-001	2,3-Dimethylbutane	K, T, U	< 0.18 ppbv	0.18	AC-058	11-Jul-23
23070042-001	2,3-Dimethylpentane	K, T, U	< 0.04 ppbv	0.04	AC-058	11-Jul-23
23070042-001	2,4-Dimethylpentane	K, T, U	< 0.06 ppbv	0.06	AC-058	11-Jul-23
23070042-001	2-Methylheptane	1	0.05 ppbv	0.04	AC-058	11-Jul-23
23070042-001	2-Methylhexane	K, T, U	< 0.06 ppbv	0.06	AC-058	11-Jul-23
23070042-001	2-Methylpentane		0.21 ppbv	0.04	AC-058	11-Jul-23
23070042-001	3-Methylheptane	K, T, U	< 0.06 ppbv	0.06	AC-058	11-Jul-23
23070042-001	3-Methylhexane	1	0.06 ppbv	0.04	AC-058	11-Jul-23
23070042-001	3-Methylpentane	1	0.07 ppbv	0.04	AC-058	11-Jul-23
23070042-001	Benzene	1	0.08 ppbv	0.06	AC-058	11-Jul-23
23070042-001	cis-2-Butene	K, T, U	< 0.06 ppbv	0.06	AC-058	11-Jul-23
23070042-001	cis-2-Pentene	K, T, U	< 0.04 ppbv	0.04	AC-058	11-Jul-23
23070042-001	Cyclohexane	K, T, U	< 0.08 ppbv	0.08	AC-058	11-Jul-23
23070042-001	Cyclopentane	K, T, U	< 0.04 ppbv	0.04	AC-058	11-Jul-23
23070042-001	Ethylbenzene	1	0.38 ppbv	0.06	AC-058	11-Jul-23
1						

Report certified by: Andrea Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: July 26, 2023 E-mail: EAS.Results@innotechalberta.ca

TEST REPORT Page 5 of 12

CLIENT SAMPLE IDCANISTER IDMatrixDATE SAMPLEDVOCs and TMNOC Test # 84929037Ambient Air29-Jun-230:00

DESCRIPTION:

REPORT NUMBER: 23070042 REPORT CREATED: 26-Jul-23 VERSION: Version 01

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
23070042-001	Isobutane		0.30 ppbv	0.06	AC-058	11-Jul-23
23070042-001	Isopentane		0.60 ppbv	0.08	AC-058	11-Jul-23
23070042-001	Isoprene		0.30 ppbv	0.04	AC-058	11-Jul-23
23070042-001	Isopropylbenzene	K, T, U	< 0.08 ppbv	0.08	AC-058	11-Jul-23
23070042-001	m,p-Xylene		1.37 ppbv	0.08	AC-058	11-Jul-23
23070042-001	m-Diethylbenzene	K, T, U	< 0.04 ppbv	0.04	AC-058	11-Jul-23
23070042-001	m-Ethyltoluene	1	0.14 ppbv	0.06	AC-058	11-Jul-23
23070042-001	Methylcyclohexane	1	0.12 ppbv	0.04	AC-058	11-Jul-23
23070042-001	Methylcyclopentane	K, T, U	< 0.10 ppbv	0.10	AC-058	11-Jul-23
23070042-001	n-Butane		0.88 ppbv	0.04	AC-058	11-Jul-23
23070042-001	n-Decane	1	0.14 ppbv	0.12	AC-058	11-Jul-23
23070042-001	n-Dodecane	K, T, U	< 0.6 ppbv	0.6	AC-058	11-Jul-23
23070042-001	n-Heptane	1	0.13 ppbv	0.08	AC-058	11-Jul-23
23070042-001	n-Hexane	1	0.16 ppbv	0.06	AC-058	11-Jul-23
23070042-001	n-Octane	1	0.07 ppbv	0.04	AC-058	11-Jul-23
23070042-001	n-Pentane		0.32 ppbv	0.08	AC-058	11-Jul-23
23070042-001	n-Propylbenzene	K, T, U	< 0.12 ppbv	0.12	AC-058	11-Jul-23
23070042-001	n-Undecane	K, T, U	< 1.0 ppbv	1.0	AC-058	11-Jul-23
23070042-001	n-Nonane	K, T, U	< 0.08 ppbv	0.08	AC-058	11-Jul-23
23070042-001	o-Ethyltoluene	1	0.08 ppbv	0.04	AC-058	11-Jul-23
23070042-001	o-Xylene		0.43 ppbv	0.06	AC-058	11-Jul-23
23070042-001	p-Diethylbenzene	K, T, U	< 0.04 ppbv	0.04	AC-058	11-Jul-23
23070042-001	p-Ethyltoluene	1	0.09 ppbv	0.08	AC-058	11-Jul-23
23070042-001	Styrene	1	0.12 ppbv	0.08	AC-058	11-Jul-23
23070042-001	Toluene		0.56 ppbv	0.06	AC-058	11-Jul-23

Report certified by: Andrea Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: July 26, 2023 E-mail: EAS.Results@innotechalberta.ca

TEST REPORT Page 6 of 12

CLIENT SAMPLE IDCANISTER IDMatrixDATE SAMPLEDVOCs and TMNOC Test # 84929037Ambient Air29-Jun-230:00

DESCRIPTION:

REPORT NUMBER: 23070042 REPORT CREATED: 26-Jul-23 VERSION: Version 01

Lab ID	Parameter	Qualifier	Result Units	RDL	Method	Analysis Date
23070042-001	trans-2-Butene	K, T, U	< 0.06 ppbv	0.06	AC-058	11-Jul-23
23070042-001	trans-2-Pentene	K, T, U	< 0.04 ppbv	0.04	AC-058	11-Jul-23

Report certified by: Andrea Conner, Admin Assistant On behalf of: Adam Malcolm, Manager, Chemical Testing

Date: July 26, 2023 E-mail: EAS.Results@innotechalberta.ca

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 7 of 12

Revision History

Order ID	Ver	Date	Reason
23070042	01	26-Jul-23	Report created

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 8 of 12

Methods

Method	Description
AC-021	Elemental Analysis Methodology of Filter-collected Airborne Particulate Matter (PM) by ICP-MS
AC-029	Procedure for the Equilibration and Weighing of Membrane Filters and PUFs on the Mettler Toledo Micro Balance
AC-058	Determination of Volatile Organic Compounds in Ambient Air by Gas Chromatography Mass Spectrometry
NA-028	Determination of Total Non-methane Hydrocarbons and Total Hydrocarbons in Ambient Air by Gas Chromatography Flame Ionization Detector
Research	Research method

List of Analytical Method IDs within InnoTech's ISO/IEC 17025:2017 CALA Scope of Accreditation

Method ID	Description
AC-013	Mercury in Waters by Cold Vapor Atomic Fluorescence Detection (CVAFS)
AC-020	Ion Chromatographic Procedures using the Dionex ICS 3000 and 5000 Systems
AC-021	Elemental Analysis Methodology of Filter-collected Airborne Particulate Matter (PM) by ICP-MS
AC-026	Ion Chromatographic Procedures using the Dionex ICS 3000 and 5000 Systems
AC-029	Procedure for the Equilibration and Weighing of Membrane Filters and PUFs on the Mettler Toledo Micro Balance
AC-035	Analysis of Glyphosate, Aminomethylphosphonic Acid and Glufosinate in Water
AC-038	Trace Metal Analysis of Water Samples by ICP-MS
AC-048	Specific Conductance (Conductivity Meter Method)
AC-049	pH (Meter Method)
AC-054	Alkalinity Total and Phenolphthalein
AC-058	Determination of Volatile Organic Compounds in Ambient Air by Gas Chromatography Mass Spectrometry
AC-060	Trace Metal Analysis of Soil Sediment and Industrial Waste Samples by Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
AC-061	Trace Metal Analysis for Biological Samples by Inductively Coupled Plasma Mass Spectrometry (ICP-MS)
AC-065	Analysis of Naphthenic Acids in Water by HPLC-Orbitrap-MS analysis
AC-074	Pesticides in Water
AC-079	Alkylated PAH in Soil and Sediment
AC-080	Alkylated PAH in Water (SPE Extraction)
NA-006	Determination of BTEX, F1 Hydrocarbons and F2, F3 and F4 Hydrocarbons in Water
NA-024	Analysis of Reduced Sulfur Compounds in Air

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 9 of 12

Qualifiers

Data Qualifier Translation

В	Blank contamination; Analyte detected above the method reporting limit in an associated blank
I	The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit
11	Reported value is estimated; Surrogate recoveries limits were exceeded
12	Reported value is estimated; No known QC criteria for this component
13	Reported value is estimated; The value failed to meet QC criteria for either precision or accuracy
14	Reported value is estimated; The sample matrix interfered with the analysis
K	Off-scale low. Actual value is known to be less than the value given
L	Off-scale high. Actual value is known to be greater than value given
V	Non-target analyte; Tentatively identified compound (using mass spectroscopy)
Q	Sample held beyond the accepted holding time
R	Rejected data; Not suitable for the projects intended use
Τ	Value reported is less than the laboratory method detection limit
J	Compound was analyzed for but not detected
./	Analyte was detected in both the cample and the associated method blank

ENVIRONMENTAL ANALYTICAL SERVICES

TEST REPORT Page 10 of 12

Order Comments

23070042

Send results to yuha.stan@cleanharbors.com. Project ID: Test 849

TEST REPORT Page 11 of 12

Sample Comments

TEST REPORT Page 12 of 12

Result Comments

Note:

- 1. Results relate only to items tested and apply to the sample as received.
- 2. This report shall not be reproduced, except in full, without the explicit approval of the laboratory.

Sample ID: 23070041-001 Priority: Normal

Customer ID: Clean Harbours
Cust Samp ID: Ryley Facility Test # 103 - HV-23-02-05

PO Bag 4000 Vegreville, AB T9C 1T4 Phone: (780) 632-8284 Fax: (780) 632-8620 Shipping: Highway 16 A & 75 St

(Y): JUL 0 6 2023		FOR AITF USE ONLY
Date Rec'd (D/M/Y):	Rec'd By:	

Invoice Code:

Project Code: Client Code:

ANALYSIS REQUEST FORM

Client details:			Special I	Special Instructions/Comments:	ents:	RUSH (Surcharge):
Contact: Company:	<u>leanHarbors</u>	Jorge A. Mendoza Laboratory Manager	_	PO # 0000234728	4728	
Address: Boom on Ry	Clean Harbors Environmental Services Box 390, 2 Km North o on Sec. Road 854 Ryley, AB T0B 4A0 www.cleanharbors.com	Clean Harbors 780.663.3828 Exr. 235 Environmental Services Home Office 780.663.2342 Box 390, 2 Km North of Hwy 14 Mobile 780.934.2342 on Sec. Road 854 Ryley, AB T0B 4A0 Direct Line 780.663.3533 mendoza.jorge@cleanharbors.com		Quote ID: QT140005	40005	
Telephone:Email:	"People & Teck	🖒 "People & Technology Creating a Safer, Cleaner Environment"	AITF Contact: Tel:		Email:	
				Date/Time Sampled	mpled	-
Sample ID		Sample Source Description		From/To	0	Analysis Requested
			Ö	Date (dd/mm/yy)	Time (24 Hr)	
F : 4:11:0	4 + 700	10 CO CO XII H 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1/06/23		Particulate weight
Kyley Facility Test # 103	COI # 18	FIITEF NUMBEF # HV-23-UZ-U3		1/07/23	32.14 hrs	ICP-MS analysis
Dyloy School Test # 103	c+# 103	Filter Number # HV-23-02-06		1/06/23		Particulate weight
a location of the location of	31 # 16			1/07/23	28.02 hrs	ICP-MS analysis
				# 1		
				7		
						-
			9			

{00004818;6}

TERMS AND CONDITIONS

The attached document entitled "Chain of Custody Form" is subject to the following Terms and Conditions, unless otherwise specified on the Quotation. InnoTech Alberta's commencement of the Services shall be deemed acceptance of the terms and conditions by the Client.

- 1. Any proposal contained herein is prepared for the consideration of the Client only. Its contents may not be used or disclosed to any other party without prior written consent of the INNOTECH ALBERTA INC. (hereinafter referred to as "InnoTech Alberta").
- 2. InnoTech Alberta will perform the Services in accordance with normal professional standards.
- 3. The delivery time for performance of the Services (as set out on the front page of this Quotation) is approximate and may be changed by InnoTech Alberta giving written notice to the Client.
- 4. InnoTech Alberta will exercise due care and proficiency in testing items submitted by a Client. InnoTech Alberta shall not, however, be liable to the Client for any damage or loss caused to the item being tested or for any damage, loss or expense caused by any delay in carrying out the test, including any damage, loss or expense resulting from InnoTech Alberta's negligence. InnoTech Alberta shall not be responsible for any damage, which is a natural or necessary result of any testing procedure.
- 5. For the purposes of this Quotation, Intellectual Property means all information, data, artistic and literary works, concepts, designs, processes, software, algorithms and inventions, including, without limitation, those that could be the subject of patent, copyright, industrial design, trade secret or other forms of protection. Intellectual Property which was owned by either InnoTech Alberta or the Client prior to the signing of this Agreement remains the property of that party. Nothing in this Agreement shall operate as a license, permission or grant of any other rights to either InnoTech Alberta's or the Client's Intellectual Property.
- 6. All data, reports and other information relating to the Services shall be treated by InnoTech Alberta as the confidential property of the Client, and InnoTech Alberta will use reasonable efforts to ensure that its employees, contractors and agents will not disclose the same to any other person, firm or corporation during the term of this Agreement and for a period of five (5) years after the date of termination of the Agreement. The obligation of confidentiality set out herein shall not apply to any information that was in InnoTech Alberta's possession prior to receipt from the Client or which is or becomes part of the public domain through no act or failure on the part of InnoTech Alberta. The obligation of confidentiality set out in this Section shall not prevent the disclosure of information to any level of government having jurisdiction to make lawful demand therefor, or required to be disclosed by any applicable law. Any records required to be maintained by InnoTech Alberta pursuant to this Agreement are subject to the protection and access provisions of the Freedom of Information and Protection of Privacy Act (Alberta).
- 7. The reported results of any InnoTech Alberta tests or evaluations performed on samples or items provided by the Client shall be interpreted as being specific to the sample or item tested. InnoTech Alberta makes no representation that any similar or related untested samples or items would produce the same results.
- 8. The Client shall not use InnoTech Alberta's name in any advertising material, sale offer, news releases, public statements or announcements, whether written or oral relating to the Services or the results thereof, without the prior written consent of InnoTech Alberta.
 - 9. Records, test data, reports and samples, except where shipped to the Client after completion of the work shall be retained by InnoTech Alberta according to InnoTech Alberta's approved Records Retention and Disposition Schedule.
- 10. Prices quoted are in Canadian Dollars unless otherwise stated in writing and are exclusive of any provincial, municipal, sales, use or goods and services tax.
- 11. Prices quoted do not include shipping, insurance or cost of consumables. The Client shall be responsible for all costs incurred by InnoTech Alberta in collecting any item for testing and returning the item to the Client after testing and shall be responsible for all necessary incidental costs incurred by InnoTech Alberta in providing the Services. InnoTech Alberta will not be responsible for any damage or loss to items during shipping and it is the responsibility of the Client to arrange and pay for any insurance it deems necessary.
 - 12. Any test samples or other materials supplied by the Client to InnoTech Alberta may, at InnoTech Alberta's option, be returned by InnoTech Alberta to the Client. The Clientshall:
- (a) be responsible for all costs associated with the handling, transportation and disposal of such materials;

- (b) reimburse InnoTech Alberta for any costs incurred by InnoTech Alberta associated with the handling, transportation and disposal of such materials; and
- (c) indemnify and hold InnoTech Alberta harmless from any and all claims, damages or actions associated with the handling, transportation and disposal of such materials.
- 13. The Client shall pay all invoices rendered by InnoTech Alberta to the Client within thirty (30) days from the date of invoice, without deduction or set-off.
- 14. If the Client fails to pay any amount under this Agreement, such unpaid amount shall bear interest at a rate per month equal to one (1%) percent (or 12.6825% per annum) with interest on overdue interest at the same rate.
- 15. InnoTech Alberta makes no representation, warranties or conditions, either expressed or implied, statutory or otherwise and does not warrant the quality, state, merchantability or fitness for any purpose of any goods or products to be delivered pursuant to this Agreement. The Client accepts the results of these Services or items tested as is, and acknowledges that any use or interpretation of the information contained is at the Client's own risk.
- 16. In no event shall InnoTech Alberta be liable for any indirect or consequential damage or loss suffered by the Client, including loss of anticipated profits.
- 17. The Client shall indemnify and hold harmless InnoTech Alberta from any and all claims, demands, actions and costs (including legal costs on a solicitor-client basis) that may arise out of:
- (a) any dangerous defect or content in the item being tested, whether apparent or not, which dangerous defect or content was not disclosed in writing to InnoTech Alberta by the Client at the time the item was submitted for tacking.
- (b) differences between those items actually tested and items previously or subsequently produced which are purported to be identical to the item tested; or
- (c) any use of the tested item or any item incorporating the tested item, whether by the Client or a third party following its return to the Client.
- The hold harmless shall survive this Agreement.
- 18. The Client shall, at its own expense and without limiting its liabilities herein, be responsible for insuring its operation in an amount not less than \$2,000,000 inclusive per occurrence, insuring against bodily injury, and property damage including loss of use thereof. Further, the Client is responsible for insuring all owned property directly or indirectly related to this Agreement and InnoTech Alberta shall have no liability for any loss or damage to such property.
- 19. InnoTech Alberta shall maintain the following insurance: (i) commercial general liability insurance (including cross liability, severability of interests, non-owned automobile liability) in the amount of two million dollars (\$2,000,000,00) per occurrence, and; (ii) professional liability and errors and omissions insurance in the amount of one million dollars (\$2,000,000,00) in the aggregate. In addition, InnoTech Alberta shall maintain all workers' compensation coverage required by applicable laws. Notwithstanding the foregoing, InnoTech Alberta reserves the right to supplement or add insurance coverage from time to time as may be required in its sole discretion. InnoTech Alberta may provide certificates of insurance for coverages outlined in (i) and (ii) above.
- 20. The Client agrees to comply with all InnoTech Alberta Safety & Security regulations in effect.while on InnoTech Alberta premises.
 - 21. This Agreement represents the entire agreement between the parties and shall supersede all prior agreements relative to this transaction.
- 22. If a party's performance of any of its obligations under this Agreement (excepting only an obligation to pay) is delayed, rendered impossible or impractical, or prevented in whole or in part due to circumstances beyond its reasonable control, including but not limited to acts of God, war, terrorism, labour disputes, pandemics or epidemics, global health emergencies, or governmental action, that party will not be in breach of this Agreement due to the delay or failure in performance occasioned by such event..
- 23. InnoTech Alberta may assign this Quotation to an "affiliated" (as that term is defined at Section 2 of the Business Corporations Act (Alberta)) or successor entity on written notice to the Client.
 - 24. This Quotation and rights and parties thereto shall be governed by and construed according to the laws of the Province of Alberta. The parties hereby submit to the jurisdiction of the Courts of Alberta.

Customer ID:

HAIN OF CUSTODY FORM

Environmental Analytical Services Highway 16A & 75 Street Vegreville, AB T9C 1T4

Phone: 780-632-8403

Email: EAS.Reception@innotechalberta.ca www.innotechalberta.ca

Clean Harbours VOCs and TNMOC Test # 845 Cust Samp ID: Compa Addres Contac Phone Email: Client

	Client Reporting Information	CIIENT DIIIIII	Client Billing Information	Turnaround Time	
Company:	Clean Harbors Canada, Inc	Contact:	Stephanie Dennis	X Normal (10 business days)	
Address:	PO Box 390, 50114 Range Road 173, Ryley, AB T0B 4A0	Phone:	780-663-3828	Rush	
Contact:	Todd Webb or Stan Yuha	Email:	Dennis. Stephanie@cleanharbors.com	Note: Rush service not available for all tests.	
Phone:	780-663-2513 or 780-663-3828	Project ID:	Test 845	CONTITUTIVISM TEQUESIS WITH THE LECTI AIDELIA.	
Email:	Webb.Todd@cleanharbors.com, Yuha.Stan@cleanharbors.com	PO #:	0000233992		
Special Instr	Special Instructions/Comments:			Date Received – Lab Use Only	
*If either PN	*If either PM10 or HI-VOL filter exceeds its trigger weight, then both filters are analyzed for metals	both filters ar	e analyzed for metals		
If neither filt	If neither filter exceeds its trigger weight, neither filter is analyzed for metals	ed for metals			
If metals and	If metals analysis is required, please report on the same report as filter weights and VOCs/TNMOC	as filter weigh	its and VOCs/TNMOC	JUN 12 2023	
Trigger Weig	Trigger Weight for Analysis (PM10): 1.13 mg				
Trigger Weig	Trigger Weight for Analysis (HI-VOL): 87.8 mg				

				Date Sampled	Time Sampled	
		Sample Source/	Canister Number/ (dd/mm/yy)	(dd/mm/yy)	(24 hour)	
Lab Sample No.	Client Sample ID	Description	Sampler ID	From / To	From / To	Analysis Requested
,	VOCs and TNMOC Test		32184	05/06/23	00:00	COMME O SMAND COM
	Number: 845	Canister		06/06/23	00:00	VOC PAINIS & LININIOC
0	PM10 Test Number: 845	DN/10 filtor	C9700087	05/06/23	00:00	FLT Particulate Weight (& metals if
ı		בווע		06/06/23	00:00	over trigger weight)*
			HVF-23-03-05	05/06/23	00:00	
M	HI-VOL Test Number: 845	HI-VOL Filter		06/06/23	00:00	Particulate Weight (& metals if over trigger weight)*
					Total: 23.86 hrs	(m. 6)
			i.			

Client Authorization:

Laboratory Personnel:

(Signature)

This "Chain of Custody" form is subject to InnoTech Alberta standard terms and conditions.

Page 1 of 2 F163-01

Sample ID: 23060160-001 Priority: Normal

Customer ID:

Clean Harbours VOCs and TNMOC Test # 845 Cust Samp ID:

Ryley, AB T0B 4A0 Clean Harbors PO Box 390 Sent To:

(1/2 mile north, Hwy 854)

780-663-2513 Todd Webb

Filter Shipping Record

Date:

Project:

Prepared by:

MAKEH 30/23

Filter Size	# of Filters in Cassettes	Filter IDs
47 mm	-	C970087

Returns: coolers, large and small containers may be shipped to: Innotech, PO Bag 4000, HWY 16A & 75th Street, Vegreville, AB T9C 1T4

Sample ID: Test 845	Method	Sampled By: [. Webb		Starting Vacuum: End Pressure:	14 "Hg	1
Canister ID: 32/84	ALBERTA This cleaned canister meets or exceeds TO-15 Method Specifications	Proofed by: $\int S dV \int \text{on:} \frac{\text{FEB } 1 \text{ i. 2023}}{\text{FEB } 1 \text{ i. 2023}}$	Evacuated: MAR 3 1 2023 Recertified:	(Use within: 3 months from evacuation or recertification date)	LaDutatofy Contact Number: 780-632-8403	

Sample ID: 23060160-001 Priority: Normal

		=	-	=
	_			
	=		=	=
	=			
				=
- 1				=
		_	_	_
- 1			=	=
- 1			=	-
				=
				=
			=	=
-				=
1				=
-				
:		=	=	-
			-	•
				Ε.
-				
-				
=				
=				•
-		_	_	•
Ξ				
Ξ		=	=	
-				
	-			
=				

Customer ID: Clean Harbours
Cust Samp ID: VOCs and TNMOC Test # 845

TERMS AND CONDITIONS

The attached document entitled "**Chain of Custody Form**" is subject to the following Terms and Conditions, unless otherwise specified on the Quotation. InnoTech Alberta's commencement of the Services shall be deemed acceptance of the terms and conditions by the Client

- 1.Any proposal contained herein is prepared for the consideration of the Client only. Its contents may not be used or disclosed to any other party without prior written consent of the INNOTECH ALBERTA INC. (hereinafter referred to as "InnoTech Alberta").
- 2.InnoTech Alberta will perform the Services in accordance with normal professional standards.
- 3. The delivery time for performance of the Services (as set out on the front page of this Quotation) is approximate and may be changed by InnoTech Alberta giving written notice to the Client.
 - 4.InnoTech Alberta will exercise due care and proficiency in testing items submitted by a Client. InnoTech Alberta shall not, however, be liable to the Client for any damage or loss caused to the item being tested or for any damage, loss or expense caused by any delay in carrying out the test, including any damage, loss or expense resulting from InnoTech Alberta's negligence. InnoTech Alberta shall not be responsible for any damage, which is a natural or necessary result of any testing procedure.
- 5. For the purposes of this Quotation, Intellectual Property means all information, data, artistic and literary works, concepts, designs, processes, software, algorithms and inventions, including, without limitation, those that could be the subject of patent, copyright, industrial design, trade secret or other forms of protection. Intellectual Property which was owned by either InnoTech Alberta or the Client prior to the signing of this Agreement remains the property of that party. Nothing in this Agreement shall operate as a license, permission or grant of any other rights to either InnoTech Alberta's or the Client's Intellectual Property.

6.All data, reports and other information relating to the Services shall be treated by InnoTech Alberta as the confidential property of the Client, and InnoTech Alberta will use reasonable efforts to ensure that its employees, contractors and agents will not disclose the same to any other person, firm or corporation during the term of this Agreement and for a period of five (5) years after the date of termination of the Agreement. The obligation of confidentiality set out herein shall not apply to any information that was in InnoTech Alberta's possession prior to receipt from the Client or which is or becomes part of the public domain through no act or failure on the part of InnoTech Alberta. The obligation of confidentiality set out in this Section shall not prevent the disclosure of information to any level of government having jurisdiction to make lawful demand therefor, or required to be disclosed by any applicable law. Any records required to be maintained by InnoTech Alberta pursuant to this Agreement are subject to the protection and access provisions of the Freedom of Information and Protection of Privacy Act (Alberta).

- 7. The reported results of any InnoTech Alberta tests or evaluations performed on samples or items provided by the Client shall be interpreted as being specific to the sample or item tested. InnoTech Alberta makes no representation that any similar or related untested samples or items would produce the same results.
- 8. The Client shall not use InnoTech Alberta's name in any advertising material, sale offer, news releases, public statements or announcements, whether written or oral relating to the Services or the results thereof, without the prior written consent of InnoTech Alberta.
- 9. Records, test data, reports and samples, except where shipped to the Client after completion of the work shall be retained by InnoTech Alberta according to InnoTech Alberta's approved Records Retention and Disposition Schedule.
- 10. Prices quoted are in Canadian Dollars unless otherwise stated in writing and are exclusive of any provincial, municipal, sales, use or goods and services tax.
- 11. Prices quoted do not include shipping, insurance or cost of consumables. The Client shall be responsible for all costs incurred by InnoTech Alberta in collecting any item for testing and returning the item to the Client after testing and shall be responsible for all necessary incidental costs incurred by InnoTech Alberta in providing the Services. InnoTech Alberta will not be responsible for any damage or loss to items during shipping and it is the responsibility of the Client to arrange and pay for any insurance it deems necessary.

Sample ID: 23060160-001 Priority: Normal

Customer ID: Clean Harbours
Cust Samp ID: VOCs and TNMOC Test # 845

- 12.Any test samples or other materials supplied by the Client to InnoTech Alberta may, at InnoTech Alberta's option, be returned by InnoTech Alberta to the Client. The Client shall:
- (a)be responsible for all costs associated with the handling, transportation and disposal of such materials;
- (b)reimburse InnoTech Alberta for any costs incurred by InnoTech Alberta associated with the handling, transportation and disposal of such materials; and
- (c)indemnify and hold InnoTech Alberta harmless from any and all claims, damages or actions associated with the handling, transportation and disposal of such materials.
 - 13. The Client shall pay all invoices rendered by InnoTech Alberta to the Client within thirty (30) days from the date of invoice, without deduction or set-off.
- 14.If the Client fails to pay any amount under this Agreement, such unpaid amount shall bear interest at a rate per month equal to one (1%) percent (or 12.6825% per annum) with interest on overdue interest at the same rate.
- 15.InnoTech Alberta makes no representation, warranties or conditions, either expressed or implied, statutory or otherwise and does not warrant the quality, state, merchantability or fitness for any purpose of any goods or products to be delivered pursuant to this Agreement. The Client accepts the results of these Services or items tested as is, and acknowledges that any use or interpretation of the information contained is at the Client's own risk.
 - 16.In no event shall InnoTech Alberta be liable for any indirect or consequential damage or loss suffered by the Client, including loss of anticipated profits.
 - 17. The Client shall indemnify and hold harmless InnoTech Alberta from any and all claims, demands, actions and costs (including legal costs on a solicitor-client basis) that may arise out of: (a)any dangerous defect or content in the item being tested, whether apparent or not, which dangerous defect or content was not disclosed in writing to InnoTech Alberta by the Client at the time the item was submitted for testing;
- (b)differences between those items actually tested and items previously or subsequently produced which are purported to be identical to the item tested; or
- (c)any use of the tested item or any item incorporating the tested item, whether by the Client or a third party following its return to the Client.
 - The hold harmless shall survive this Agreement.
- 18. The Client shall, at its own expense and without limiting its liabilities herein, be responsible for insuring its operation in an amount not less than \$2,000,000 inclusive per occurrence, insuring against bodily injury, and property damage including loss of use thereof. Further, the Client is responsible for insuring all owned property directly or indirectly related to this Agreement and InnoTech Alberta shall have no liability for any loss or damage to such property. 19.InnoTech Alberta shall maintain the following insurance: (i) commercial general liability insurance (including cross liability, severability of interests, non-owned automobile liability) in the amount of two million dollars (\$1,000,000.00) per claim, and two million dollars (\$2,000,000.00) in the amount of one million dollars (\$1,000,000.00) per claim, and two million dollars (\$2,000,000.00) in the aggregate. In addition, InnoTech Alberta shall maintain all workers compensation coverage required by applicable laws. Notwithstanding the foregoing, InnoTech Alberta reserves the right to supplement or add insurance coverage from time to time as may be required in its sole discretion. InnoTech Alberta may provide certificates of insurance for coverages outlined in (i) and (ii) above.
 - while on InnoTech Alberta premises.

 21. This Agreement represents the entire agreement between the parties and shall supersede all prior agreements relative to this transaction.
- prior agreements relative to this transaction.

 22.InnoTech Alberta shall not be liable to the Client for any failure or delay in performance of its obligations caused by circumstances beyond its control, including but not limited to acts of God, strikes, laws imposed after the fact, governmental restrictions, riots, wars, civil disorder, rebellion, sabotage, fire, flood, explosion, earthquake or other disasters.
 - 23.InnoTech Alberta may assign this Quotation to an "affiliated" (as that term is defined at Section 2 of the Business Corporations Act (Alberta)) or successor entity on written notice to the Client.
- 24. This Quotation and rights and parties thereto shall be governed by and construed according to the laws of the Province of Alberta. The parties hereby submit to the jurisdiction of the Courts of Alberta.

CUSTODY FORM

Highway 16A & 75 Street **Environmental Analytical Services**

Phone: 780-632-8403

Email: EAS.Reception@innotechalberta.ca www.innotechalberta.ca

Company: Cli€ Cust Samp ID: Customer ID: Clean Harbors Canada, Inc VOCs and TNMOC Test # 846 Clean Harbours

Address: Ryley, AB TOB 4A0 PO Box 390, 50114 Range Road 173,

Contact:

Todd Webb or Stan Yuha

Phone: Webb.Todd@cleanharbors.com, 780-663-2513 or 780-663-3828

Special Instructions/Comments:

Yuha.Stan@cleanharbors.com

If metals analysis is required, please report on the same report as filter weights and VOCs/TNMOC

Trigger Weight for Analysis (HI-VOL): 88.0 mg

Trigger Weight for Analysis (PM10): 1.12 mg

If neither filter exceeds its trigger weight, neither filter is analyzed for metals

*If either PM10 or HI-VOL filter exceeds its trigger weight, then both filters are analyzed for metals

Email:

Phone: Contact: Stephanie Dennis

Client Billing Information

Email:

PO #: Project ID: Test 846

Dennis.Stephanie@cleanharbors.com 780-663-3828

0000233992

Vegreville, AB T9C 1T4 **Turnaround Time**

X Normal (10 business days)

Rush

Confirm rush requests with InnoTech Alberta Note: Rush service not available for all tests.

Date Received – Lab Use Only

RECEIVED JUN 2 0 2023

6	Total: 23.90 hrs					0
Particulate Weight (& metals if	00:00	12/06/23	7	HI-VOL Filter	HI-VOL Test Number: 846	~
	00:00	11/06/23	HVF-23-03-13			
over trigger weight)*	00:00	12/06/23				2
FLT Particulate Weight (& metals if	00:00	11/06/23	C1170495	PM10 filter	PM10 Test Number: 846)
VOC FAIVIS & INIVIOC	00:00	12/06/23		calliate	Number: 846	-
VOC BANK 8. 1	00:00	11/06/23	32197	Canicter	VOCs and TNMOC Test	•
Analysis Requested	From / To	From / To	Sampler ID	Description	Client Sample ID	Lab Sample No.
	(24 hour)	(dd/mm/yy)	Canister Number/	Sample Source/		
	Time Sampled	Date Sampled				
The second second second						

Client Authorization:

(Signature)

Laboratory Personnel:

(Signature)

This "Chain of Custody" form is subject to InnoTech Alberta standard terms and conditions.

and Conditions, unless otherwise specified on the Quotation. InnoTech Alberta's commencement of the Services shall be deemed acceptance of the terms and conditions by The attached document entitled "Chain of Custody Form" is subject to the following Terms

INC. (hereinafter referred to as "InnoTech Alberta"). not be used or disclosed to any other party without prior written consent of the INNOTECH ALBERTA 1.Any proposal contained herein is prepared for the consideration of the Client only. Its contents may

2.InnoTech Alberta will perform the Services in accordance with normal professional standards

approximate and may be changed by InnoTech Alberta giving written notice to the Client. 3.The delivery time for performance of the Services (as set out on the front page of this Quotation) is

be responsible for any damage, which is a natural or necessary result of any testing procedure. any damage, loss or expense resulting from InnoTech Alberta's negligence. InnoTech Alberta shall not being tested or for any damage, loss or expense caused by any delay in carrying out the test, including 4.InnoTech Alberta will exercise due care and proficiency in testing items submitted by a Client. InnoTech Alberta shall not, however, be liable to the Client for any damage or loss caused to the item

Client's Intellectual Property. shall operate as a license, permission or grant of any other rights to either InnoTech Alberta's or the prior to the signing of this Agreement remains the property of that party. Nothing in this Agreement forms of protection. Intellectual Property which was owned by either InnoTech Alberta or the Client limitation, those that could be the subject of patent, copyright, industrial design, trade secret or other literary works, concepts, designs, processes, software, algorithms and inventions, including, without 5.For the purposes of this Quotation, Intellectual Property means all information, data, artistic and

any applicable law. Any records required to be maintained by InnoTech Alberta pursuant to this Agreement are subject to the protection and access provisions of the Freedom of Information and Protection of Privacy Act (Alberta). level of government having jurisdiction to make lawful demand therefor, or required to be disclosed by obligation of confidentiality set out in this Section shall not prevent the disclosure of information to any information that was in InnoTech Alberta's possession prior to receipt from the Client or which is or becomes part of the public domain through no act or failure on the part of InnoTech Alberta. The corporation during the term of this Agreement and for a period of five (5) years after the date of 6.All data, reports and other information relating to the Services shall be treated by InnoTech Alberta termination of the Agreement. The obligation of confidentiality set out herein shall not apply to any that its employees, contractors and agents will not disclose the same to any other person, firm or as the confidential property of the Client, and InnoTech Alberta will use reasonable efforts to ensure

Alberta makes no representation that any similar or related untested samples or items would produce provided by the Client shall be interpreted as being specific to the sample or item tested. InnoTech 7.The reported results of any InnoTech Alberta tests or evaluations performed on samples or items

results thereof, without the prior written consent of InnoTech Alberta. releases, public statements or announcements, whether written or oral relating to the Services or the 8.The Client shall not use InnoTech Alberta's name in any advertising material, sale offer, news

Retention and Disposition Schedule. work shall be retained by InnoTech Alberta according to InnoTech Alberta's approved Records 9. Records, test data, reports and samples, except where shipped to the Client after completion of the

provincial, municipal, sales, use or goods and services tax. 10. Prices quoted are in Canadian Dollars unless otherwise stated in writing and are exclusive of any

insurance it deems necessary. or loss to items during shipping and it is the responsibility of the Client to arrange and pay for any by InnoTech Alberta in providing the Services. InnoTech Alberta will not be responsible for any damage the item to the Client after testing and shall be responsible for all necessary incidental costs incurred responsible for all costs incurred by InnoTech Alberta in collecting any item for testing and returning 11. Prices quoted do not include shipping, insurance or cost of consumables. The Client shall be

Sample ID: 23060295-001 Priority: Normal

Cust Samp ID: Customer ID:

F163-01

VOCs and TNMOC Test # 846 Clean Harbours

> Alberta's option, be returned by InnoTech Alberta to the Client. The Client shall: 12. Any test samples or other materials supplied by the Client to InnoTech Alberta may, at InnoTech

(a)be responsible for all costs associated with the handling, transportation and disposal of such

handling, transportation and disposal of such materials; and (b)reimburse InnoTech Alberta for any costs incurred by InnoTech Alberta associated with the

associated with the handling, transportation and disposal of such materials. (c)indemnify and hold InnoTech Alberta harmless from any and all claims, damages or actions

days from the date of invoice, without deduction or set-off. 13. The Client shall pay all invoices rendered by InnoTech Alberta to the Client within thirty (30)

interest at a rate per month equal to one (1%) percent (or 12.6825% per annum) with interest on 14.If the Client fails to pay any amount under this Agreement, such unpaid amount shall bear overdue interest at the same rate.

of the information contained is at the Client's own risk. the results of these Services or items tested as is, and acknowledges that any use or interpretation purpose of any goods or products to be delivered pursuant to this Agreement. The Client accepts statutory or otherwise and does not warrant the quality, state, merchantability or fitness for any 15. InnoTech Alberta makes no representation, warranties or conditions, either expressed or implied,

suffered by the Client, including loss of anticipated profits. 16.In no event shall InnoTech Alberta be liable for any indirect or consequential damage or loss

time the item was submitted for testing; dangerous defect or content was not disclosed in writing to InnoTech Alberta by the Client at the (a)any dangerous defect or content in the item being tested, whether apparent or not, which demands, actions and costs (including legal costs on a solicitor-client basis) that may arise out of: 17.The Client shall indemnify and hold harmless InnoTech Alberta from any and all claims,

which are purported to be identical to the item tested; or (c)any use of the tested item or any item incorporating the tested item, whether by the Client or a (b)differences between those items actually tested and items previously or subsequently produced

The hold harmless shall survive this Agreement. third party following its return to the Client.

while on InnoTech Alberta premises. 20.The Client agrees to comply with all InnoTech Alberta Safety & Security regulations in effect InnoTech Alberta may provide certificates of insurance for coverages outlined in (i) and (ii) above. supplement or add insurance coverage from time to time as may be required in its sole discretion. required by applicable laws. Notwithstanding the foregoing, InnoTech Alberta reserves the right to in the aggregate. In addition, InnoTech Alberta shall maintain all workers' compensation coverage the amount of one million dollars (\$1,000,000.00) per claim, and two million dollars (\$2,000,000.00) shall maintain the following insurance: (i) commercial general liability insurance (including cross against bodily injury, and property damage including loss of use thereof. Further, the Client is 18.The Client shall, at its own expense and without limiting its liabilities herein, be responsible for insuring its operation in an amount not less than \$2,000,000 inclusive per occurrence, insuring (\$2,000,000.00) per occurrence, and; (ii) professional liability and errors and omissions insurance in liability, severability of interests, non-owned automobile liability) in the amount of two million dollars InnoTech Alberta shall have no liability for any loss or damage to such property. 19.InnoTech Alberta responsible for insuring all owned property directly or indirectly related to this Agreement and

prior agreements relative to this transaction. 21. This Agreement represents the entire agreement between the parties and shall supersede all

strikes, laws imposed after the fact, governmental restrictions, riots, wars, civil disorder, rebellion, sabotage, fire, flood, explosion, earthquake or other disasters. obligations caused by circumstances beyond its control, including but not limited to acts of God, 22. InnoTech Alberta shall not be liable to the Client for any failure or delay in performance of its

23. InnoTech Alberta may assign this Quotation to an "affiliated" (as that term is defined at Section

2 of the Business Corporations Act (Alberta)) or successor entity on written notice to the Client.
24. This Quotation and rights and parties there is shall be governed by and construed according to the laws of the Province of Alberta. The parties hereby-submit to the jurisdiction of the Courts of

Sample ID: 23060295-001 Priority: Normal

Clean Harbours

Cust Samp ID: Clean Harbours
Cust Samp ID: VOCs and TNMOC Test # 846

Sent To: Clean Harbors PO Box 390

(1/2 mile north, Hwy 854) Ryley, AB T0B 4A0

780-663-2513 Todd Webb

Filter Shipping Record

Date:

Project:

Prepared by:

Clean Harbors

					47 mm	Filter Size #
					_	# of Filters in Cassettes
					C1170495 est 846	Filter IDs

Sample ID: 23060295-001 Priority: Normal

Customer ID:

Clean Harbours

Cust Samp ID: VOCs and TNMOC Test # 846

Canister ID:

Sample ID:

ALBERTA This cleaned canister meets or exceeds TO-15 Method Specifications

Proofed by: 1504 on:
Evacuated: MAY 1 2 2023 Reco

(Use within: 3 months from evacuation or recertification date) Laboratory Contact Number: 780-632-8403 Recertified:

Starting Vacuum:

Sampled By: J. W. B.

End Pressure:

Sample ID: 23060317-001 Priority: Normal

ustomer ID: ust Samp ID: Clean Harbours

HAIN OF CUSTODY FORM

Environmental Analytical Services

Highway 16A & 75 Street Vegreville, AB T9C 1T4

Phone: 780-632-8403

Email: EAS.Reception@innotechalberta.ca www.innotechalberta.ca

Samp ID: VOCs and TNMOC Test # 847 - 32264		
Client Reporting Information	Client Billing Information	Turnaround Time
Company: Clean Harbors Canada, Inc	Contact: Stephanie Dennis	X Normal (10 business days)
Address: PO Box 390, 50114 Range Road 173, Ryley, AB T0B 4A0	Phone: 780-663-3828	Rush
Contact: Todd Webb or Stan Yuha	Email: Dennis.Stephanie@cleanharbors.com	Note: Rush service not available for all tests.
Phone: 780-663-2513 or 780-663-3828	Project ID: Test 847	Confirm rush requests with InnoTech Alberta.
Email: Webb.Todd@cleanharbors.com, Yuha.Stan@cleanharbors.com	PO #: 0000233992	
Special Instructions/Comments:		Date Received – Lab Use Only
* lf either PM10 or HI-VOL filter exceeds its trigger weight, then both filters are analyzed for metals	n both filters are analyzed for metals	
If neither filter exceeds its trigger weight, neither filter is analyzed for metals	yzed for metals	
If metals analysis is required, please report on the same report as filter weights and VOCs/TNMOC	t as filter weights and VOCs/TNMOC	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Trigger Weight for Analysis (PM10): 1.14 mg		
Trigger Weight for Analysis (HI-VOL): 88.5 mg		

This "Chain of Custody" form is subject to InnoTech Alberta standard terms and conditions. Client Authorization: (Signature) Laboratory Personnel: (Signature)

Sample ID: 23060317-002 Priority: Normal

Cust Samp ID: Clean Harbours
Cust Samp ID: PM10 Test # 847 - C1170492

Filter Shipping Record

Sent To: Clean Harbors PO Box 390

(1/2 mile north, Hwy 854) Ryley, AB T0B 4A0

780-663-2513 Todd Webb

RECEIVED
JUN 2 1 2023

Date:

Project:

Prepared by:

Clean Harbors

						47 mm	Filter Size
						<u> </u>	# of Filters in Cassettes
						\mathbb{C}	
						0411	
					,	CHACKILL	
	-					,	
							Filter IDs
	19						
				*		ल	
						Test 847	

Customer ID: Clean Harbours HI-VOL Test # 847 - HVF-23-03-19 Cust Samp ID: Sample ID: Canister ID: This cleaned canister meets or exceeds TO-15 Method Specifications Sampled By: Proofed by:___

Starting Vacuum:

-24.1 "Hg

Evacuated: MAY 1 2 2023 (Use within: 3 months from evacuation or recertification date)

Recertified:

Laboratory Contact Number: 780-632-8403

Sample ID: 23060317-003 Priority: Normal

ECEIVED JUN 2 1 2023

"Hg/psig

nu

End Vacuum:

{00004084;2}

TERMS AND CONDITIONS

the Client.

and Conditions, unless otherwise specified on the Quotation. InnoTech Alberta's The attached document entitled "Chain of Custody Form" is subject to the following Terms commencement of the Services shall be deemed acceptance of the terms and conditions by

not be used or disclosed to any other party without prior written consent of the INNOTECH ALBERTA 1. Any proposal contained herein is prepared for the consideration of the Client only. Its contents may INC. (hereinafter referred to as "InnoTech Alberta").

2.InnoTech Alberta will perform the Services in accordance with normal professional standards.

approximate and may be changed by InnoTech Alberta giving written notice to the Client. The delivery time for performance of the Services (as set out on the front page of this Quotation) is

any damage, loss or expense resulting from InnoTech Alberta's negligence. InnoTech Alberta shall not being tested or for any damage, loss or expense caused by any delay in carrying out the test, including be responsible for any damage, which is a natural or necessary result of any testing procedure. InnoTech Alberta shall not, however, be liable to the Client for any damage or loss caused to the item 4.InnoTech Alberta will exercise due care and proficiency in testing items submitted by a Client.

prior to the signing of this Agreement remains the property of that party. Nothing in this Agreement shall operate as a license, permission or grant of any other rights to either InnoTech Alberta's or the 5. For the purposes of this Quotation, Intellectual Property means all information, data, artistic and forms of protection. Intellectual Property which was owned by either InnoTech Alberta or the Client limitation, those that could be the subject of patent, copyright, industrial design, trade secret or other literary works, concepts, designs, processes, software, algorithms and inventions, including, without Client's Intellectual Property.

that its employees, contractors and agents will not disclose the same to any other person, firm or as the confidential property of the Client, and InnoTech Alberta will use reasonable efforts to ensure 6.All data, reports and other information relating to the Services shall be treated by InnoTech Alberta any applicable law. Any records required to be maintained by InnoTech Alberta pursuant to this Agreement are subject to the protection and access provisions of the Freedom of Information and obligation of confidentiality set out in this Section shall not prevent the disclosure of information to any level of government having jurisdiction to make lawful demand therefor, or required to be disclosed by becomes part of the public domain through no act or failure on the part of InnoTech Alberta. The information that was in InnoTech Alberta's possession prior to receipt from the Client or which is or termination of the Agreement. The obligation of confidentiality set out herein shall not apply to any corporation during the term of this Agreement and for a period of five (5) years after the date of Protection of Privacy Act (Alberta).

the same results. Alberta makes no representation that any similar or related untested samples or items would produce 7.The reported results of any InnoTech Alberta tests or evaluations performed on samples or items provided by the Client shall be interpreted as being specific to the sample or item tested. InnoTech

results thereof, without the prior written consent of InnoTech Alberta. releases, public statements or announcements, whether written or oral relating to the Services or the 8.The Client shall not use InnoTech Alberta's name in any advertising material, sale offer, news

9.Records, test data, reports and samples, except where shipped to the Client after completion of the work shall be retained by InnoTech Alberta according to InnoTech Alberta's approved Records Retention and Disposition Schedule.

provincial, municipal, sales, use or goods and services tax. 10. Prices quoted are in Canadian Dollars unless otherwise stated in writing and are exclusive of any

insurance it deems necessary by InnoTech Alberta in providing the Services. InnoTech Alberta will not be responsible for any damage or loss to items during shipping and it is the responsibility of the Client to arrange and pay for any the item to the Client after testing and shall be responsible for all necessary incidental costs incurred 11. Prices quoted do not include shipping, insurance or cost of consumables. The Client shall be responsible for all costs incurred by InnoTech Alberta in collecting any item for testing and returning

> 12.Any test samples or other materials supplied by the Client to InnoTech Alberta may, at InnoTech Alberta's option, be returned by InnoTech Alberta to the Client. The Client shall:

(a)be responsible for all costs associated with the handling, transportation and disposal of such

(b)reimburse InnoTech Alberta for any costs incurred by InnoTech Alberta associated with the

handling, transportation and disposal of such materials; and (c)indemnify and hold InnoTech Alberta harmless from any and all claims, damages or actions

13. The Client shall pay all invoices rendered by InnoTech Alberta to the Client within thirty (30) associated with the handling, transportation and disposal of such materials

days from the date of invoice, without deduction or set-off.

interest at a rate per month equal to one (1%) percent (or 12.6825% per annum) with interest on overdue interest at the same rate. 14.If the Client fails to pay any amount under this Agreement, such unpaid amount shall bear

purpose of any goods or products to be delivered pursuant to this Agreement. The Client accepts statutory or otherwise and does not warrant the quality, state, merchantability or fitness for any 15. InnoTech Alberta makes no representation, warranties or conditions, either expressed or implied, of the information contained is at the Client's own risk. the results of these Services or items tested as is, and acknowledges that any use or interpretation

suffered by the Client, including loss of anticipated profits. 16.In no event shall InnoTech Alberta be liable for any indirect or consequential damage or loss

demands, actions and costs (including legal costs on a solicitor-client basis) that may arise out of: (a)any dangerous defect or content in the item being tested, whether apparent or not, which dangerous defect or content was not disclosed in writing to InnoTech Alberta by the Client at the 17. The Client shall indemnify and hold harmless InnoTech Alberta from any and all claims, time the item was submitted for testing;

which are purported to be identical to the item tested; or (b)differences between those items actually tested and items previously or subsequently produced

third party following its return to the Client. (c)any use of the tested item or any item incorporating the tested item, whether by the Client or a

The hold harmless shall survive this Agreement.

18. The Client shall, at its own expense and without limiting its liabilities herein, be responsible for insuring its operation in an amount not less than \$2,000,000 inclusive per occurrence, insuring against bodily injury, and property damage including loss of use thereof. Further, the Client is supplement or add insurance coverage from time to time as may be required in its sole discretion. in the aggregate. In addition, InnoTech Alberta shall maintain all workers' compensation coverage the amount of one million dollars (\$1,000,000.00) per claim, and two million dollars (\$2,000,000.00) shall maintain the following insurance: (i) commercial general liability insurance (including cross required by applicable laws. Notwithstanding the foregoing, InnoTech Alberta reserves the right to liability, severability of interests, non-owned automobile liability) in the amount of two million dollars InnoTech Alberta shall have no liability for any loss or damage to such property. 19.InnoTech Alberta responsible for insuring all owned property directly or indirectly related to this Agreement and while on InnoTech Alberta premises. 20. The Client agrees to comply with all InnoTech Alberta Safety & Security regulations in effect InnoTech Alberta may provide certificates of insurance for coverages outlined in (i) and (ii) above. (\$2,000,000.00) per occurrence, and; (ii) professional liability and errors and omissions insurance in

prior agreements relative to this transaction. 21. This Agreement represents the entire agreement between the parties and shall supersede all

sabotage, fire, flood, explosion, earthquake or other disasters. strikes, laws imposed after the fact, governmental restrictions, riots, wars, civil disorder, rebellion, obligations caused by circumstances beyond its control, including but not limited to acts of God, 22. InnoTech Alberta shall not be liable to the Client for any failure or delay in performance of its

2 of the Business Corporations Act (Alberta)) or successor entity on written notice to the Client. 23. InnoTech Alberta may assign this Quotation to an "affiliated" (as that term is defined at Section

the laws of the Province of Alberta. The parties hereby submit to the jurisdiction of the Courts of 24. This Quotation and rights and parties thereto shall be governed by and construed according

Sample ID: 23060459-001 Priority: Normal

Clean Harbours

Cust Samp ID: VOCs and TMNOC Test #848

HAIN OF CUSTODY FORM

Vegreville, AB T9C 1T4 Highway 16A & 75 Street **Environmental Analytical Services**

> Phone: 780-632-8403 Email: EAS.Reception@innotechalberta.ca

www.innotechalberta.ca

Email: Client Reporting Information Trigger Weight for Analysis (HI-VOL): 88.5 mg Trigger Weight for Analysis (PM10): 1.13 mg If metals analysis is required, please report on the same report as filter weights and VOCs/TNMOC If neither filter exceeds its trigger weight, neither filter is analyzed for metals *If either PM10 or HI-VOL filter exceeds its trigger weight, then both filters are analyzed for metals Special Instructions/Comments: Phone: Contact: Address: Company: Clean Harbors Canada, Inc Ryley, AB TOB 4A0 Yuha.Stan@cleanharbors.com 780-663-2513 or 780-663-3828 Todd Webb or Stan Yuha PO Box 390, 50114 Range Road 173 Webb.Todd@cleanharbors.com, Phone: PO #: Email: Project ID: Contact: **Client Billing Information** Stephanie Dennis Test 848 0000233992 Dennis. Stephanie @cleanharbors.com 780-663-3828 Note: Rush service not available for all tests. Date Received - Lab Use Only Confirm rush requests with InnoTech Alberta **Turnaround Time** Normal (10 business days) Rush RECEIVED JUN 3 0 2023

				•		
	Total: 23.03 hrs					
Particulate Weight (& metals if	00:00	24/06/23		HI-VOL Filter	HI-VOL Test Number: 848	
	00:00	23/06/23	HVF-23-03-20			
over trigger weight)*	00:00	24/06/23		100		
FLT Particulate Weight (& metals if	00:00	23/06/23	C1170496	PM10 filter	PM10 Test Number: 848	
\$ 000 000 000 000 000 000 000 000 000 0	00:00	24/06/23		Callister	Number: 848	
VOC DAMS & THIMOC	00:00	23/06/23	28933		VOCs and TNMOC Test	
Analysis Requested	(24 hour) From / To	(dd/mm/yy) From / To	Canister Number/ Sampler ID	Sample Source/ Description	Client Sample ID	Lab Sample No.
	Time Sampled	Data Sampled				

This "Chain of Custody" form is subject to InnoTech Alberta standard terms and conditions. Client Authorization: (Signature) Laboratory Personnel: (Signature)

F163-01 Page 1 of 2 Sample ID: 23060459-001 Priority: Normal

Customer ID:

Clean Harbours

Cust Samp ID: VOCs and TMNOC Test #848

Canister ID: 28933 This cleaned canister meets or exceeds TO-15 Method	Sample ID:
Proofed by: ISQY on: APR 1 2 2023	Sampled By: T. Wdob
(Use within: 3 months from evacuation or recertification date) Laboratory Contact Number: 780-632-8403	Starting Vacuum: End Vacuum: "Hg/psig

JUN 3 0 2023

Sample ID: 23060459-001 Priority: Normal

Customer ID: Cust Samp ID:

VOCs and TMNOC Test #848

Filter Shipping Record

RECEIVED JUN 3 0 2023

Sent To: Clean Harbors

PO Box 390

Ryley, AB T0B 4A0

(1/2 mile north, Hwy 854)

Todd Webb

780-663-2513

Date:

Prepared by:

Clean Harbors

Project:

						Filter Size
			8		1	# of Filters in Cassettes
				-	0117049b	
						Filter IDs
					FT 86	

Sample ID: 23070042-001 Priority: Normal

Clean Harbours

HAIN OF CUSTODY FORM

Highway 16A & 75 Street **Environmental Analytical Services** Vegreville, AB T9C 1T4

Phone: 780-632-8403

Email: EAS.Reception@innotechalberta.ca www.innotechalberta.ca

VOCs and TMNOC Test # 849

Client Reporting Information

Address: Company: Contact: Clean Harbors Canada, Inc Todd Webb or Stan Yuha PO Box 390, 50114 Range Road 173, Ryley, AB TOB 4A0

Email: Phone: Yuha.Stan@cleanharbors.com Webb.Todd@cleanharbors.com, 780-663-2513 or 780-663-3828

Special Instructions/Comments:

If neither filter exceeds its trigger weight, neither filter is analyzed for metals

*If either PM10 or HI-VOL filter exceeds its trigger weight, then both filters are analyzed for metals

If metals analysis is required, please report on the same report as filter weights and VOCs/TNMOC

Trigger Weight for Analysis (HI-VOL): 90.1 mg

Trigger Weight for Analysis (PM10): 1.11 mg

Contact: Stephanie Dennis Client Billing Information

Phone: 780-663-3828

Dennis.Stephanie@cleanharbors.com

Email:

PO #: Project ID: Test 849 0000233992

> Normal (10 business days) Rush

Turnaround Time

Confirm rush requests with InnoTech Alberta Note: Rush service not available for all tests.

Date Received – Lab Use Only

RECEIVED JUL 0 6 2023

W)		N	_	_	Lab Sample No.	
HI-VOL Test Number: 849			PM10 Test Number: 849	Number: 849	VOCs and TNMOC Test	Client Sample ID	
HI-VOL Filter			PM10 filter	Collection	Canister	Sample Source/ Description	
×	HVF-23-03-17		C1170491		29037	Canister Number/ Sampler ID	
30/06/23	29/06/23	30/06/23	29/06/23	30/06/23	29/06/23	(dd/mm/yy) From / To	
00:00	00:00	00:00	00:00	00:00	00:00	Time Sampled (24 hour) From / To	!
Particulate Weight (& metals if		over trigger weight)*	FLT Particulate Weight (& metals if	VUC PAIVIS & INIVIUC	000 DANAGO D	Analysis Requested	

È	÷
$\bar{\alpha}$)
	5
7	+
7	>
2	
_	
\subseteq	_
=	•
C	•
7	
0	•
	۲
$\overline{}$	
\simeq	
::	

30/06/23

00:00

Total: 24.49 hrs

over trigger weight)*

(Signature)

Laboratory Personnel:

(Signature)

This "Chain of Custody" form is subject to InnoTech Alberta standard terms and conditions.

Sample ID: 23070042-002 Priority: Normal

Customer ID: Clean Harbours

Cust Samp ID: PM10 Test # 849 - C1170491

Sent To:

PO Box 390 Clean Harbors

Filter Shipping Record

RECEIVED

Date:

Project:

Prepared by:

780-663-2513 Todd Webb (1/2 mile north, Hwy 854) Ryley, AB T0B 4A0

Clean Harbors

			3.			47 mm	Filter Size
							# of Filters in
			ii ii				
						(1) TOYO 1	
						5	
							Filter IDs
		-					
						7	
						JEST 849	

Returns: coolers, large and small containers may be shipped to: Innotech, PO Bag 4000, HWY 16A & 75th Street, Vegreville, AB T9C 1T4

Canister ID: 29037. This cleaned canister meets or exceeds TO-15 Method	Sample ID: Tet 949
Proofed by: (5Q3 on: MAY 1 6 2023	Sampled By: T. Webb
Evacuated: MAY 2 6 2023 Recertified: (Use within: 3 months from evacuation or recertification date) Laboratory Contact Number: 780-632-8403	Starting Vacuum: End Vacuum: "Hot nsig

Sample ID: 23070042-001 Priority: Normal

THE REPORT OF THE PERSON OF THE PERSON OF

Customer ID:

Clean Harbours

Cust Samp ID:

VOCs and TMNOC Test # 849

{00004084;2}

TERMS AND CONDITIONS

and Conditions, unless otherwise specified on the Quotation. InnoTech Alberta's commencement of the Services shall be deemed acceptance of the terms and conditions by The attached document entitled "Chain of Custody Form" is subject to the following Terms

- not be used or disclosed to any other party without prior written consent of the INNOTECH ALBERTA INC. (hereinafter referred to as "InnoTech Alberta"). 1. Any proposal contained herein is prepared for the consideration of the Client only. Its contents may
- 2.InnoTech Alberta will perform the Services in accordance with normal professional standards.
- 3. The delivery time for performance of the Services (as set out on the front page of this Quotation) is approximate and may be changed by InnoTech Alberta giving written notice to the Client.
- being tested or for any damage, loss or expense caused by any delay in carrying out the test, including any damage, loss or expense resulting from InnoTech Alberta's negligence. InnoTech Alberta shall not be responsible for any damage, which is a natural or necessary result of any testing procedure. 4. InnoTech Alberta will exercise due care and proficiency in testing items submitted by a Client. InnoTech Alberta shall not, however, be liable to the Client for any damage or loss caused to the item
- prior to the signing of this Agreement remains the property of that party. Nothing in this Agreement shall operate as a license, permission or grant of any other rights to either InnoTech Alberta's or the literary works, concepts, designs, processes, software, algorithms and inventions, including, without 5. For the purposes of this Quotation, Intellectual Property means all information, data, artistic and Client's Intellectual Property. forms of protection. Intellectual Property which was owned by either InnoTech Alberta or the Client limitation, those that could be the subject of patent, copyright, industrial design, trade secret or other
- becomes part of the public domain through no act or failure on the part of InnoTech Alberta. The obligation of confidentiality set out in this Section shall not prevent the disclosure of information to any level of government having jurisdiction to make lawful demand therefor, or required to be disclosed by 6.All data, reports and other information relating to the Services shall be treated by InnoTech Alberta any applicable law. Any records required to be maintained by InnoTech Alberta pursuant to this Agreement are subject to the protection and access provisions of the Freedom of Information and information that was in InnoTech Alberta's possession prior to receipt from the Client or which is or termination of the Agreement. The obligation of confidentiality set out herein shall not apply to any corporation during the term of this Agreement and for a period of five (5) years after the date of that its employees, contractors and agents will not disclose the same to any other person, firm or as the confidential property of the Client, and InnoTech Alberta will use reasonable efforts to ensure Protection of Privacy Act (Alberta).
- 7.The reported results of any InnoTech Alberta tests or evaluations performed on samples or items provided by the Client shall be interpreted as being specific to the sample or item tested. InnoTech Alberta makes no representation that any similar or related untested samples or items would produce
- 8. The Client shall not use InnoTech Alberta's name in any advertising material, sale offer, news results thereof, without the prior written consent of InnoTech Alberta. releases, public statements or announcements, whether written or oral relating to the Services or the
- 9.Records, test data, reports and samples, except where shipped to the Client after completion of the work shall be retained by InnoTech Alberta according to InnoTech Alberta's approved Records Retention and Disposition Schedule.
- provincial, municipal, sales, use or goods and services tax. 10. Prices quoted are in Canadian Dollars unless otherwise stated in writing and are exclusive of any
- or loss to items during shipping and it is the responsibility of the Client to arrange and pay for insurance it deems necessary. by InnoTech Alberta in providing the Services. InnoTech Alberta will not be responsible for any damage responsible for all costs incurred by InnoTech Alberta in collecting any item for testing and returning 11. Prices quoted do not include shipping, insurance or cost of consumables. The Client shall be the item to the Client after testing and shall be responsible for all necessary incidental costs incurred

Sample ID: 23070042-001 Priority: Normal

Alberta's option, be returned by InnoTech Alberta to the Client. The Client shall: 12.Any test samples or other materials supplied by the Client to InnoTech Alberta may, at InnoTech

(a)be responsible for all costs associated with the handling, transportation and disposal of such

(b)reimburse InnoTech Alberta for any costs incurred by InnoTech Alberta associated with the

(c)indemnify and hold InnoTech Alberta harmless from any and all claims, damages or actions handling, transportation and disposal of such materials; and

13. The Client shall pay all invoices rendered by InnoTech Alberta to the Client within thirty (30) associated with the handling, transportation and disposal of such materials.

days from the date of invoice, without deduction or set-off.

overdue interest at the same rate. interest at a rate per month equal to one (1%) percent (or 12.6825% per annum) with interest on 14. If the Client fails to pay any amount under this Agreement, such unpaid amount shall bear

of the information contained is at the Client's own risk. the results of these Services or items tested as is, and acknowledges that any use or interpretation statutory or otherwise and does not warrant the quality, state, merchantability or fitness for any purpose of any goods or products to be delivered pursuant to this Agreement. The Client accepts 15. InnoTech Alberta makes no representation, warranties or conditions, either expressed or implied,

suffered by the Client, including loss of anticipated profits. 16.In no event shall InnoTech Alberta be liable for any indirect or consequential damage or loss

time the item was submitted for testing; dangerous defect or content was not disclosed in writing to InnoTech Alberta by the Client at the (a)any dangerous defect or content in the item being tested, whether apparent or not, which demands, actions and costs (including legal costs on a solicitor-client basis) that may arise out of 17. The Client shall indemnify and hold harmless InnoTech Alberta from any and all claims,

which are purported to be identical to the item tested; or (b)differences between those items actually tested and items previously or subsequently produced

third party following its return to the Client. (c)any use of the tested item or any item incorporating the tested item, whether by the Client or a

The hold harmless shall survive this Agreement.

while on InnoTech Alberta premises. 20. The Client agrees to comply with all InnoTech Alberta Safety & Security regulations in effect InnoTech Alberta may provide certificates of insurance for coverages outlined in (i) and (ii) above. supplement or add insurance coverage from time to time as may be required in its sole discretion. in the aggregate. In addition, InnoTech Alberta shall maintain all workers' compensation coverage shall maintain the following insurance: (i) commercial general liability insurance (including cross liability, severability of interests, non-owned automobile liability) in the amount of two million dollars InnoTech Alberta shall have no liability for any loss or damage to such property. 19. InnoTech Alberta against bodily injury, and property damage including loss of use thereof. Further, the Client is 18. The Client shall, at its own expense and without limiting its liabilities herein, be responsible for insuring its operation in an amount not less than \$2,000,000 inclusive per occurrence, insuring required by applicable laws. Notwithstanding the foregoing, InnoTech Alberta reserves the right to the amount of one million dollars (\$1,000,000.00) per claim, and two million dollars (\$2,000,000.00) responsible for insuring all owned property directly or indirectly related to this Agreement and (\$2,000,000.00) per occurrence, and; (ii) professional liability and errors and omissions insurance in

21. This Agreement represents the entire agreement between the parties and shall supersede all prior agreements relative to this transaction.

strikes, laws imposed after the fact, governmental restrictions, riots, wars, civil disorder, rebellion, sabotage, fire, flood, explosion, earthquake or other disasters. obligations caused by circumstances beyond its control, including but not limited to acts of God, 22. InnoTech Alberta shall not be liable to the Client for any failure or delay in performance of its

2 of the Business Corporations Act (Alberta)) or successor entity on written notice to the Client. 23. InnoTech Alberta may assign this Quotation to an "affiliated" (as that term is defined at Section

24. This Quotation and rights and parties thereto shall be governed by and construed according to the laws of the Province of Alberta. The parties hereby submit to the jurisdiction of the Courts of

Cust Samp ID: Customer ID:

VOCs and TMNOC Test # 849

Clean Harbours

Appendix E June Quarterly Audits

Quarterly Audit Partisol FRM Model 2000

Clean Harbors 50114 Range Rd. 173 Ryley, Alberta T0B 4A0

Quarterly Audit Date: June 30, 2023

Clean Harbors

Table of Contents

1.	Introd	duction	1					
2.	Audit	oudit Procedure1						
3.	Audit	t Results	1					
	3.1	Siting Location Audit Results (AEP Station ID 00010348-I-1)	1					
	3.2	Pressure and Temperature Audit Results (AEP Station ID 00010348-I-1)	2					
	3.3	Leak Check Results (AEP Station ID 00010348-I-1)	2					
		3.3.1 Automatic Leak Check						
	3.4	Flow Audit (AEP Station ID 00010348-I-1)	3					
	3.5	Instrument Condition and Recommendations (AEP Station ID 00010348-I-1)	3					
		3.5.1 Recommendations	3					
Table	Ind	lex						
Table	3.1	AMD Requirements vs. Current Partisol Sampler Location	2					
Table	3.2	Reference Results vs. Partisol Sampler Readings	2					
Appen	dix	k Index						
Apper	ndix A	Quarterly Audit Form						
Apper	ndix B	Calibration Certificates						

1. Introduction

GHD Limited (GHD) was retained by Clean Harbors to conduct a Quarterly Audit at 50114 Range Road 173 Ryley, Alberta (Facility) on June 30, 2023. The Quarterly Audit was conducted on the Partisol FRM 2000 Particulate Matter less than 10 microns (PM₁₀) Sampler (Partisol Sampler), located at the Ryley Lift Station, Secondary Road 854, approximately 350 metres southeast of the Facility (53°17'52.66"N and 112°24'57.87"W).

2. Audit Procedure

The Partisol Sampler was audited in accordance with the instrument manual and the Alberta Air Monitoring Directive, 2016 (AMD). Siting location, ambient pressure, ambient temperature, filter temperature, leakage rate and flow rate were audited, as well as overall instrument condition to ensure compliance with the instrument manual and the AMD. Below is a summary of the tasks performed on the Partisol Sampler:

- Siting Location Audit
- Ambient Pressure Audit
- Ambient Temperature Audit
- Filter Temperature Audit
- Leakage Rate Audit
- Flow Rate Audit
- Instrument Condition and Recommendations

GHD verified all of these parameters using calibrated reference instruments. GHD reference instruments either have National Institute of Standards and Technology (NIST) Traceable Certifications, current manufacturer certification, or were verified by a primary standard. The GHD quarterly audit field form can be found in Appendix A. All calibrations and certifications can be found in Appendix B.

3. Audit Results

3.1 Siting Location Audit Results (AEP Station ID 00010348-I-1)

The siting location of the Partisol Sampler meets the requirements of Chapter 3, of the AMD. Table 3.1 of this report compares the AMD Siting Requirements for Intermittent Samplers versus the current Partisol sampler location.

- The current coordinates of the Partisol Sampler are 53°17'52.66"N and 112°24'57.87"W.
- The distance from the nearest roadway is 21 m.

Table 3.1 AMD Requirements vs. Current Partisol Sampler Location

Site Characteristics	AMD	Requirements	Current Location	Specification
Sampler Inlet-height above ground (abg)	Minir	num 2 m, Maximum 15 m	Meets Requirement	4.63 m abg
Other Requirements	a.	Distance from an obstacle greater than 2.5 times the height of the obstacle above the sampler.	Meets Requirement	>2.5 times
	b.	At least 2 m from any other samplers or inlets with flow rates greater than 200 litres (L) per minute,	Meets Requirement	None
		Or at least 1 m apart from any other samplers or inlets with flow rates less than or equal of 200 L per minute.	Meets Requirement	None
	C.	Unrestricted air flow in three to four wind quadrants.	Meets Requirement	4/4 Unrestricted Quadrants

3.2 Pressure and Temperature Audit Results (AEP Station ID 00010348-I-1)

The pressure and temperature audit results of the Partisol Sampler meet the requirements of Chapter 4, of the AMD. Table 3.2 of this report compares the reference results versus the Partisol Sampler readings.

Table 3.2 Reference Results vs. Partisol Sampler Readings

Parameter	Partisol	Reference	Difference	Limit	Pass/Fail
Ambient Temperature (°C)	29.7	29.5	0.2	<u>+</u> 2°C	Pass
Barometric Pressure (mmHg)	700.0	701.3	1.3	<u>+</u> 10 mmHg	Pass
Filter Temperature (°C)	30.8	30.5	0.3	<u>+</u> 2°C	Pass
Flow (L/min	16.7	15.8	0.9	<u>+</u> 1.0 L/min	Pass

3.3 Leak Check Results (AEP Station ID 00010348-I-1)

3.3.1 Automatic Leak Check

The Partisol firmware performs leak checks in automatic mode and indicates either a "pass" or "fail" based on a pressure drop threshold of 127 mmHg per minute. The Partisol Sampler passed the requirements outlined in the service manual with a pressure drop of 6 mmHg per minute during the audit.

3.3.2 External Manual Leak Check

GHD also performs an external manual leak check on the Partisol Sampler as part of the quarterly audit. The external manual leak check measures the pressure drop on a vacuum gauge located on

the sampler. The pressure drop may not exceed more than 8.5 inHg (216 mmHg) over a 30-second span. The Partisol Sampler passed the requirements of the service manual with a pressure drop of 0.5 inHg in a 30-second span.

3.4 Flow Audit (AEP Station ID 00010348-I-1)

The flow audit results of the Partisol Sampler meet the requirements of Chapter 4 of the AMD, refer to Table 3.2.

3.5 Instrument Condition and Recommendations (AEP Station ID 00010348-I-1)

The Partisol Sampler was visually and functionally inspected on the audit day. Audit recommendations and instrument conditions are listed below:

- Liquid crystal display screen is functioning.
- Filter exchange cabinet has been cleaned.
- · Ventilation fan filters are clean.
- Filter exchange mechanism is operating normally.
- Filter v-seals are in good condition.
- Ambient temperature and pressure sensor wires in good condition.
- Main power connection wire in good condition.

3.5.1 Recommendations

GHD recommends opening and cleaning PM₁₀ sampling inlet prior to next sampling event.

Appendices

Appendix A Quarterly Audit Form

GHD Quarterly Audit Form

Make/Model: Unit ID: S/N:	del 2000 Identification R & P Partisol FRM Ryley Lift Station 200FB209860905	Weather Cond.: Start Time: End Time: Performed By: Sampler Data Temperature: Pressure: Flow Set Point:	11:4	Sunny 45:00 <i>F</i> 55:00 <i>F</i> and P.	λM		
Make: Model: Serial Number:	AirMe FF FRM	etrics RM 1218	Pressure TSI 9555-X / 960 9555X1002005	Temperature Fluke 1551A Ex 4893012	Manome Dwyer 475-0-FI N/A	M	
Ambient Tempera	it Data ature (+/- 2 °C) sure (+/- 10 mmHg) se (+/- 2 °C)	Sampler Data 29.70 700.00 30.80 16.70	12/20/2022 Reference Data 29.50 701.31 30.53 15.80	12/19/2022 Difference 0.2 1.3 0.3 0.9	Pass/Fa Pass Pass Pass Pass Pass Pass Pass		Units °C mmHg °C Litres/min
<u>Leak</u> Manual Che	c Check eck (-8.5 inHg) eck (-127 mmHg)	Initial Pressure -14.50	Final Pressure	Pressure Drop -0.50	Pass/Fa	ail	Units inHG
Leak As Foul Did the ambient ter Did the barometric Did the filter tempe	check was performed nd/As Left mperature require adjustrature require adjustrature require adjustrature	ustment? stment?	sampler indicated: Yes/No No No No No No	6 mmHg/min	Pass As Found A 29.7 700 30.8 16.7	As Left 29.7 700 30.8 16.7	mmHg/min Pass/Fail Pass Pass Pass Pass Pass Pass
Flow Equation Set Point (lpm) 16.7	Actual Flow (Qact) (lpm) 16.6	Absolute Difference (lpm) 0.1	Pass/Fail (<u>+</u> 1 lpm)	Manometer (DH) Actual Temp (Tact) Actual Pres (Pact) Actual Pres (Pact)	3.8 " 302.65 ° 0.935 b 27.61 ir	K oar	29.5°C
FTS Linear Regres (mflo) = (bflo) =	ssion Constants 0.4452 0.4430		Qact = mflo >	$< \frac{\sqrt{\Delta H \times Tact}}{Pact} + bflo$			

Appendix B Calibration Certificates

20800 Boul. Industriel, Ste-Anne-de-Bellevue, QC H9X 0A1 **EDMONTON**

9730 32 Avenue NW Edmonton, AB T6N 1L9

16975 Leslie Street Newmarket, ON L3Y 9A1

TORONTO

REGINA

#D, 288 Hodsman Road Regina, SK S4N 5X4

CALGARY #209, 4615 112 Ave SE Calgary, AB T2C 5J3

VANCOUVER 1282 Cliveden Av Delta, BC V3M 6G4

www.itm.com • 1.800.561.8187 • information@itm.com

Calibration Certificate

Customer: ITM Edmonton

Certificate: C542640-00-03

Unit Identification

Manufacturer: Fluke Model: 1551A Ex

Description: Stik Thermometer

Calibration Date

Calibration Date: 19-Dec-2022

Due Date: 19-Dec-2023

Serial: 4893012 Unit ID: I-2902

Calibration Conditions

Temperature: 21.9°C Humidity: 22.2 %

Barometric Pressure: N/A

General Information

Remark: N/A

1-2374

Standards Used									
Unit ID	Manufacturer	Model	Cal Date	<u>Due Date</u>					
I-1969	Ametek	RTC-157A	3-Mar-2022	3-Mar-2023					
I-2040	Fluke	1523	26-May-2021	26-May-2023					
1-2374	Fluke	5608	28-May-2021	28-May-2023					

The calibration was performed using measurement standards traceable to the National Measurement Institute Standards (NMIS) part of the National Research Council of Canada (NRC) or the National Institute of Standards and Technology (NIST), or to accepted instrinsic standards or measurement, or is derived by ratio type self-calibration techniques. Measurement uncertainties given in this report are based on a coverage factor of k=2 corresponding to a confidence level of approximately 95%

Calibrated by: J. Wilson

Jordan Wilson

Fluke

Approved by:

Certificate: C542640-00-03 Asset: ITM0067404

Calibration Certificate

Test Results

Procedure: FLUKE 1551A EX_RTC-157A, Fluke 1523 Rev: 1

Data Type: As Found Results: Pass

Test Description	True Value	Reading	Lower Limit	Upper Limit	Test Status	Exp Uncert
TEMPERATURE ACCURAC	Y TEST					
-39.9430 °C		-39.923 °C	-39.993 °C	-39.893 °C	Pass	5.0e-002 °C
-24.9690 °C		-24.959 °C	-25.019 °C	-24.919 °C	Pass	5.0e-002 °C
-0.0010 °C		-0.004 °C	-0.051 °C	0.049 °C	Pass	5.0e-002 °C
99.9630 °C		99.949 °C	99.913 °C	100.013 °C	Pass	5.0e-002 °C
154.9230 °C		154.955 °C	154.873 °C	154.973 °C	Pass	5.0e-002 °C

Test Results

Procedure: **No Procedure** Rev: **1**Data Type: **pending** Results:

Test Description True Value Reading Lower Limit Upper Limit Test Status Exp Uncert

Results Run: 2.00

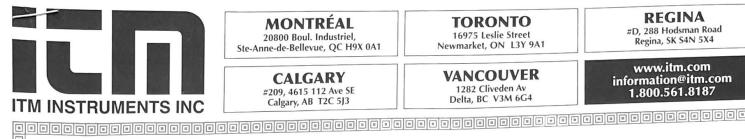
NIST Traceable Transfer Standard Calibration

Calibration Ambient Te Amb Press	mp, °K:	17/2016 295.5 1.0000	Orific Pri Si Mand	· · · · · · · · · · · · · · · · · · ·	1218- 774300 1218	By:
Std ∆H (inH₂O)	Manometer ΔH (in H_2O)	Actual Flow (alpm)	Calc Flow (alpm)	Difference* (%diff)		
6.67	6.67	20.179	20.209	-0.15		er ∆H vs Act Flow
5.86	5.86	18.988	18.970	0.09	Linear Re	gression Results:
5.10	5.10	17.733	17.727	0.03	m _{flo} =	0.4452
4.39	4.39	16.490	16.479	0.07	b _{flo} =	0.4430
3.73	3.73	15.233	15.224	0.06	r ² =	1.0000
3.12	3.12	13.964	13,962	0.02		
2.56	2.56	12.683	12.688	-0.04		
2.05	2.05	11.390	11.401	-0.10	* all points mu	ust be within ± 2%

The MiniFlo calibration is performed with an NIST-traceable standard. Each unit has a unique pair of calibration constants derived from the calibration which are used to calculate the actual air flow rate at all ambient conditions. The unit's calibration should be recertified annually.

The actual flow rate is a function of the pressure drop across the device, the ambient temperature, and the ambient pressure. The relationship of these variables and the unique calibration constants ("m" and "b") for each device is presented in the following equation (Eq.A):

$$Q_{act} = m_{flo} \times \sqrt{\frac{\Delta H \times T_{act}}{P_{act}}} + b_{flo}$$
 $Q_{act} = actual flowrate, liters per min $\Delta H = manometer reading, inches of water T_{act} = ambient temperature, °K P_{act} = ambient pressure, atmospheres$$


CAUTION: The weather service, most airports, etc, reduce the atmospheric pressure to a common reference (sea level). The equation above requires the atmospheric pressure at the location where the MiniFlo is being used.

The equation below may be used to estimate the ambient atmospheric pressure at any elevation if the sea level pressure is known.

$$P_{act} = P_{sea} \times \left(1 - \frac{E}{145300}\right)^{5.25}$$
 $P_{act} = Ambient Atmospheric Pressure P_{sea} = Sea Level Atmospheric Pressure E = Site elevation, feet$

Airmetrics

1940 Don St., Suite 300 Springfield, OR 97477 (541) 683-5420

20800 Boul. Industriel, Ste-Anne-de-Bellevue, QC H9X 0A1

CALGARY

#209, 4615 112 Ave SE

Calgary, AB T2C 5J3

TORONTO

16975 Leslie Street Newmarket, ON L3Y 9A1

REGINA

#D, 288 Hodsman Road Regina, SK S4N 5X4

VANCOUVER 1282 Cliveden Av Delta, BC V3M 6G4

www.itm.com information@itm.com 1.800.561.8187

Calibration Certificate

Customer: GHD Ltd.

Certificate: C542161-00-01

Unit Identification

Manufacturer: Dwyer

Model: 475-0-FM

Description: Digital Manometer

Calibration Date

Calibration Date: 1-Dec-2022

Due Date: 1-Dec-2023

Serial: N/A

Unit ID: MAN-CAL-001

Calibration Conditions

Temperature: 21.7°C Humidity: 15 %

Barometric Pressure: N/A

General Information

Remark: N/A

Standards Used

Unit ID CAL0224

Manufacturer

Fluke

Model 750P01 Cal Date

12-Sep-2022

Due Date

12-Mar-2023

The calibration was performed using measurement standards traceable to the National Measurement Institute Standards (NMIS) part of the National Research Council of Canada (NRC) or the National Institute of Standards and Technology (NIST), or to accepted instrinsic standards or measurement, or is derived by ratio type self-calibration techniques. Measurement uncertainties given in this report are based on a coverage factor of k=2 corresponding to a confidence level of approximately 95%.

Calibrated by: D. Gano

Certificate: C542161-00-01 Asset: ITM0017905

Calibration Certificate

20800 Boul. Industriel, Ste-Anne-de-Bellevue, QC H9X 0A1

TORONTO

16975 Leslie Street Newmarket, ON L3Y 9A1

REGINA

#D, 288 Hodsman Road

Regina, SK S4N 5X4

				vmarket, ON L3Y 9A1		Regina, SK S4N 5X4
M INSTRUMENTS	SINC	CALGARY #209, 4615 112 Ave SE Calgary, AB T2C 5J3	V ,	ANCOUVER 1282 Cliveden Av Delta, BC V3M 6G4	inf	www.itm.com ormation@itm.con 1.800.561.8187
Test Results						
Procedure: Pressure Ga	uge 10.00 IN.W.	.C 0.5% FS /750P01	Rev: 1.1			
Data Type: As Found	Results: Pass					
Test Description	True Value	Reading	Lower Limit	Upper Limit	Test Status	Exp Uncert
Tolerance used (additive if r	more than one listed	d):				
0.5% of full scale						
UUT is set to the nominal va	alue, Reading is the					
actual pressure read by the	system instrument.				_	4.65 002 in H2O
1.000 inH2O		1.003 inH2O	0.950 inH2O	1.050 inH2O	Pass	1.6e-002 ini12O
2.000 inH2O		1.983 inH2O	1.950 inH2O	2.050 InH2O	Pass	1.6e-002 inH2O
4.000 inH2O		3.982 inH2O	3.950 inH2O	4.050 InH2O	Pass Pass	1.6e-002 inH2O
6.000 inH2O		5.978 inH2O	5.950 inH2O	0.050 InH2O	Pass	1.6e-002 inH2O
8.000 inH2O		7.969 inH2O	7,950 INH2O	0.000 IIIHZO	Pass	1.6e-002 inH2O
10.000 inH2O		9.974 InH2O	9.950 INH2O	10.030 1111 120	1 433	
Test Results Procedure: Pressure Ga Data Type: As Found Test Description Tolerance used (additive if round) UUT is set to the nominal vacual pressure read by the 1.000 inH2O 2.000 inH2O 4.000 inH2O 8.000 inH2O 8.000 inH2O 10.000 inH2O						
Certificate: C542161-00-0	1					
Asset: ITM0017905			bration Certificate			Page

20800 Boul. Industriel, Ste-Anne-de-Bellevue, QC H9X 0A1

CALGARY

#209, 4615 112 Ave SE Calgary, AB T2C 5J3

TORONTO

16975 Leslie Street Newmarket, ON L3Y 9A1

VANCOUVER

1282 Cliveden Av Delta, BC V3M 6G4

REGINA

#D, 288 Hodsman Road Regina, SK S4N 5X4

www.itm.com information@itm.com 1.800.561.8187

Calibration Certificate

Customer: GHD LTD

Certificate: C542157-00-01

Unit Identification

Manufacturer: TSI Model: 9555-X / 960

Description: VelociCalc

Calibration Date

Calibration Date: 20-Dec-2022

Due Date: 20-Dec-2023

Serial: 9555X1002005

Unit ID: VEL-CAL-002

Calibration Conditions

Temperature: 22.5°C Humidity: 34.8 %

Barometric Pressure: 103.0kPa

General Information

Remark: N/A

Stand	lards	Used

Unit ID	Manufacturer	Model	Cal Date	Due Date
M-012	Airflow Development	83FSL	******* No Cal	ibration Required **********
M-110	Love Controls	HM3531DLF600	11-Oct-2022	11-Oct-2023
M-115	Rotronic	M22W	10-Jul-2022	10-Jul-2023
M-130	Fluke	1552A	13-May-2022	13-May-2023

The calibration was performed using measurement standards traceable to the National Measurement Institute Standards (NMIS) part of the National Research Council of Canada (NRC) or the National Institute of Standards and Technology (NIST), or to accepted instrinsic standards or measurement, or is derived by ratio type self-calibration techniques. Measurement uncertainties given in this report are based on a coverage factor of k=2 corresponding to a confidence level of approximately 95%.

Calibrated by: R. Chaaya

Certificate: C542157-00-01 Asset: ITM0071374

Approved b

Calibration Certificate

Page 1/2

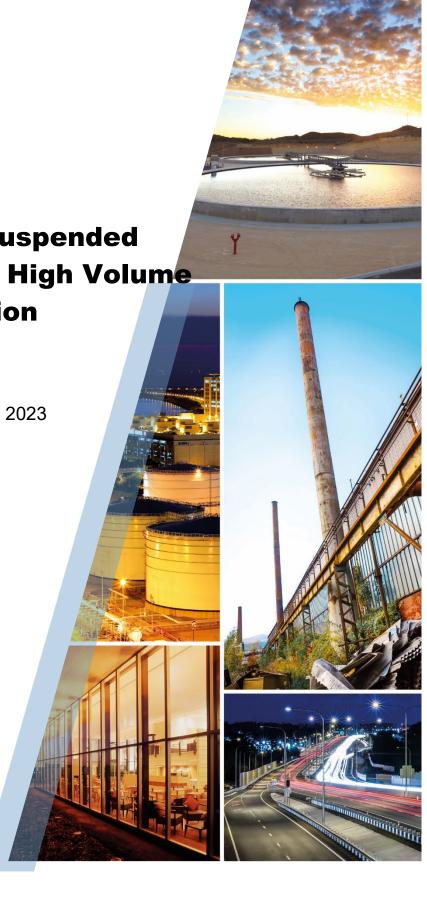
20800 Boul. Industriel, Ste-Anne-de-Bellevue, QC H9X 0A1

TORONTO 16975 Leslie Street Newmarket, ON L3Y 9A1

REGINA #D, 288 Hodsman Road Regina, SK S4N 5X4

VANCOUVER

		CALGARY		ANCOUVER		www.itm.com		
INSTRUMEN		#209, 4615 112 Ave Calgary, AB T2C 5J:	SE 3	1282 Cliveden Av Delta, BC V3M 6G4		information@itm.com 1.800.561.8187		
Test Results		~ ~						
Procedure: TSI 9555-								
Data Type: As Found	Results: Pass	3						
Test Description	True Value	Reading	Lower Limit	Upper Limit	Test Status	Exp Uncert		
TEMPERATURE TEST ACC	URACY °C							
0.0 °C		0.1 °C	-0.3 °C	0.3 °C	Pass	1.20.001 *C		
25.0 °C		24.9 °C	24.7 °C	25.3 °C	Pass	1.2e-001 °C 1.2e-001 °C		
60.0 °C		60.0 °C	59.7 °C	60.3 °C	Pass	1.2e-001 °C		
VELOCITY TEST ACCURAC	N/ f4 /m. I							
TEOCHT TEST ACCURAC	a II/IIIIN							
100 ft/min		99 ft/min	97 ft/min	103 ft/min	Pass	5.8e-001 t/min		
200 ft/min		201 ft/min	194 ft/min	206 ft/min	Pass	5.8e-001 t/min		
300 ft/min		303 ft/min	291 ft/min	309 ft/min	Pass	5.8e-001 t/min		
400 fVmin		402 ft/min	388 ft/min	412 ft/min	Pass	5.8e-001 t/min		
500 fl/min		496 ft/min	485 ft/min	515 ft/min	Pass	5.8e-001 t/min		
750 fVmin		754 ft/min	727 ft/min	773 ft/min	Pass	5.8e-001 t/min		
1000 ft/min		993 ft/min	970 ft/min	1030 ft/min	Pass	5.8e-001 t/min		
1500 ft/min		1507 ft/min	1455 ft/min	1545 ft/min	Pass	5.8e-001 t/min		
2000 ft/min		2018 ft/min	1939 ft/min	2061 ft/min	Pass	5.8e-001 t/min		
3000 ft/min		3005 ft/min	2910 ft/min	3090 ft/min	Pass	5.8e-001 t/min		
4000 ft/min		3986 ft/min	3880 ft/min	4120 ft/min	Pass	5.8e-001 t/min		
5000 ft/min		5011 ft/min	4850 ft/min	5150 ft/min	Pass	5.8e-001 t/min		
Certificate: C542157-00 Asset: ITM0071374	-01	Cal	ibration Certificate			Page 2/		
						مامامامامامام		
		ate may not be reproduced						



Sampler Calibration

Clean Harbors 50114 Range RD. 173 Ryley, Alberta T0B 4A0

Quarterly Audit Date: June 30, 2023

Clean Harbors

Table of Contents

	1.	Introduction					
	2.	Audit Procedure					
	3.	Audi	oudit Results				
		3.1	Siting Location Audit Results	1			
		3.2	Leak Check Procedure	3			
			3.2.1 Leak Check Results	3			
		3.3	Flow Audit Results	4			
		3.4	Instrument Condition and Recommendations	4			
Та	ble	Inc	lex				
	Table	3.1	AMD Requirements vs. Facility Site Station Location	2			
	Table Table		AMD Requirements vs. Facility Site Station Location				

Appendix Index

Appendix A Quarterly Audit Form

Appendix B Calibration Certificate

1. Introduction

GHD Limited (GHD) was retained by Clean Harbors to conduct a Quarterly Total Suspended Particulate (TSP) High Volume Calibration Audit at 50114 Range Road 173 Ryley, Alberta (Facility), 5211 - 52 Ave, Ryley, Alberta (School), and Secondary Road 854, approximately 350 metres southeast of the Facility (Lift Station) on June 30, 2023. The Quarterly Audit was conducted on three Tisch TSP High Volume Samplers (Hi-Vol Samplers). The Facility Site Station (AEPA Station ID 00010348-I-2) Sampler is located against the Facility perimeter fence, north of the vehicle staging road (53°18'13.11"N and 112°25'5.81"W). The Ryley School Station (AEPA Station ID 00010348-I-3) Sampler is located on the roof of the Ryley School (53°17'28.99"N and 112°25'55.81"W). The Highway 854 Lift Station (AEPA Station ID 00010348-I-1) Sampler is located at the Ryley Lift Station, Secondary Road 854, approximately 350 metres southeast of the Facility (53°17'52.66"N and 112°24'57.87"W).

2. Audit Procedure

The TSP Samplers were audited in accordance with the instrument manual, the Clean Harbors Ryley Enhanced Ambient Air Quality Monitoring Program (AQMP) and the Alberta Air Monitoring Directive, 2016 (AMD). The AQMP requires that the calibration of equipment be completed on a quarterly basis. GHD performed a siting location audit, leak audit, 5-point flow calibration audit and evaluation of instrumentation and provided recommendations.

Below is a summary of the tasks performed on each Sampler:

- Siting Location Audit
- Leak Audit
- 5-Point Flow Rate Audit
- Instrument Condition and Recommendations

GHD verified all of these parameters using calibrated reference instruments. GHD reference instruments either have National Institute of Standards and Technology (NIST) Traceable Certifications, current manufacturer certification, or were verified by a primary standard. The GHD quarterly audit field forms can be found in Appendix A. All calibrations and certifications can be found in Appendix B.

3. Audit Results

3.1 Siting Location Audit Results

The siting locations of the Hi-Vol Samplers meet the requirements of Chapter 3, Page 8, Table 5 of the AMD. Table 3.1 of this report compares the AMD Siting Requirements for Intermittent Samplers versus the Sampler locations.

Facility Site Station

- The current coordinates of the Facility Sampler is 53°18'13.11"N and 112°25'5.81"W.
- The distance from the nearest roadway is ~10 metres (m).

Ryley School Station

- The current coordinates of the School Sampler are 53°17'28.99"N and 112°25'55.81"W.
- The distance from the nearest roadway is ~5 m.

Highway 854 Lift Station

- The current coordinates of the List Station Sampler are 53°17'52.66"N and 112°24'57.87"W.
- The distance from the nearest roadway is ~5 m.

Table 3.1 AMD Requirements vs. Facility Site Station Location

Site Characteristics	AMD	Requirements	Current Location	Specification
Sampler Inlet-height above ground (abg)	Minimum 2 m, Maximum 15 m		Meets Requirement	4 m abg
Other Requirements	a.	Distance from an obstacle greater than 2.5 times the height of the obstacle above the sampler.	Meets Requirement	>2.5 times
	b.	At least 2 m from any other samplers or inlets with flow rates greater than 200 litres (L) per minute.	Meets Requirement	None
		or at least 1 m apart from any other samplers or inlets with flow rates less than or equal of 200 L per minute	Meets Requirement	None
	C.	Unrestricted air flow in three to four wind quadrants.	Meets Requirement	Three to four Unrestricted Quadrants

Table 3.2 AMD Requirements vs. Ryley School Station Location

Site Characteristics	AMD Requirements	Current Location	Specification
Sampler Inlet-height above ground (abg)	Minimum 2 m, Maximum 15 m	Meets Requirement	4 m abg
	 Distance from an obstacle greater than 2.5 times the height of the obstacle abov the sampler. 	Meets Requirement	>2.5 times
Other Requirements	b. At least 2 m from any other samplers or inlets with flow rates greater than 200 litres (L) per minute.	Meets Requirement	None
	or at least 1 m apart from any other samplers or inlets	Meets Requirement	None

Table 3.2 AMD Requirements vs. Ryley School Station Location

Site Characteristics	AMD Requirements	Current Location	Specification
	with flow rates less than or equal of 200 L per minute		
	c. Unrestricted air flow in three to four wind quadrants.	Meets Requirement	4/4 Unrestricted Quadrants

Table 3.3 AMD Requirements vs. Highway 854 Lift Station Location

Site Characteristics	AMD	Requirements	Current Location	Specification
Sampler Inlet-height above ground (abg)	Minir	num 2 m, Maximum 15 m	Meets Requirement	4 m abg
	a.	Distance from an obstacle greater than 2.5 times the height of the obstacle above the sampler.	Meets Requirement	>2.5 times
Other Requirements	b.	At least 2 m from any other samplers or inlets with flow rates greater than 200 litres (L) per minute.	Meets Requirement	None
		or at least 1 m apart from any other samplers or inlets with flow rates less than or equal of 200 L per minute	Meets Requirement	None
	C.	Unrestricted air flow in three to four wind quadrants.	Meets Requirement	4/4 Unrestricted Quadrants

3.2 Leak Check Procedure

GHD performed a leak rate pre-inspection of each Sampler by making sure all gaskets were in place and in good condition, all connections are secure and not over tightened and inspected for damaged components. The leak rate audit was conducted by installing the calibrator orifice plate and warming up the sampler to normal operating temperature. The orifice plate holes and pressure tap holes were then covered for 30 seconds. Leakage was determined by listening for a "high-pitched squealing" sound made by escaping air.

3.2.1 Leak Check Results

Facility Site Station

The Facility Site Station Sampler passed the requirements of manufacturer's requirement for Leak Rate Audit.

Ryley School Station

The Ryley School Station Sampler passed the requirements of manufacturer's requirement for Leak Rate Audit.

Highway 854 Lift Station

The Lift Station Sampler passed the requirements of manufacturer's requirement for Leak Rate Audit.

3.3 Flow Audit Results

The 5-point flow audit was completed in accordance with the AQMP, the AMD and procedures outlined in the manufacturer's manual. The Facility Sampler, School Sampler, and Lift Station Sampler field audit forms are provided in Appendix A.

Facility Site Station

The Facility Site Station Sampler passed the 10 percent tolerance at 40 cubic feet per minute (CFM) as specified in the AQMP.

Ryley School Station

The Ryley School Station Sampler passed the 10 percent tolerance at 40 cubic feet per minute (CFM) as specified in the AQMP.

Highway 854 Lift Station

The Lift Station Sampler passed the 10 percent tolerance at 40 cubic feet per minute (CFM) as specified in the AQMP.

3.4 Instrument Condition and Recommendations

The Facility Site Sampler, Ryley School Sampler, and Lift Station Sampler were visually and functionally inspected on the audit day. Audit recommendations are listed below:

- The high volume motors were inspected at both locations, they were in good working condition when GHD arrived on site.
- Sample filter pans were cleaned.
- Pressure tap tubing in fair condition.
- All seals, gaskets and fittings are in good condition (no action required).
- Filter holder and screen in good condition (no action required).
- Main power connection wire in good condition (no action required).

All of Which is Respectfully Submitted,

GHD

Pooya Shariaty, Ph.D, P.Eng.

Appendices GHD | Quarterly Total Suspended Particulate (TSP) High Volume Sampler Calibration | 11114644 (63)

Appendix A Quarterly Audit Forms

Site and Calibration Information

Site Calibration Orifice

Location: Facility Sampler Make: Tisch Environmental

 Date: Jun 30, 2023
 Model: TE-5028A

 Tech.: S. Davey & P. Shariaty
 Serial: 1203

 Sampler: TE-5170V
 Qa Slope (m): 0.97323

 Serial #: P8580 TSP VFC
 Qa Int (b): -0.01459

 VFC G-Factor: 0.0909523500
 Calibration due date: 02/20/24

Ambient Conditions

Temp (deg F): 82.22

Ta (deg K): 301

Barometric Press (in Hg): 27.61

Ta (deg C): 27.9

Pa (mm Hg): 701.3

Calibration Information

Run <u>Number</u>	Orifice <u>"H2O</u>	Qa <u>m3/min</u>	Sampler <u>"H2O</u>	Pf mm Hg	Po/Pa	Calculated <u>m3/min</u>	% of <u>Diff</u>
1	3.58	1.288	6.01	11.216	0.984	1.295	0.47
2	3.49	1.272	6.90	12.877	0.982	1.292	1.49
3	3.47	1.269	7.20	13.437	0.981	1.290	1.73
4	3.42	1.260	8.31	15.509	0.978	1.286	2.14
5	3.38	1.252	9.89	18.457	0.974	1.281	2.24

Calculate Total Air Volume Using G-Factor

Enter Average Temperature During Sampling Duration (Deg F)	82.22
Average Temperature During Sampling Duration (Deg K)	300.90
Enter Average Barometric Pressure During Sampling Duration (In Hg)	27.61
Average Barometric Pressure During Sampling (mm Hg)	701.31
Enter Clean Filter Sampler Inches of Water	3.58
Enter Dirty Filter Sampler Inches of Water	3.38
Average Filter Sampler (mm Hg)	6.49
Enter Total Runtime in Hours (xx.xx)	0.25
	Po/Pa · 0 991

Calculated Flow Rate (m3/min): 1.304

Total Flow (m3): 19.56

Calculations Calibrator Flow (Qa) = 1/Slope*(SQRT(H20*(Ta/Pa))-Intercept) Pressure Ratio (Po/Pa) = 1-Pf/Pa

% Difference = (Look Up Flow-Calibrator Flow)/Calibrator Flow*100

NOTE: Ensure calibration orifice has been certified within 12 months of use

Tisch Environmental 145 South Miami Ave, Cleves OH 45002 ● 877.263.7610 ● sales@tisch-env.com ● www.tisch-env.com

Site and Calibration Information

Site <u>Calibration Orifice</u>

Location: Ryley School Sampler Make: Tisch Environmental

 Date: Jun 30, 2023
 Model: TE-5028A

 Tech.: S. Davey & P. Shariaty
 Serial: 1203

 Sampler: TE-5170V
 Qa Slope (m): 0.97323

 Serial #: P8581 TSP VFC
 Qa Int (b): -0.01459

 VFC G-Factor: 0.0906771980
 Calibration due date: 02/20/24

Ambient Conditions

Temp (deg F): 73.8

Ta (deg K): 296

Barometric Press (in Hg): 27.58

Ta (deg C): 23.2

Pa (mm Hg): 700.6

Calibration Information

Run <u>Number</u>	Orifice <u>"H2O</u>	Qa <u>m3/min</u>	Sampler <u>"H2O</u>	Pf mm Hg	Po/Pa	Calculated <u>m3/min</u>	% of <u>Diff</u>
1	3.50	1.265	6.21	11.590	0.983	1.285	1.58
2	3.47	1.260	6.83	12.747	0.982	1.282	1.83
3	3.40	1.247	7.71	14.389	0.979	1.279	2.57
4	3.36	1.240	8.75	16.330	0.977	1.275	2.90
5	3.28	1.225	10.10	18.849	0.973	1.270	3.67

Calculate Total Air Volume Using G-Factor

Enter Average Temperature During Sampling Duration (Deg F)	73.83
Average Temperature During Sampling Duration (Deg K)	296.24
Enter Average Barometric Pressure During Sampling Duration (In Hg)	27.58
Average Barometric Pressure During Sampling (mm Hg)	700.56
Enter Clean Filter Sampler Inches of Water	3.50
Enter Dirty Filter Sampler Inches of Water	3.28
Average Filter Sampler (mm Hg)	6.33
Enter Total Runtime in Hours (xx.xx)	0.25
	Po/Pa · 0 991

Po/Pa: 0.991 Calculated Flow Rate (m3/min): 1.295

Total Flow (m3): 19.42

Calculations

Calibrator Flow (Qa) = 1/Slope*(SQRT(H20*(Ta/Pa))-Intercept)

Pressure Ratio (Po/Pa) = 1-Pf/Pa

Difference = (Look Up Flow-Calibrator Flow)/Calibrator Flow*100

NOTE: Ensure calibration orifice has been certified within 12 months of use

Tisch Environmental 145 South Miami Ave, Cleves OH 45002 • 877.263.7610 • sales@tisch-env.com • www.tisch-env.com

Site and Calibration Information

Site <u>Calibration Orifice</u>

Location: Lift Station Sampler Make: Tisch Environmental

 Date: Jun 30, 2023
 Model: TE-5028A

 Tech.: S. Davey & P. Shariaty
 Serial: 1203

Sampler: TE-5170V Qa Slope (m): 0.97323 Serial #: P11162 TSP VFC Qa Int (b): -0.01459 VFC G-Factor: 0.0864333900 Calibration due date: 02/20/24

Ambient Conditions

Temp (deg F): 85.10

Ta (deg K): 303

Barometric Press (in Hg): 27.61

Ta (deg C): 29.5

Pa (mm Hg): 701.3

Calibration Information

Run <u>Number</u>	Orifice <u>"H2O</u>	Qa <u>m3/min</u>	Sampler <u>"H2O</u>	Pf mm Hg	Po/Pa	Calculated <u>m3/min</u>	% of <u>Diff</u>
1	3.57	1.290	5.88	10.974	0.984	1.293	0.23
2	3.53	1.283	6.35	11.851	0.983	1.291	0.62
3	3.49	1.276	7.45	13.904	0.980	1.287	0.94
4	3.44	1.267	8.30	15.490	0.978	1.284	1.34
5	3.37	1.254	10.25	19.129	0.973	1.277	1.83

Calculate Total Air Volume Using G-Factor

Enter Average Temperature During Sampling Duration (Deg F)	85.10
Average Temperature During Sampling Duration (Deg K)	302.50
Enter Average Barometric Pressure During Sampling Duration (In Hg)	27.61
Average Barometric Pressure During Sampling (mm Hg)	701.31
Enter Clean Filter Sampler Inches of Water	3.57
Enter Dirty Filter Sampler Inches of Water	3.37
Average Filter Sampler (mm Hg)	6.48
Enter Total Runtime in Hours (xx.xx)	0.25
	Po/Pa · 0 991

Po/Pa: 0.991

Calculated Flow Rate (m3/min): 1.302

Total Flow (m3): 19.53

Calculations

Calibrator Flow (Qa) = 1/Slope*(SQRT(H20*(Ta/Pa))-Intercept)

Pressure Ratio (Po/Pa) = 1-Pf/Pa

Difference = (Look Up Flow-Calibrator Flow)/Calibrator Flow*100

NOTE: Ensure calibration orifice has been certified within 12 months of use

Tisch Environmental 145 South Miami Ave, Cleves OH 45002 • 877.263.7610 • sales@tisch-env.com • www.tisch-env.com

Appendix B Calibration Certificates

20800 Boul. Industriel, Ste-Anne-de-Bellevue, QC H9X 0A1

*2

16975 Leslie Street Newmarket, ON L3Y 9A1 CALGARY #209, 4615 112 Ave SE

TORONTO

REGINA

#D, 288 Hodsman Road Regina, SK S4N 5X4

VANCOUVER 1282 Cliveden Av Delta, BC V3M 6G4

9730 32 Avenue NW Edmonton, AB T6N 1L9

Calgary, AB T2C 5J3 Dell www.itm.com • 1.800.561.8187 • information@itm.com

Calibration Certificate

Customer: ITM Edmonton

Certificate: C542640-00-03

Unit Identification

Manufacturer: Fluke Model: 1551A Ex

Description: Stik Thermometer

Calibration Date

Calibration Date: 19-Dec-2022

Due Date: 19-Dec-2023

Serial: 4893012

Unit ID: I-2902

Calibration Conditions

Temperature: 21.9°C Humidity: 22.2 %

Barometric Pressure: N/A

General Information

Remark: N/A

Standards Used				Annual Marriage of particular residence
Unit ID	Manufacturer	Model	Cal Date	<u>Due Date</u>
I-1969	Ametek	RTC-157A	3-Mar-2022	3-Mar-2023
I-2040	Fluke	1523	26-May-2021	26-May-2023
1-2374	Fluke	5608	28-May-2021	28-May-2023

The calibration was performed using measurement standards traceable to the National Measurement Institute Standards (NMIS) part of the National Research Council of Canada (NRC) or the National Institute of Standards and Technology (NIST), or to accepted instrinsic standards or measurement, or is derived by ratio type self-calibration techniques. Measurement uncertainties given in this report are based on a coverage factor of k=2 corresponding to a confidence level of approximately 95%.

Calibrated by: J. Wilson

Jordan Wilson

Approved by:

Certificate: C542640-00-03 Asset: ITM0067404

Calibration Certificate

Test Results

Procedure: FLUKE 1551A EX_RTC-157A, Fluke 1523 Rev: 1

Data Type: As Found Results: Pass

Test Description	True Value	Reading	Lower Limit	<u>Upper Limit</u>	<u>Test Status</u>	Exp Uncert
TEMPERATURE ACCURAC	Y TEST					
-39.9430 °C		-39.923 °C	-39.993 °C	-39.893 °C	Pass	5.0e-002 °C
-24.9690 °C		-24.959 °C	-25.019 °C	-24.919 °C	Pass	5.0e-002 °C
-0.0010 °C		-0.004 °C	-0.051 °C	0.049 °C	Pass	5 0e-002 °C
99.9630 °C		99.949 °C	99.913 °C	100.013 °C	Pass	5.0e-002 °C
154.9230 °C		154.955 °C	154.873 °C	154.973 °C	Pass	5.0e-002 °C

Test Results

Procedure: **No Procedure** Rev: 1
Data Type: **pending** Results:

Test Description True Value Reading Lower Limit Upper Limit Test Status Exp Uncert

Results Run: 2.00

RECALIBRATION **DUE DATE:**

February 20, 2024

ertificate o

Calibration Certification Information

Cal. Date: February 20, 2023

Rootsmeter S/N: 438320

Ta: 294

Pa: 741.17

°K

Operator: Jim Tisch

Calibration Model #:

TE-5028A

Calibrator S/N: 1203

mm Hg

Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)
1	1	2	1	1.2300	4.3	1.50
2	3	4	1	0.9590	7.1	2.50
3	5	6	1	0.8670	8.5	3.00
4	7	8	1	0.8040	9.9	3.50
5	9	10	1	0.6110	17.0	6.00

		Data Tabula	tion		
Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right) \left(\frac{Tstd}{Ta}\right)}$		Qa	$\sqrt{\Delta H (Ta/Pa)}$
(m3)	(x-axis)	(y-axis)	Va	(x-axis)	(y-axis)
0.9828	0.7990	1.2177	0.9942	0.8083	0.7714
0.9790	1.0209	1.5720	0.9904	1.0328	0.9958
0.9772	1.1271	1.7221	0.9885	1.1402	1.0909
0.9753	1.2130	1.8600	0.9866	1.2272	1.1783
0.9658	1.5807	2.4354	0.9771	1.5991	1.5427
	m=	1.55422		m=	0.97323
QSTD	b=	b= -0.02303		b=	-0.01459
'	r=	0.99992	QA	r=	0.99992

	Calculatio	ns	
Vstd=	ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta)	Va=	ΔVol((Pa-ΔP)/Pa)
Qstd=	Vstd/∆Time	Qa=	Va/ΔTime
	For subsequent flow ra	te calculatio	ns:
Qstd=	$1/m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right)-b\right)$	Qa=	$1/m\left(\left(\sqrt{\Delta H\left(Ta/Pa\right)}\right)-b\right)$

	Standard	Conditions
Tstd:	298.15	°K
Pstd:	760	mm Hg
		(ey
		er reading (in H2O)
		eter reading (mm Hg)
Ta: actual ab		
Pa: actual ba	rometric pr	essure (mm Hg)
b: intercept		
m: slope		

RECALIBRATION

US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51, Appendix B to Part 50, Reference Method for the **Determination of Suspended Particulate Matter in** the Atmosphere, 9.2.17, page 30.

20800 Boul. Industriel, Ste-Anne-de-Bellevue, QC H9X 0A1

TORONTO

16975 Leslie Street Newmarket, ON L3Y 9A1

REGINA

#D, 288 Hodsman Road Regina, SK S4N 5X4

www.itm.com information@itm.com

CALGARY

VANCOUVER

1282 Cliveden Av #209, 4615 112 Ave SE 1.800.561.8187 Delta, BC V3M 6G4 Calgary, AB T2C 5J3 **Calibration Certificate** Customer: GHD Ltd. Certificate: C542161-00-01 Unit Identification Serial: N/A Manufacturer: Dwyer Unit ID: MAN-CAL-001 Model: 475-0-FM Description: Digital Manometer Calibration Conditions Calibration Date

Calibration Date: 1-Dec-2022

Due Date: 1-Dec-2023

Temperature: 21.7°C Humidity: 15 %

Barometric Pressure: N/A

General Information

Remark: N/A

Standards Used **Due Date** Cal Date Model Manufacturer Unit ID 12-Mar-2023 12-Sep-2022 750P01 Fluke CAL0224

The calibration was performed using measurement standards traceable to the National Measurement Institute Standards (NMIS) part of the National Research Council of Canada (NRC) or the National Institute of Standards and Technology (NIST), or to accepted instrinsic standards or measurement, or is derived by ratio type self-calibration techniques. Measurement uncertainties given in this report are based on a coverage factor of k=2 corresponding to a confidence level of approximately 95%.

Calibrated by: D. Gano

Certificate: C542161-00-01 Asset: ITM0017905

Calibration Certificate

20800 Boul. Industriel, Ste-Anne-de-Bellevue, QC H9X 0A1

TORONTO

16975 Leslie Street Newmarket, ON L3Y 9A1

REGINA

#D, 288 Hodsman Road Regina, SK S4N 5X4

VANCOUVER

	Ste-Anne-de-Bellevue, QC H9	INEV	vmarket, ON L3Y 9A1		Regina, SK S4N 5X4
M INSTRUMENTS INC	CALGARY #209, 4615 112 Ave SE Calgary, AB T2C 5J3	V.	ANCOUVER 1282 Cliveden Av Delta, BC V3M 6G4	info	www.itm.com ormation@itm.con 1.800.561.8187
Test Besults					
Procedure: Pressure Gauge 10.00	IN.W.C 0.5% FS /750P01	Rev: 1.1			
Data Type: As Found Results: Pa	ass				
Test Description True Value	ue Reading	Lower Limit	Upper Limit	Test Status	Exp Uncert
Tolerance used (additive if more than or	ne listed):				
0.5% of full scale					
UUT is set to the nominal value, Reading	g is the				
actual pressure read by the system instr	ument.			_	4 Co 002 in H2O
1.000 inH2O	1.003 inH2O	0.950 inH2O	1.050 inH2O	Pass	1.6e-002 inH2O
2.000 inH2O	1.983 inH2O	1.950 inH2O	2.050 inH2O	Pass	1.06-002 INFIZO
4.000 inH2O	3.982 inH2O	3.950 inH2O	4.050 InH2O	Pass Pass	1 6e-002 inH2O
6.000 inH2O	5.978 inH2O	5,950 inH2O	6.050 INH2O	Pass Pass	1.6e-002 inH2O
8.000 inH2O	7.969 inH2O	7.950 inH2O	10.050 inH2O	Pass	1.6e-002 inH2O
10.000 inH2O	9.974 inH2O	9.950 INH2O	10.030 1111120	1 433	
Test Results Procedure: Pressure Gauge 10.00 Data Type: As Found Results: Pa Test Description True Valuation Tolerance used (additive if more than or 0.5% of full scale UUT is set to the nominal value, Reading actual pressure read by the system instraction in the control of					
Certificate: C542161-00-01 Asset: ITM0017905					
Certificate: C542161-00-01 Asset: ITM0017905	Cali	ibration Certificate			Page

20800 Boul. Industriel, Ste-Anne-de-Bellevue, QC H9X 0A1

CALGARY

#209, 4615 112 Ave SE Calgary, AB T2C 5J3

TORONTO

16975 Leslie Street Newmarket, ON L3Y 9A1

VANCOUVER

1282 Cliveden Av Delta, BC V3M 6G4

REGINA

#D, 288 Hodsman Road Regina, SK S4N 5X4

www.itm.com information@itm.com 1.800.561.8187

Calibration Certificate

Customer: GHD LTD

Certificate: C542157-00-01

Unit Identification

Manufacturer: TSI Model: 9555-X / 960 Description: VelociCalc

Calibration Date

Calibration Date: 20-Dec-2022

Due Date: 20-Dec-2023

Serial: 9555X1002005

Unit ID: VEL-CAL-002

Calibration Conditions

Temperature: 22.5°C Humidity: 34.8 %

Barometric Pressure: 103.0kPa

General Information

Remark: N/A

Standards Used

Unit ID	Manufacturer	Model	Cal Date	Due Date
M-012	Airflow Development	83FSL	******* No Cal	ibration Required *********
M-110	Love Controls	HM3531DLF600	11-Oct-2022	11-Oct-2023
M-115	Rotronic	M22W	10-Jul-2022	10-Jul-2023
M-130	Fluke	1552A	13-May-2022	13-May-2023

The calibration was performed using measurement standards traceable to the National Measurement Institute Standards (NMIS) part of the National Research Council of Canada (NRC) or the National Institute of Standards and Technology (NIST), or to accepted instrinsic standards or measurement, or is derived by ratio type self-calibration techniques. Measurement uncertainties given in this report are based on a coverage factor of k=2 corresponding to a confidence level of approximately 95%.

Calibrated by: R. Chaaya

Certificate: C542157-00-01 Asset: ITM0071374

Approved b

Calibration Certificate

Page 1/2

20800 Boul. Industriel, Ste-Anne-de-Bellevue, QC H9X 0A1

TORONTO 16975 Leslie Street Newmarket, ON L3Y 9A1

REGINA

#D, 288 Hodsman Road Regina, SK S4N 5X4

VANCOUVER

VERN EN		CALGARY	1	VANCOUVER		www.itm.com
INSTRUMEN		#209, 4615 112 Ave : Calgary, AB T2C 5J	SE 3	1282 Cliveden Av Delta, BC V3M 6G4		information@itm.con 1.800.561.8187
Test Results	D 000000	~ ~				
Procedure: TSI 9555- Data Type: As Found						
Bata Type, As Found	Results: Pass					
Test Description	True Value	Reading	Lower Limit	Upper Limit	Test Status	Exp Uncert
TEMPERATURE TEST ACC	CURACY °C					
0.0 °C		0.1 °C	-0.3 °C	0.3 °C	Pass	1.2e-001 °C
25.0 °C		24.9 °C	24.7 °C	25.3 °C	Pass	1.2e-001 °C
0.0°C		60.0 °C	59.7 °C	60.3 °C	Pass	1.2e-001 °C
VELOCITY TEST ACCURA	CY ft/min					
100 ft/min		00.64	07.14	100 0		
200 ft/min		99 ft/min 201 ft/min	97 ft/min	103 ft/min	Pass	5.8e-001 t/min
300 ft/min		303 ft/min	194 ft/min 291 ft/min	206 ft/min 309 ft/min	Pass	5.8e-001 t/min
400 ft/min		402 ft/min	388 ft/min		Pass	5.8e-001 t/min
500 ft/min		496 ft/min	485 ft/min	412 ft/min 515 ft/min	Pass Pass	5.8e-001 t/min 5.8e-001 t/min
750 fVmin		754 ft/min	727 ft/min	773 ft/min	Pass	5.8e-001 t/min
1000 fVmin		993 ft/min	970 ft/min	1030 ft/min	Pass	5.8e-001 t/min
1500 ft/min		1507 ft/min	1455 ft/min	1545 ft/min	Pass	5.8e-001 t/min
2000 ft/min		2018 ft/min	1939 ft/min	2061 ft/min	Pass	5.8e-001 t/min
3000 ft/min		3005 ft/min	2910 ft/min	3090 ft/min	Pass	5.8e-001 t/min
4000 ft/min		3986 ft/min	3880 ft/min	4120 ft/min	Pass	5.8e-001 t/min
5000 ft/min		5011 ft/min	4850 ft/min	5150 ft/min	Pass	5.8e-001 t/min
Certificate: C542157-00	0-01					
Asset: ITM0071374		Cal	ibration Certificate			Page 2/
This o	alibration certific	ate may not be reproduced	, except in full, unless	with the permission	of ITM Instrum	ents Inc.

about GHD

GHD is one of the world's leading professional services companies operating in the global markets of water, energy and resources, environment, property and buildings, and transportation. We provide engineering, environmental, and construction services to private and public sector clients.

Pooya Shariaty Pooya.Shariaty@ghd.com 403.538.7479

www.ghd.com