

August 11th, 2022

Alberta Environment and Parks Monitoring Branch 11th Floor Oxbridge Place 9820 106 ST Edmonton, AB T5K 2J6

Dear Sir/Madam:

Re: Industrial Runoff Report for July 2022 Approval 10348-03-01

Enclosed is the Industrial Runoff Report as required by Sections 4.3.17 and 4.3.18 of the above approval. We only discharged from pond B in July and July's discharge event occurred over 14 consecutive days, starting July 13th and ending July 26th.

The analytical results for Pond B were received from ALS Labs on July 11th reviewed by Lab Management and the General Manager and confirmed that all parameters for Pond B passed the requirements in Table 4.3-B of our approval.

July's total volume was 14,391 m3 discharged during this pumping event. We did not have any mechanical issues with the pump during this event.

There were no issues with pollution abatement or monitoring equipment.

Yours truly, Clean Harbors Canada, Inc.

Stan Yuka

Stan Yuha Facility Manager

Clean Harbors Canada, Inc. P.O. Box 390, Ryley, AB T0B 4A0 Telephone (780) 663-3828 Fax (780) 663-3539

	CLEAN HARBORS CANADA, LTD. SURFACE WATER DETENTION POND B							
DATE		DISCHARGE POND C		FLOW (m3)	OIL OR OTHER SUBSTANCES			
1-Jul-22		No		- (- /	No			
2-Jul-22		No		-	No			
3-Jul-22		No		-	No			
4-Jul-22		No		-	No			
5-Jul-22		No		-	No			
6-Jul-22		No		-	No			
7-Jul-22		No		-	No			
8-Jul-22		No		-	No			
9-Jul-22		No		-	No			
10-Jul-22		No		-	No			
11-Jul-22		No		-	No			
12-Jul-22		No		-	No			
13-Jul-22		Yes		753	No			
14-Jul-22		Yes		770	No			
15-Jul-22		Yes		1263	No			
16-Jul-22		Yes		543	No			
17-Jul-22		Yes		492	No			
18-Jul-22		Yes		453	No			
19-Jul-22		Yes		1169	No			
20-Jul-22		Yes		2883	No			
21-Jul-22		Yes		1102	No			
22-Jul-22		Yes		1204	No			
23-Jul-22		Yes		627	No			
24-Jul-22		Yes		790	No			
25-Jul-22		Yes		910	No			
26-Jul-22		Yes		1432	No			
27-Jul-22		No		-	No			
28-Jul-22		No		-	No			
29-Jul-22		No		-	No			
30-Jul-22		No		-	No			
31-Jul-22		No		-	No			
	Total Vo	olume for Pond B J	uly 2022	14391				
Chemical Analysis	Limit	Pond B July 4th R	esults		1 1			
pH	6.0-9.5	8.19	unit					
Chemical Oxygen Demand	50	35	mg/L		<u> </u>			
Total Dissolved Solids	2500	732	mg/L					
I otal Suspended Solids	25	3.8	mg/L					
Ammonia, I otal Dissolved (as N)	5	0.0218	mg/L					
Chloride	250	37.3	mg/L					
Sodium	200	188	mg/L					
Sulfate	500	348	mg/L					
Oil or other Substances	Negative	Negative						
Rainbow Trout	pass	pass						
Daphnia magna	pass	pass						

CERTIFICATE OF ANALYSIS

Work Order	EO2205135	Page	÷ 1 of 4
Client	Clean Harbors Environmental	Laboratory	Edmonton - Environmental
Contact	: Todd Webb	Account Manager	: Pamela Toledo
Address	EPO Box 390, 50114 Rame Road 173 AB Canada T0B4A0	Address	9450 - 17 Avenue NW Edmonton AB Canada T6N 1M9
Telephone	: 780 663 2513	Telephone	: +1 780 413 5227
Project	: Pond B July 4	Date Samples Received	: 04-Jul-2022 17:45
PO	:	Date Analysis Commenced	: 05-Jul-2022
C-O-C number	:	Issue Date	: 11-Jul-2022 16:15
Sampler	: TW		
Site	: Table 4.3B		
Quote number	: Q82439 / Q82442		
No. of samples received	: 1		
No. of samples analysed	: 1		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Amanda Powell	Account Manager	External Subcontracting, Edmonton, Alberta
Angeli Marzan	Lab Analyst	Inorganics, Edmonton, Alberta
Austin Wasylyshyn	Lab Analyst	Metals, Edmonton, Alberta
Jessica Maitland	Lab Assistant	Inorganics, Edmonton, Alberta
Muzammil Ali	Lab Analyst	Inorganics, Edmonton, Alberta
Ping Yeung	Team Leader - Inorganics	Inorganics, Edmonton, Alberta
Sobhithan Pillay		Inorganics, Edmonton, Alberta
Yan Zhang	Lab Analyst	Organics, Edmonton, Alberta

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance. Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key :	CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances
	LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
mg/L	milligrams per litre
pH units	pH units

>: greater than.

<: less than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical Results

EO2205135-001								
Sub-Matrix:Water		Client sa	mple ID: Pond	В				
(Matrix: Water)		Client sa	mpling date / ti	me: 04-Jul-20	22 12:00			
Analita	CAC Number	Posult	LOP	Unit	Method	Pren Date	Analusia	OCLot
Analyle	CAS Number	Nesun	LOIN	Onn	Method	Frep Date	Date	QULUI
Physical Tests							2410	
рН		8.19	0.10	pH units	E108	05-Jul-2022	06-Jul-2022	550116
solids, total dissolved [TDS]		732	20	mg/L	E162	-	05-Jul-2022	549719
solids, total suspended [TSS]		3.8	3.0	mg/L	E160	-	05-Jul-2022	549456
Anions and Nutrients								
ammonia, total (as N)	7664-41-7	0.0218	0.0050	mg/L	E298	05-Jul-2022	05-Jul-2022	550328
chloride	16887-00-6	37.3	0.50	mg/L	E235.Cl	05-Jul-2022	06-Jul-2022	550402
sulfate (as SO4)	14808-79-8	348	0.30	mg/L	E235.SO4	05-Jul-2022	06-Jul-2022	550401
Bioassays								
trout bioassay LC50		See	-	-	TRT-LC50-96	-	11-Jul-2022	_
		attached						
Total Metals								
aluminum, total	7429-90-5	0.565	0.0030	mg/L	E420	05-Jul-2022	05-Jul-2022	549716
antimony, total	7440-36-0	0.00056	0.00010	mg/L	E420	05-Jul-2022	05-Jul-2022	549716
arsenic, total	7440-38-2	0.00259	0.00010	mg/L	E420	05-Jul-2022	05-Jul-2022	549716
barium, total	7440-39-3	0.0758	0.00010	mg/L	E420	05-Jul-2022	05-Jul-2022	549716
beryllium, total	7440-41-7	0.000034	0.000020	mg/L	E420	05-Jul-2022	05-Jul-2022	549716
bismuth, total	7440-69-9	<0.000050	0.000050	mg/L	E420	05-Jul-2022	05-Jul-2022	549716
boron, total	7440-42-8	0.088	0.010	mg/L	E420	05-Jul-2022	05-Jul-2022	549716
cadmium, total	7440-43-9	0.0000596	0.0000050	mg/L	E420	05-Jul-2022	05-Jul-2022	549716
calcium, total	7440-70-2	38.3	0.050	mg/L	E420	05-Jul-2022	05-Jul-2022	549716
cesium, total	7440-46-2	0.000082	0.000010	mg/L	E420	05-Jul-2022	05-Jul-2022	549716
chromium, total	7440-47-3	0.00126	0.00050	mg/L	E420	05-Jul-2022	05-Jul-2022	549716
cobalt, total	7440-48-4	0.00055	0.00010	mg/L	E420	05-Jul-2022	05-Jul-2022	549716
copper, total	7440-50-8	0.0126	0.00050	mg/L	E420	05-Jul-2022	05-Jul-2022	549716
iron, total	7439-89-6	0.762	0.010	mg/L	E420	05-Jul-2022	05-Jul-2022	549716
lead, total	7439-92-1	0.000742	0.000050	mg/L	E420	05-Jul-2022	05-Jul-2022	549716
lithium, total	7439-93-2	0.0398	0.0010	mg/L	E420	05-Jul-2022	05-Jul-2022	549716
magnesium, total	7439-95-4	14.9	0.0050	mg/L	E420	05-Jul-2022	05-Jul-2022	549716
manganese, total	7439-96-5	0.0201	0.00010	mg/L	E420	05-Jul-2022	05-Jul-2022	549716
molybdenum, total	7439-98-7	0.124	0.000050	mg/L	E420	05-Jul-2022	05-Jul-2022	549716
nickel, total	7440-02-0	0.0149	0.00050	mg/L	E420	05-Jul-2022	05-Jul-2022	549716
phosphorus, total	7723-14-0	0.053	0.050	mg/L	E420	05-Jul-2022	05-Jul-2022	549716
potassium, total	7440-09-7	8.30	0.050	mg/L	E420	05-Jul-2022	05-Jul-2022	549716
rubidium, total	7440-17-7	0.00372	0.00020	mg/L	E420	05-Jul-2022	05-Jul-2022	549716
selenium, total	7782-49-2	0.000988	0.000050	mg/L	E420	05-Jul-2022	05-Jul-2022	549716
silicon, total	7440-21-3	3.84	0.10	mg/L	E420	05-Jul-2022	05-Jul-2022	549716
silver, total	7440-22-4	0.000015	0.000010	mg/L	E420	05-Jul-2022	05-Jul-2022	549716
sodium, total	7440-23-5	188	0.050	mg/L	E420	05-Jul-2022	05-Jul-2022	549716
strontium. total	7440-24-6	0.426	0.00020	ma/L	E420	05-Jul-2022	05-Jul-2022	549716
sulfur. total	7704-34-9	124	0.50	ma/L	E420	05-Jul-2022	05-Jul-2022	549716
tellurium, total	13494-80-9	<0.00020	0.00020	ma/L	E420	05-Jul-2022	05-Jul-2022	549716
thallium. total	7440-28-0	0.000012	0.000010	ma/L	E420	05-Jul-2022	05-Jul-2022	549716
thorium. total	7 <u>440</u> -20-0	0.00021	0.00010	ma/L	E420	05-Jul-2022	05-101-2022	549716
tin. total	7 <u>44</u> 0-29-1	0.00014	0.00010	ma/l	E420	05-Jul-2022	05-00-2022	549716
titanium, total	7//0-22 6	0.0122	0.00030	ma/l	E420	05-Jul-2022	05- Jul-2022	540716
tungsten, total	7440-02-0	0 00102	0.00010	ma/l	F420	05-,101-2022	05-Jul 2022	5/0716
uranium total	7440-03-7	0 00414	0.00010	ma/l	F420	05-,101-2022	05-Jul-2022	5/0716
vanadium total	7440-01-1	0.00414	0.00050	mg/L	E420	05- Jul-2022	05-Jul-2022	540740
ranaanum, totai	1440-02-2	0.0200	0.00000	ing/L	L-720	00-041-2022	00-Jul-2022	049/10

Analytical Results

EO2205135-001								
Sub-Matrix: Water	Client sample ID: Pond B							
(Matrix: Water)	Client sampling date / time: 04-Jul-2022 12:00							
Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot
Total Metals								
zinc, total	7440-66-6	0.0135	0.0030	mg/L	E420	05-Jul-2022	05-Jul-2022	549716
zirconium, total	7440-67-7	0.00126	0.00020	mg/L	E420	05-Jul-2022	05-Jul-2022	549716
Aggregate Organics								
chemical oxygen demand [COD]		35	10	mg/L	E559-L	-	05-Jul-2022	549390
oil & grease (visible sheen)		Absent	-	-	E566	-	06-Jul-2022	-

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order	: EO2205135	Page	: 1 of 7
Client	: Clean Harbors Environmental Services, Inc.	Laboratory	: Edmonton - Environmental
Contact	: Todd Webb	Account Manager	: Pamela Toledo
Address	: PO Box 390, 50114 Rame Road 173	Address	: 9450 - 17 Avenue NW
	AB Canada T0B4A0		Edmonton, Alberta Canada T6N 1M9
Telephone	780 663 2513	Telephone	: +1 780 413 5227
Project	: Pond B July 4	Date Samples Received	: 04-Jul-2022 17:45
PO	;	Issue Date	: 11-Jul-2022 16:16
C-O-C number	:		
Sampler	: TW		
Site	: Table 4.3B		
Quote number	: Q82439 / Q82442		
No. of samples received	:1		
No. of samples analysed	· 1		

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summarizes.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers Outliers : Quality Control Samples

- <u>No</u> Method Blank value outliers occur.
- <u>No</u> Duplicate outliers occur.
- <u>No</u> Laboratory Control Sample (LCS) outliers occur
- <u>No</u> Matrix Spike outliers occur.
- <u>No</u> Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• <u>No</u> Quality Control Sample Frequency Outliers occur.

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and /or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					E١	/aluation: × =	Holding time excee	edance ; 🔹		Holding Tim
Analyte Group	Method	Sampling Date	Extraction / Preparation			Analysis				
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	; Times	Eval
			Date	Rec	Actual			Rec	Actual	
Aggregate Organics : Chemical Oxygen Demand by Colourimetry (Low Level)										
Amber glass total (sulfuric acid)										
Pond B	E559-L	04-Jul-2022					05-Jul-2022	28 days	1 days	~
Aggregate Organics : Oil & Grease by Visible Sheen										
Amber glass (hydrochloric acid)	F.C.0	04 101 0000					00 101 0000	00 1000	0 days	,
Pond B	E566	04-Jul-2022					06-Jui-2022	28 days	2 days	•
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)	E208	04- Jul-2022	05- 101-2022				05-101-2022	28 days	1 dave	1
	230	04-301-2022	00-00-2022				00-00-2022	20 days	i uays	•
Anions and Nutrients : Chloride in Water by IC										
HDPE										
Pond B	E235.Cl	04-Jul-2022					06-Jul-2022	28 days	2 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE										
Pond B	E235.SO4	04-Jul-2022					06-Jul-2022	28 days	2 days	1
Bioassays : Survival/LC50 Rainbow Trout (96 hours)										
LDPE carboy										
Pond B	TRT-LC50-96	04-Jul-2022					11-Jul-2022	5 days	7 days	*
										EHI
Physical Tests : pH by Meter										
HDPE	E400	04 101 0000					00 101 0000		44 6 5	
Pona B	E108	04-Jul-2022					06-Jui-2022	0.25	44 nrs	
								nrs		

Matrix: Water Evaluation: **x** = Holding time exceedance ; **√** = Within Holding Time Analyte Group Sampling Date Extraction / Preparation Analysis Method Container / Client Sample ID(s) Preparation Holding Times Eval Analysis Date Holding Times Eval Actual Rec Actual Date Rec Physical Tests : TDS by Gravimetry HDPE Pond B E162 04-Jul-2022 05-Jul-2022 7 days 1 days ✓ ------------Physical Tests : TSS by Gravimetry HDPE 04-Jul-2022 ✓ E160 7 days Pond B 05-Jul-2022 1 days ------------Total Metals : Total Metals in Water by CRC ICPMS HDPE total (nitric acid) Pond B E420 04-Jul-2022 05-Jul-2022 1 days ✓ 180 -----------days

Legend & Qualifier Definitions

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended

EHT: Exceeded ALS recommended hold time prior to analysis.

Rec. HT: ALS recommended hold time (see units).

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Water	Evaluation: \times = QC frequency outside specification; \checkmark = QC frequency within specification						hin specification.
Quality Control Sample Type	Count Frequency (%)						
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Ammonia by Fluorescence	E298	550328	1	9	11.1	5.0	✓
Chemical Oxygen Demand by Colourimetry (Low Level)	E559-L	549390	1	18	5.5	5.0	✓
Chloride in Water by IC	E235.Cl	550402	1	20	5.0	5.0	✓
pH by Meter	E108	550116	1	17	5.8	5.0	✓
Sulfate in Water by IC	E235.SO4	550401	1	16	6.2	5.0	✓
TDS by Gravimetry	E162	549719	1	13	7.6	5.0	✓
Total Metals in Water by CRC ICPMS	E420	549716	1	20	5.0	5.0	✓
TSS by Gravimetry	E160	549456	1	19	5.2	5.0	✓
Laboratory Control Samples (LCS)							
Ammonia by Fluorescence	E298	550328	1	9	11.1	5.0	✓
Chemical Oxygen Demand by Colourimetry (Low Level)	E559-L	549390	1	18	5.5	5.0	✓
Chloride in Water by IC	E235.Cl	550402	1	20	5.0	5.0	✓
pH by Meter	E108	550116	1	17	5.8	5.0	✓
Sulfate in Water by IC	E235.SO4	550401	1	16	6.2	5.0	✓
TDS by Gravimetry	E162	549719	1	13	7.6	5.0	✓
Total Metals in Water by CRC ICPMS	E420	549716	1	20	5.0	5.0	✓
TSS by Gravimetry	E160	549456	1	19	5.2	5.0	✓
Method Blanks (MB)							
Ammonia by Fluorescence	E298	550328	1	9	11.1	5.0	✓
Chemical Oxygen Demand by Colourimetry (Low Level)	E559-L	549390	1	18	5.5	5.0	✓
Chloride in Water by IC	E235.Cl	550402	1	20	5.0	5.0	✓
Sulfate in Water by IC	E235.SO4	550401	1	16	6.2	5.0	✓
TDS by Gravimetry	E162	549719	1	13	7.6	5.0	✓
Total Metals in Water by CRC ICPMS	E420	549716	1	20	5.0	5.0	✓
TSS by Gravimetry	E160	549456	1	19	5.2	5.0	✓
Matrix Spikes (MS)							
Ammonia by Fluorescence	E298	550328	1	9	11.1	5.0	✓
Chemical Oxygen Demand by Colourimetry (Low Level)	E559-L	549390	1	18	5.5	5.0	✓
Chloride in Water by IC	E235.Cl	550402	1	20	5.0	5.0	✓
Sulfate in Water by IC	E235.SO4	550401	1	16	6.2	5.0	✓
Total Metals in Water by CRC ICPMS	E420	549716	1	20	5.0	5.0	✓

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
pH by Meter	E108 Edmonton - Environmental	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally $20 \pm 5^{\circ}$ C). For high accuracy test results, pH should be measured in the field within the recommended 15 minute hold time.
TSS by Gravimetry	E160 Edmonton - Environmental	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, following by drying of the filter at $104 \pm 1^{\circ}$ C, with gravimetric measurement of the filtered solids. Samples containing very high dissolved solid content (i.e. seawaters, brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples.
TDS by Gravimetry	E162 Edmonton - Environmental	Water	APHA 2540 C (mod)	Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, with evaporation of the filtrate at $180 \pm 2^{\circ}$ C for 16 hours or to constant weight, with gravimetric measurement of the residue.
Chloride in Water by IC	E235.Cl Edmonton - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Sulfate in Water by IC	E235.SO4 Edmonton - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Ammonia by Fluorescence	E298 Edmonton - Environmental	Water	Method Fialab 100, 2018	Ammonia in water is determined by automated continuous flow analysis with membrane diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde). This method is approved under US EPA 40 CFR Part 136 (May 2021)
Total Metals in Water by CRC ICPMS	E420 Edmonton - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Chemical Oxygen Demand by Colourimetry (Low Level)	E559-L Edmonton - Environmental	Water	APHA 5220 D (mod)	Samples are analyzed using the closed reflux colourimetric method.
Oil & Grease by Visible Sheen	E566 Edmonton - Environmental	Water	Alberta Energy Regulator, Drilling waste Management, Directive 050, July 2016	Use a qualitivative visual observation of rainbow sheen to determine the presence or absence of oil and grease on water.

Page	: 7 of 7
Work Order	EO2205135
Client	: Clean Harbors Environmental Services, Inc.
Project	: Pond B July 4

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Survival/LC50 Rainbow Trout (96 hours)	TRT-LC50-96	Water	EPS1/RM/13	See attached report.
	Bureau Veritas (Edmonton) - 9331 - 48th Street Edmonton Alberta Canada T6B 2R4			
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
	Edmonton -			
	Environmental			

QUALITY CONTROL REPORT

Work Order	EO2205135	Page	: 1 of 10
Client	: Clean Harbors Environmental Services, Inc.	Laboratory	: Edmonton - Environmental
Contact	: Todd Webb	Account Manager	: Pamela Toledo
Address	PO Box 390, 50114 Rame Road 173 AB Canada T0B4A0	Address	∶9450 - 17 Avenue NW Edmonton, Alberta Canada T6N 1M9
Telephone	: 780 663 2513	Telephone	: +1 780 413 5227
Project	: Pond B July 4	Date Samples Received	: 04-Jul-2022 17:45
PO		Date Analysis Commenced	: 05-Jul-2022
C-O-C number	:	Issue Date	: 11-Jul-2022 16:16
Sampler	: TW		
Site	: Table 4.3B		
Quote number	: Q82439 / Q82442		
No. of samples received	:1		
No. of samples analysed	:1		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives
- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Amanda Powell	Account Manager	Bureau Veritas (Edmonton) External Subcontracting, Edmonton, Alberta
Angeli Marzan	Lab Analyst	Edmonton Inorganics, Edmonton, Alberta
Austin Wasylyshyn	Lab Analyst	Edmonton Metals, Edmonton, Alberta
Jessica Maitland	Lab Assistant	Edmonton Inorganics, Edmonton, Alberta
Muzammil Ali	Lab Analyst	Edmonton Inorganics, Edmonton, Alberta
Ping Yeung	Team Leader - Inorganics	Edmonton Inorganics, Edmonton, Alberta
Sobhithan Pillay		Edmonton Inorganics, Edmonton, Alberta
Yan Zhang	Lab Analyst	Edmonton Organics, Edmonton, Alberta

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key :

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Page: 3 of 10Work Order: EO2205135Client: Clean Harbors Environmental Services, Inc.Project: Pond B July 4

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Physical Tests (QC EO2205048-010	Lot: 549456) Anonymous	solids, total suspended [TSS]		E160	3.0	mg/L	31.4	27.6	3.8	Diff <2x LOR	
Physical Tests (QC	Lot: 549719)										
EO2205092-001	Anonymous	solids, total dissolved [TDS]		E162	20	mg/L	154	148	6	Diff <2x LOR	
Physical Tests (QC	Lot: 550116)										
EO2205134-002	Anonymous	рН		E108	0.10	pH units	8.18	8.13	0.613%	3%	
Anions and Nutrient	s (QC Lot: 550328)										
EO2205135-001	Pond B	ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.0218	0.0213	0.0005	Diff <2x LOR	
Anions and Nutrient	s (QC Lot: 550401)										
FC2201472-001	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	74.4	74.2	0.318%	20%	
Anions and Nutrient	s (QC Lot: 550402)										
FC2201472-001	Anonymous	chloride	16887-00-6	E235.CI	0.50	mg/L	52.9	52.4	1.08%	20%	
Total Metals (QC Lo	ot: 549716)										
EO2204958-001	Anonymous	aluminum, total	7429-90-5	E420	0.0600	mg/L	26.8	25.2	5.78%	20%	
		antimony, total	7440-36-0	E420	0.00200	mg/L	<0.00200	<0.00200	0	Diff <2x LOR	
		arsenic, total	7440-38-2	E420	0.00200	mg/L	0.0161	0.0156	0.00051	Diff <2x LOR	
		barium, total	7440-39-3	E420	0.00200	mg/L	0.680	0.640	5.98%	20%	
		beryllium, total	7440-41-7	E420	0.000400	mg/L	0.00280	0.00287	0.000067	Diff <2x LOR	
		bismuth, total	7440-69-9	E420	0.00100	mg/L	<0.00100	<0.00100	0	Diff <2x LOR	
		boron, total	7440-42-8	E420	0.200	mg/L	0.500	0.503	0.003	Diff <2x LOR	
		cadmium, total	7440-43-9	E420	0.000100	mg/L	0.000713	0.000679	0.0000342	Diff <2x LOR	
		calcium, total	7440-70-2	E420	1.00	mg/L	45.1	44.2	2.08%	20%	
		cesium, total	7440-46-2	E420	0.000200	mg/L	0.00267	0.00249	6.86%	20%	
		chromium, total	7440-47-3	E420	0.0100	mg/L	0.0296	0.0284	0.00118	Diff <2x LOR	
		cobalt, total	7440-48-4	E420	0.00200	mg/L	0.0179	0.0171	0.00081	Diff <2x LOR	
		copper, total	7440-50-8	E420	0.0100	mg/L	0.0678	0.0649	0.00296	Diff <2x LOR	
		iron, total	7439-89-6	E420	0.200	mg/L	20.2	18.8	7.10%	20%	
		lead, total	7439-92-1	E420	0.00100	mg/L	0.0188	0.0180	4.39%	20%	
		lithium, total	7439-93-2	E420	0.0200	mg/L	0.0955	0.0895	0.0060	Diff <2x LOR	
		magnesium, total	7439-95-4	E420	0.100	mg/L	13.7	12.9	5.80%	20%	
		manganese, total	7439-96-5	E420	0.00200	mg/L	0.422	0.412	2.45%	20%	
		molybdenum, total	7439-98-7	E420	0.00100	mg/L	0.00117	0.00117	0.000003	Diff <2x LOR	

Page	: 4 of 10
Work Order	: EO2205135
Client	: Clean Harbors Environmental Services, Inc.
Project	: Pond B July 4

	Sub-Matrix: Water			Laboratory Duplicate (DUP) Report					
umber	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier	
02-0	E420	0.0100	mg/L	0.0769	0.0731	0.00384	Diff <2x LOR		
14-0	E420	1.00	mg/L	<1.00	<1.00	0	Diff <2x LOR		
09-7	E420	1.00	mg/L	10.4	10.1	3.83%	20%		
17-7	E420	0.00400	mg/L	0.0310	0.0293	0.00172	Diff <2x LOR		
49-2	E420	0.00100	mg/L	<0.00100	0.00100	0.000004	Diff <2x LOR		
21-3	E420	2.00	mg/L	66.3	64.4	3.01%	20%		
22-4	E420	0.000200	mg/L	0.000301	0.000261	0.000039	Diff <2x LOR		
23-5	E420	1.00	mg/L	202	202	0.215%	20%		
24-6	E420	0.00400	mg/L	0.751	0.738	1.83%	20%		
34-9	E420	10.0	mg/L	62.1	63.8	1.72	Diff <2x LOR		
-80-9	E420	0.00400	mg/L	<0.00400	<0.00400	0	Diff <2x LOR		
28-0	E420	0.000200	mg/L	0.000384	0.000304	0.000080	Diff <2x LOR		
29-1	E420	0.00200	mg/L	0.00300	0.00328	0.00028	Diff <2x LOR		
31-5	E420	0.00200	mg/L	<0.00200	<0.00200	0	Diff <2x LOR		
32-6	E420	0.00600	mg/L	0.178	0.147	19.2%	20%		
33-7	E420	0.00200	mg/L	<0.00200	<0.00200	0	Diff <2x LOR		
61-1	E420	0.000200	mg/L	0.00394	0.00374	5.14%	20%		
62-2	E420	0.0100	mg/L	0.0549	0.0508	0.00405	Diff <2x LOR		
66-6	E420	0.0600	mg/L	0.182	0.172	0.0104	Diff <2x LOR		
67-7	E420	0.00400	mg/L	0.0273	0.0275	0.00024	Diff <2x LOR		
-	E559-L	100	mg/L	8300	8650	4.24%	20%		
	02-0 14-0 09-7 17-7 49-2 21-3 22-4 23-5 24-6 34-9 -80-9 28-0 29-1 31-5 32-6 33-7 61-1 62-2 66-6 67-7	No. 1 E 02-0 E E 02-0 E E 09-7 E E 09-7 E E 17-7 E E 49-2 E E 21-3 E E 21-3 E E 22-4 E E 23-5 E E 24-6 E E 24-6 E E 24-7 E E 24-8 E E 24-9 E E 24-6 E E 28-0 E E 29-1 E E 31-5 E E 33-7 E E 61-1 E E 62-2 E E 64-0 E E 64-0 E E 64-0 E E	No. 1 No. 1 02-0 E420 0.0100 14-0 E420 1.00 09-7 E420 1.00 17-7 E420 0.00400 49-2 E420 0.00100 21-3 E420 0.000200 23-5 E420 0.000200 23-5 E420 0.00400 24-6 E420 0.00400 34-9 E420 0.00400 28-0 E420 0.00400 28-1 E420 0.00400 28-2 E420 0.00400 28-0 E420 0.00200 29-1 E420 0.00200 31-5 E420 0.00200 33-7 E420 0.00200 61-1 E420 0.000200 62-2 E420 0.000200 62-2 E420 0.000200 62-6 E420 0.000200 62-7 E420 0.000200 62-6	Number Number Number 02-0 E420 0.0100 mg/L 14-0 E420 1.00 mg/L 09-7 E420 1.00 mg/L 17-7 E420 0.00400 mg/L 49-2 E420 0.00100 mg/L 21-3 E420 0.00100 mg/L 22-4 E420 0.000200 mg/L 23-5 E420 0.00400 mg/L 23-5 E420 0.00400 mg/L 24-6 E420 0.00400 mg/L 24-6 E420 0.00400 mg/L 24-6 E420 0.00400 mg/L 28-0 E420 0.00400 mg/L 28-0 E420 0.00200 mg/L 31-5 E420 0.00200 mg/L 33-7 E420 0.00200 mg/L 61-1 E420 0.000200 mg/L 62-2 E420 0.000200 <	Number Number Result 02-0 E420 0.0100 mg/L 0.0769 14-0 E420 1.00 mg/L 1.00 09-7 E420 1.00 mg/L 10.4 17-7 E420 0.00400 mg/L 0.0310 49-2 E420 0.00100 mg/L 0.00100 21-3 E420 0.000200 mg/L 0.000301 23-5 E420 0.000200 mg/L 0.000301 23-5 E420 0.00400 mg/L 0.00301 23-5 E420 1.00 mg/L 202 24-6 E420 0.00400 mg/L 0.751 34-9 E420 0.00400 mg/L <0.00400	Name No Nesh Result Result 02-0 E420 0.0100 mg/L 0.0769 0.0731 14-0 E420 1.00 mg/L <1.00	Basel Image Image Result Result Result Difference 02-0 E420 0.0100 mg/L 0.0769 0.0731 0.00384 14-0 E420 1.00 mg/L <1.00	Result Result Result Result Difference Limits 02-0 E420 0.0100 mg/L 0.0759 0.0731 0.00384 Diff <2x LOR	

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Water						
Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 549456)						
solids, total suspended [TSS]		E160	3	mg/L	<3.0	
Physical Tests (QCLot: 549719)						
solids, total dissolved [TDS]		E162	10	mg/L	<10	
Anions and Nutrients (QCLot: 550328)						
ammonia, total (as N)	7664-41-7	E298	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 550401)						
sulfate (as SO4)	14808-79-8	E235.SO4	0.3	mg/L	<0.30	
Anions and Nutrients (QCLot: 550402)						
chloride	16887-00-6	E235.CI	0.5	mg/L	<0.50	
Total Metals (QCLot: 549716)						
aluminum, total	7429-90-5	E420	0.003	mg/L	<0.0030	
antimony, total	7440-36-0	E420	0.0001	mg/L	<0.00010	
arsenic, total	7440-38-2	E420	0.0001	mg/L	<0.00010	
barium, total	7440-39-3	E420	0.0001	mg/L	<0.00010	
beryllium, total	7440-41-7	E420	0.00002	mg/L	<0.000020	
bismuth, total	7440-69-9	E420	0.00005	mg/L	<0.000050	
boron, total	7440-42-8	E420	0.01	mg/L	<0.010	
cadmium, total	7440-43-9	E420	0.000005	mg/L	<0.000050	
calcium, total	7440-70-2	E420	0.05	mg/L	<0.050	
cesium, total	7440-46-2	E420	0.00001	mg/L	<0.000010	
chromium, total	7440-47-3	E420	0.0005	mg/L	<0.00050	
cobalt, total	7440-48-4	E420	0.0001	mg/L	<0.00010	
copper, total	7440-50-8	E420	0.0005	mg/L	<0.00050	
iron, total	7439-89-6	E420	0.01	mg/L	<0.010	
lead, total	7439-92-1	E420	0.00005	mg/L	<0.000050	
lithium, total	7439-93-2	E420	0.001	mg/L	<0.0010	
magnesium, total	7439-95-4	E420	0.005	mg/L	<0.0050	
manganese, total	7439-96-5	E420	0.0001	mg/L	<0.00010	
molybdenum, total	7439-98-7	E420	0.00005	mg/L	<0.000050	
nickel, total	7440-02-0	E420	0.0005	mg/L	<0.00050	
phosphorus, total	7723-14-0	E420	0.05	mg/L	<0.050	
potassium, total	7440-09-7	E420	0.05	mg/L	<0.050	
rubidium, total	7440-17-7	E420	0.0002	mg/L	<0.00020	

Page	: 6 of 10
Work Order	: EO2205135
Client	: Clean Harbors Environmental Services, Inc.
Project	: Pond B July 4

Sub-Matrix: Water

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Total Metals (QCLot: 549716) - continu	ed					
selenium, total	7782-49-2	E420	0.00005	mg/L	<0.000050	
silicon, total	7440-21-3	E420	0.1	mg/L	<0.10	
silver, total	7440-22-4	E420	0.00001	mg/L	<0.000010	
sodium, total	7440-23-5	E420	0.05	mg/L	<0.050	
strontium, total	7440-24-6	E420	0.0002	mg/L	<0.00020	
sulfur, total	7704-34-9	E420	0.5	mg/L	<0.50	
tellurium, total	13494-80-9	E420	0.0002	mg/L	<0.00020	
thallium, total	7440-28-0	E420	0.00001	mg/L	<0.000010	
thorium, total	7440-29-1	E420	0.0001	mg/L	<0.00010	
tin, total	7440-31-5	E420	0.0001	mg/L	<0.00010	
titanium, total	7440-32-6	E420	0.0003	mg/L	<0.00030	
tungsten, total	7440-33-7	E420	0.0001	mg/L	<0.00010	
uranium, total	7440-61-1	E420	0.00001	mg/L	<0.000010	
vanadium, total	7440-62-2	E420	0.0005	mg/L	<0.00050	
zinc, total	7440-66-6	E420	0.003	mg/L	<0.0030	
zirconium, total	7440-67-7	E420	0.0002	mg/L	<0.00020	
Aggregate Organics (QCLot: 549390)						
chemical oxygen demand [COD]		E559-L	10	mg/L	<10	

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report					
					Spike	Recovery (%)	Recovery	Limits (%)		
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier	
Physical Tests (QCLot: 549456)										
solids, total suspended [TSS]		E160	3	mg/L	150 mg/L	93.3	85.0	115		
Physical Tests (QCLot: 549719)										
solids, total dissolved [TDS]		E162	10	mg/L	1000 mg/L	94.0	85.0	115		
Physical Tests (QCLot: 550116)										
pH		E108		pH units	6 pH units	102	97.0	103		
Anions and Nutrients (QCLot: 550328)										
ammonia, total (as N)	7664-41-7	E298	0.005	mg/L	0.2 mg/L	102	85.0	115		
Anions and Nutrients (QCLot: 550401)										
sulfate (as SO4)	14808-79-8	E235.SO4	0.3	mg/L	100 mg/L	108	90.0	110		
Anions and Nutrients (QCLot: 550402)										
chloride	16887-00-6	E235.Cl	0.5	mg/L	100 mg/L	102	90.0	110		
Total Metals (QCLot: 549716)										
aluminum, total	7429-90-5	E420	0.003	mg/L	2 mg/L	110	80.0	120		
antimony, total	7440-36-0	E420	0.0001	mg/L	1 mg/L	111	80.0	120		
arsenic, total	7440-38-2	E420	0.0001	mg/L	1 mg/L	106	80.0	120		
barium, total	7440-39-3	E420	0.0001	mg/L	0.25 mg/L	105	80.0	120		
beryllium, total	7440-41-7	E420	0.00002	mg/L	0.1 mg/L	99.4	80.0	120		
bismuth, total	7440-69-9	E420	0.00005	mg/L	1 mg/L	104	80.0	120		
boron, total	7440-42-8	E420	0.01	mg/L	1 mg/L	89.8	80.0	120		
cadmium, total	7440-43-9	E420	0.000005	mg/L	0.1 mg/L	107	80.0	120		
calcium, total	7440-70-2	E420	0.05	mg/L	50 mg/L	99.2	80.0	120		
cesium, total	7440-46-2	E420	0.00001	mg/L	0.05 mg/L	108	80.0	120		
chromium, total	7440-47-3	E420	0.0005	mg/L	0.25 mg/L	109	80.0	120		
cobalt, total	7440-48-4	E420	0.0001	mg/L	0.25 mg/L	108	80.0	120		
copper, total	7440-50-8	E420	0.0005	mg/L	0.25 mg/L	109	80.0	120		
iron, total	7439-89-6	E420	0.01	mg/L	1 mg/L	106	80.0	120		
lead, total	7439-92-1	E420	0.00005	mg/L	0.5 mg/L	103	80.0	120		
lithium, total	7439-93-2	E420	0.001	mg/L	0.25 mg/L	102	80.0	120		
magnesium, total	7439-95-4	E420	0.005	mg/L	50 mg/L	106	80.0	120		
manganese, total	7439-96-5	E420	0.0001	mg/L	0.25 mg/L	109	80.0	120		
molybdenum, total	7439-98-7	E420	0.00005	mg/L	0.25 mg/L	99.7	80.0	120		
nickel, total	7440-02-0	E420	0.0005	mg/L	0.5 mg/L	108	80.0	120		

Page	: 8 of 10
Work Order	: EO2205135
Client	: Clean Harbors Environmental Services, Inc.
Project	: Pond B July 4

Sub-Matrix: Water			Laboratory Control Sample (LCS) Report						
					Spike	Recovery (%)	Recovery	v Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Total Metals (QCLot: 549716) - continued									
phosphorus, total	7723-14-0	E420	0.05	mg/L	10 mg/L	104	80.0	120	
potassium, total	7440-09-7	E420	0.05	mg/L	50 mg/L	106	80.0	120	
rubidium, total	7440-17-7	E420	0.0002	mg/L	0.1 mg/L	109	80.0	120	
selenium, total	7782-49-2	E420	0.00005	mg/L	1 mg/L	102	80.0	120	
silicon, total	7440-21-3	E420	0.1	mg/L	10 mg/L	97.7	80.0	120	
silver, total	7440-22-4	E420	0.00001	mg/L	0.1 mg/L	99.0	80.0	120	
sodium, total	7440-23-5	E420	0.05	mg/L	50 mg/L	99.1	80.0	120	
strontium, total	7440-24-6	E420	0.0002	mg/L	0.25 mg/L	99.6	80.0	120	
sulfur, total	7704-34-9	E420	0.5	mg/L	50 mg/L	92.3	80.0	120	
tellurium, total	13494-80-9	E420	0.0002	mg/L	0.1 mg/L	103	80.0	120	
thallium, total	7440-28-0	E420	0.00001	mg/L	1 mg/L	103	80.0	120	
thorium, total	7440-29-1	E420	0.0001	mg/L	0.1 mg/L	92.5	80.0	120	
tin, total	7440-31-5	E420	0.0001	mg/L	0.5 mg/L	105	80.0	120	
titanium, total	7440-32-6	E420	0.0003	mg/L	0.25 mg/L	103	80.0	120	
tungsten, total	7440-33-7	E420	0.0001	mg/L	0.1 mg/L	102	80.0	120	
uranium, total	7440-61-1	E420	0.00001	mg/L	0.005 mg/L	103	80.0	120	
vanadium, total	7440-62-2	E420	0.0005	mg/L	0.5 mg/L	107	80.0	120	
zinc, total	7440-66-6	E420	0.003	mg/L	0.5 mg/L	106	80.0	120	
zirconium, total	7440-67-7	E420	0.0002	mg/L	0.1 mg/L	97.1	80.0	120	
Aggregate Organics (QCLot: 549390)									
chemical oxygen demand [COD]		E559-L	10	mg/L	100 mg/L	91.6	85.0	115	

 Page
 : 9 of 10

 Work Order
 : EO2205135

 Client
 : Clean Harbors Environmental Services, Inc.

 Project
 : Pond B July 4

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water					Matrix Spike (MS) Report					
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
Laboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Anions and Nutri	ents (QCLot: 550328)									
EO2205149-001	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.0959 mg/L	0.1 mg/L	95.9	75.0	125	
Anions and Nutri	ents (QCLot: 550401)									
FC2201472-001	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	112 mg/L	100 mg/L	112	75.0	125	
Anions and Nutri	ents (QCLot: 550402)									
FC2201472-001	Anonymous	chloride	16887-00-6	E235.CI	104 mg/L	100 mg/L	104	75.0	125	
Total Metals (QC	Lot: 549716)									
EO2204958-002	Anonymous	aluminum, total	7429-90-5	E420	ND mg/L	0.2 mg/L	ND	70.0	130	
		antimony, total	7440-36-0	E420	0.0229 mg/L	0.02 mg/L	114	70.0	130	
		arsenic, total	7440-38-2	E420	0.0223 mg/L	0.02 mg/L	112	70.0	130	
		barium, total	7440-39-3	E420	ND mg/L	0.02 mg/L	ND	70.0	130	
		beryllium, total	7440-41-7	E420	0.0441 mg/L	0.04 mg/L	110	70.0	130	
		bismuth, total	7440-69-9	E420	0.00988 mg/L	0.01 mg/L	98.8	70.0	130	
		boron, total	7440-42-8	E420	ND mg/L	0.1 mg/L	ND	70.0	130	
		cadmium, total	7440-43-9	E420	0.00444 mg/L	0.004 mg/L	111	70.0	130	
		calcium, total	7440-70-2	E420	ND mg/L	4 mg/L	ND	70.0	130	
		cesium, total	7440-46-2	E420	0.0113 mg/L	0.01 mg/L	113	70.0	130	
		chromium, total	7440-47-3	E420	0.0454 mg/L	0.04 mg/L	114	70.0	130	
		cobalt, total	7440-48-4	E420	0.0222 mg/L	0.02 mg/L	111	70.0	130	
		copper, total	7440-50-8	E420	ND mg/L	0.02 mg/L	ND	70.0	130	
		iron, total	7439-89-6	E420	ND mg/L	2 mg/L	ND	70.0	130	
		lead, total	7439-92-1	E420	0.0200 mg/L	0.02 mg/L	99.8	70.0	130	
		lithium, total	7439-93-2	E420	0.105 mg/L	0.1 mg/L	105	70.0	130	
		magnesium, total	7439-95-4	E420	ND mg/L	1 mg/L	ND	70.0	130	
		manganese, total	7439-96-5	E420	ND mg/L	0.02 mg/L	ND	70.0	130	
		molybdenum, total	7439-98-7	E420	0.0207 mg/L	0.02 mg/L	104	70.0	130	
		nickel, total	7440-02-0	E420	0.0446 mg/L	0.04 mg/L	112	70.0	130	
		phosphorus, total	7723-14-0	E420	10.7 mg/L	10 mg/L	107	70.0	130	
		potassium, total	7440-09-7	E420	ND mg/L	4 mg/L	ND	70.0	130	
		rubidium, total	7440-17-7	E420	0.0224 mg/L	0.02 mg/L	112	70.0	130	
		selenium, total	7782-49-2	E420	0.0409 mg/L	0.04 mg/L	102	70.0	130	
		silicon, total	7440-21-3	E420	ND mg/L	10 mg/L	ND	70.0	130	
		silver, total	7440-22-4	E420	0.00424 mg/L	0.004 mg/L	106	70.0	130	

Page: 10 of 10Work Order: EO2205135Client: Clean Harbors Environmental Services, Inc.Project: Pond B July 4

Sub-Matrix: Water							Matrix Spik	e (MS) Report						
					Spi	ke	Recovery (%)	Recovery	Limits (%)					
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier				
Total Metals (QCLot: 549716) - continued														
EO2204958-002	Anonymous	sodium, total	7440-23-5	E420	ND mg/L	2 mg/L	ND	70.0	130					
		strontium, total	7440-24-6	E420	ND mg/L	0.02 mg/L	ND	70.0	130					
		sulfur, total	7704-34-9	E420	ND mg/L	20 mg/L	ND	70.0	130					
		tellurium, total	13494-80-9	E420	0.0431 mg/L	0.04 mg/L	108	70.0	130					
		thallium, total	7440-28-0	E420	0.00384 mg/L	0.004 mg/L	96.0	70.0	130					
		thorium, total	7440-29-1	E420	0.0210 mg/L	0.02 mg/L	105	70.0	130					
		tin, total	7440-31-5	E420	0.0225 mg/L	0.02 mg/L	112	70.0	130					
		titanium, total	7440-32-6	E420	ND mg/L	0.04 mg/L	ND	70.0	130					
		tungsten, total	7440-33-7	E420	0.0206 mg/L	0.02 mg/L	103	70.0	130					
		uranium, total	7440-61-1	E420	0.00415 mg/L	0.004 mg/L	104	70.0	130					
		vanadium, total	7440-62-2	E420	0.113 mg/L	0.1 mg/L	113	70.0	130					
		zinc, total	7440-66-6	E420	0.418 mg/L	0.4 mg/L	104	70.0	130					
		zirconium, total	7440-67-7	E420	0.0396 mg/L	0.04 mg/L	99.0	70.0	130					
Aggregate Organ	ics (QCLot: 549390)													
EO2205003-005	Anonymous	chemical oxygen demand [COD]		E559-L	ND mg/L	100 mg/L	ND	75.0	125					

RESULTS OF DAPHNIA MAGNA LC50 MULTI-CONCENTRATION

VERITAS												
Client :	70036	1	ALS ENVIRON	MENTAL, CA	ALGARY				Jop I	Job Number:		C247502
Client Project N	Name & Nui	nber:	EO2205135						Sam	ple Nu	umber:	AWM114-02
<u>Test Result:</u>												
48 hrs LC50 % \	ol/vol (95%	6 CL): >1	00% (N/A) S	tatistical Me	ethod:	Visual						
Sample Name :	PO	ND B						San	nple Matrix :	V	Vater	
Description: Yellow, clear								<u>San</u>	nple Prior to A	nalysis	<u>s:</u>	
Sample Collecte	ed:	Jul 04	, 2022 12:00	PM	Sampling Method : N/A pH: 8.2			8.2				
Sample Collecte	ed By:	N/A			Site Coll	Site Collection: N/A Temperatu					19 °C	
Sample Receive	ed:	Jul 05	, 2022 09:50	AM	Volume	Received:	2 L	Diss	solved Oxygen	:	7.9 mg/	L
Analysis Start :		Jul 05	, 2022 11:02	AM	Avg Tem	np Arrival:	7 °C	San	nple Conducta	nce:	926 μS/	cm
End :		Jul 07	, 2022 10:10	AM	Storage:		2-6°C	Har	ardness:		160 mg CaCO ₃ /L	
Concentration	Temperatu (°C)	ire pH (pH)	Conductivity (uS/cm)	Dissolved Oxygen (mg/L)	Mortality (#)	Mortality (%)	Immobility (#)	Immobility (%)	Temperature (°C)	pH (pH)	Conductivity (uS/cm)	Dissolved Oxygen (mg/L)
% vol/vol	Start	Start	Start	Start	24 hrs	24 hrs	24 hrs	24 hrs	48 hrs	48 hr	48 hrs	48 hrs
0	20	8.3	370	7.7	0	0	0	0	21	7.8	385	7.9
6.25	20	8.3	406	7.8	0	0	0	0	21	7.8	419	7.9
12.5	20	8.3	437	7.8	0	0	0	0	21	8.0	465	8.0
25	20	8.2	508	7.8	0	0	0	0	21	7.9	529	7.8
50	19	8.2	650	7.9	0	0	0	0	21	7.9	679	7.8
100	18	8.1	898	7.9	0	0	0	0	21	8.0	946	7.8
Concentration	Mortality (#)	Mortality (%)	Immobility (#)	Immobility (%)]							

Concentration	(#)	(%)	(#)	(%)
% vol/vol	48 hrs	48 hrs	48 hrs	48 hrs
0	0	0	0	0
6.25	0	0	0	0
12.5	0	0	0	0
25	0	0	0	0
50	0	0	0	0
100	0	0	0	0
· .	• • •			

Comments : None City of Edmonton dechlorinated tap water **Culture/Control/Dilution Water:** Hardness: 180 mg/L CaCO₃ Other parameters available on request. **Test Conditions** Test concentration : 0,6.25,12.5,25,50,100 (% vol/vol) Organisms per Vessel : 10 Pre-aeration Time : 0 min Rate of Pre-aeration : 25-50 mL/min/L Total # of Organisms Used : 60 20 ± 2 °C Test Hardness Adjusted : Test Temperature : No Test Volume : 150 mL Vessel Volume : 225 mL Test pH Adjusted: No Loading Density : 15.0 mL/Daphnia Photoperiod : 16:8 (light: dark) In House Culture Test Organism : Daphnia magna Source : <24 hrs Average Brood Size : 28.5 Age at Test Initiation : Culture Photoperiod : 16:8 (light: dark) % Mortality within 7 days : 1.6 Culture Temperature : 20 ± 2 °C Time To First Brood : 7 Days **Culture Diet** Pseudokirchnriella and YTC at a ratio of 2 mL/L of culture daily. New cultures weekly, 63 daphnids distributed into 6 culture vessels and 3 reproductive vessels.

Method	Deviations:	None				
<u>Test Me</u>	<u>thod</u>	EPS 1/RM/14				
Historic	al Mean LC50 (warning lir	nits) :	6.19 (4.60, 8.31) g/L	Concentration : 0,1.7	71,2.56,3.82,5.7,8.5	g/L
Referer Test End	i <u>ce chemical:</u> dpoint 48 hrs LC50 (95% c	onfidence interval) :	Sodium Chloride 6.17 (5.50, 6.93)g/L	Test Date: Statistical Method :		Jul 01, 2022 Untrimmed Spearman- Kärber
Client P	roject Name & Number:	EO2205135			Sample Number:	AWM114-02
VERITAS	70036	ALS ENVIRONMENT	AL, CALGARY		Job Number:	C247502

data contained within the toxicity report are provided for information purposes and are not individually accredited parameters. This report may not be reproduced, except in its entirety, without the written approval of the laboratory.

Analyst : Chelsea Tessier, Natasha Lloyd

Verified By :

Cara Shurgot, Analyst 2

Date: Jul 08, 2022 02:16 PM

RESULTS OF RAINBOW TROUT LC50 MULTI-CONCENTRATION

Client : Client Project N Test Result:	70036 lame & Nur	/ nber:	ALS ENVIRONI EO2205135	MENTAL, C/	ALGARY						Job Numbe	er:	C247502
96 hrs LC50 % v	ol/vol (95%	% CL): >1	00% (N/A) S	tatistical M	ethod:	Visua	al						
Sample Name :	PC	, ND B Vellov	v clear						Sar	nple Matri	k: W	'ater	
Sample Collecte	۰h		2022 12.00	PM Sam	nling Meth	. hou		Ν/Δ	Site		N N	/Δ	
Sample Collecte	ad By:	JUI 04 N/Δ	, 2022 12.00	Volu	ime Receiv	iou . ad·		101	Δνα	Temn Arri	ival· 7°C	Storage	· 2-6°C
Sample Receive	d.	Jul 05	2022 09.50	AM nH·		cu.		79	Dis	solved Oxv	gen: 8	4 mg/l	. 2 0 0
Analysis Start :		Jul 05	. 2022 11:50	AM Tem	perature :			14 °C	Sar	nple Condu	uctance: 82	27 uS/cm	
Concentration	Temperatu (°C)	ure pH (pH)	Conductivity (uS/cm)	Dissolved Oxygen (mg/L)	Mortality (#)	Mo	ortality (%)	Atypical Behaviour (#)	Atypical Behaviour (%)	Mortality (#)	Mortality (%)	Atypical Behaviour (#)	Atypical Behaviour (%)
% vol/vol	Start	Start	Start	Start	24 hrs	24	4 hrs	24 hrs	24 hrs	48 hrs	48 hrs	48 hrs	48 hrs
0	15	8.0	355	9.1	0		0	0	0	0	0	0	0
6.25	15	8.0	386	9.1	0		0	0	0	0	0	0	0
12.5	14	7.8	429	9.2	0		0	0	0	0	0	0	0
25	14	8.0	484	9.1	0		0	0	0	0	0	0	0
50	14	7.9	608	9.0	0		0	0	0	0	0	0	0
100	14	7.9	838	9.2	0		0	0	0	0	0	0	0
Concentration	Mortality (#)	Mortality (%)	Atypical Behaviour (#)	Atypical Behaviour (%)	Temperatu (°C)	ire	рН (рН)	Conductivity (uS/cm)	Dissolved Oxygen (mg/L)	Mortality (#)	Mortality (%)	Atypical Behaviour (#)	Atypical Behaviour (%)
% vol/vol	72 hrs	72 hrs	72 hrs	72 hrs	96 hrs		96 hr	96 hrs	96 hrs	96 hrs	96 hrs	96 hrs	96 hrs
0	0	0	0	0	15		7.9	354	8.8	0	0	0	0
6.25	0	0	0	0	15		8.0	382	8.8	0	0	0	0
12.5	0	0	0	0	15		8.0	430	8.7	0	0	0	0
25	0	0	0	0	15		8.0	488	8.7	0	0	0	0
50	0	0	0	0	15		7.8	615	7.6	0	0	0	0
100	0	0	0	0	15		8.1	846	8.6	0	0	0	0
Comments :	None												
Culture/Contro Hardness:	I/Dilution	<u>Water</u>	City 190	of Edmonte mg/L CaCO	on dechlori 93	inate	ed tap	water Other paran	neters avail	able on red	quest.		
Test Condition	s		Τc		ration ·		0625	12 5 25 50 -	100 (% vol/	vol)	-		
Organisms per V	<u>-</u> Vessel ·		10	Test	Temperatu	ıre ·	0,0.20	15 + 1 °C	Solut	ion Denth		>1	5 cm
Total # of Organ	nisms Used		<u> </u>	Pre-2	eration Tir	me ·		30 min	Rate	of Aeration	า	6 5	5 cm 5+1 ml /min/l
Test Volume :			20 L	Vess	el Volume :	:		38L	Test	pH Adjuste	d:	No	·, , _
Loading Density	<i>i</i> :		0.3 g/L	Phot	operiod :		:	16:8 (light: d	ark)	. ,			
Test Organism	<u>:</u>	Rainbow	Trout (Onc	orhynchus i	mykiss)	Sou	irce :	Spring \	/alley Trout	Hatchery			
Culture Tempe	rature :	15	± 2 °C	Weigh	t (Mean) +-	SD	:	0.6 ± 0.1 g		Length (M	ean) +- SD	: 4.24	± 0.31 cm
Culture Water	Renewal :	≥1	.0 L/min/kg fi	sh Weigh	t (Range) :			0.4 – 0.8 g		Length (Ra	nge) :	3.70 ·	– 4.80 cm
Culture Photop	eriod :	16:	8 (light: dark)							% Mortalit	y within 7 c	days: 0%	
Feeding rate ar	nd frequend	cy:	daily: 1-5%	biomass of	f trout.					Acclimatio	on Time:	>14 c	lays
Reference cher	<u>mical:</u>				Phenol			Test D	ate:		Ju	n 28, 2022	
Test Endpoint 9	96 hrs LC50	(95% con	fidence inter	val) :	10.4 (9.35	5, 11	4)mg,	L Statist	ical Metho	: :	Pr	obit	
Historical Mear	າ LC50 (war	ning limit	s):		9.94 (8.72	2, 11	3) mg	;/L Conce	ntration : C	0,8,10,12,15	5,20 mg/L		

RESULTS OF RAINBOW TROUT LC50 MULTI-CONCENTRATION

Client :	70036	ALS ENVIRONMENTAL, CALGARY
Client Project Nan	ne & Number:	EO2205135

Test MethodEPS 1/RM/13Method Deviations :None

Note: The results contained in this report refer only to the testing of the sample submitted. Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation, including the toxicity parameters reported herein. The conductivity, dissolved oxygen and pH data contained within the toxicity report are provided for information purposes and are not individually accredited parameters. This report may not be reproduced, except in its entirety, without the written approval of the laboratory.

Analyst : Cara Shurgot, Kaylie Lyons, Kyle Monaghan

Verified By :

Cara Shurgot, Analyst 2

Date: Jul 09, 2022 01:48 PM

Job Number:

Sample Number:

C247502

AWM114-01

Bureau Veritas Job Number: C247502 Report Date: 2022/07/09

RESULTS OF CHEMICAL ANALYSES OF WATER

Bureau Veritas ID		AWM114	
Sampling Date		2022/07/04 12:00	
COC Number		62453	
	UNITS	POND B	QC Batch
Daphnia Magna Bioassay	UNITS	POND B	QC Batch

RDL = Reportable Detection Limit

N/A = Not Applicable

Results relate only to the items tested.

Your Project #: EO2205135 Your C.O.C. #: 62453

Attention: ALS Reporting Edmonton

ALS ENVIRONMENTAL Bay 7, 1313 44th ave NE CALGARY, AB CANADA T2E 6L5

> Report Date: 2022/07/09 Report #: R3197701 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C247502

Received: 2022/07/05, 09:50

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Daphnia magna LC50 Multi-Concentration	1	N/A	2022/07/05	EENVSOP-00154	EPS 1 RM14 2nd ed m
Rainbow Trout LC50 Multi-Concentration	1	N/A	2022/07/05	EENVSOP-00160	EPS 1 RM13 2nd ed m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Your Project #: EO2205135 Your C.O.C. #: 62453

Attention: ALS Reporting Edmonton

ALS ENVIRONMENTAL Bay 7, 1313 44th ave NE CALGARY, AB CANADA T2E 6L5

> Report Date: 2022/07/09 Report #: R3197701 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C247502 Received: 2022/07/05, 09:50

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Customer Solutions, Western Canada Customer Experience Team Email: customersolutionswest@bureauveritas.com Phone# (780) 577-7100

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

RESULTS OF CHEMICAL ANALYSES OF WATER

Bureau Veritas ID		AWM114							
Sampling Data		2022/07/04							
		12:00							
COC Number		62453							
	UNITS	POND B	QC Batch						
Daphnia Magna Bioassay									
LC50	% vol/vol	ATTACHED	A633088						

TOXICOLOGY (WATER)

Bureau Veritas ID		AWM114							
Sampling Date		2022/07/04							
		12:00							
COC Number		62453							
	UNITS	POND B	QC Batch						
Rainbow Trout Bioassay									
LC50	% vol/vol	ATTACHED	A632619						

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	8.0°C
Package 2	6.3°C
Package 3	7.0°C
Package 4	7.3°C
Package 5	6.0°C

Results relate only to the items tested.

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Cara Shurgot, Analyst 2

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Destination Lab:

Address:

 $\widehat{\mathbb{R}}^n$

Chain of Custody Edmonton - Environmental 9450 - 17 Avenue NW Edmonton AB Canada T6N 1M9

T6B 2R4

Work Order Number: EO2205135 Original Receipt Date/Time

Bureau Veritas (Edmonton)

9331 - 48th Street Edmonton AB Canada

Instructions Received

05	1(5)

Relinquished By	
Date/Time	
Received By	
Date/Time	
Receipt Temp	

04/07/2022 17:45							Receipt Ten	np
Return as Indicated	I: Results: ALSED Attention: Pame	ClientServices@ Ia Toledo	galsglobal.com	Invoice: ALSEDClier	ntServices@alsglobal.com	Electronic D	Data: ALSEDClientServices	@alsglobal.com
ALS Sample ID	Client ID	Matrix	Container Type	Test Codes	Method Description	Due Date	Sampling Date and Time	Remarks
EO2205135-001	Pond B	Water	LDPE carboy	TRT-LC50-96	Survival/LC50 Rainbow Trout (96 hours) X 4	06-07-2022	04/07/2022 12:00	
EO2205135-001	Pond B	Water	LDPE carboy			06-07-2022	04/07/2022 12:00	
EO2205135-001	Pond B	Water	LDPE carboy			06-07-2022	04/07/2022 12:00	
EO2205135-001	Pond B	Water	LDPE carboy			06-07-2022	04/07/2022 12:00	
EO2205135-001	Pond B	Water	LDPE carboy	DAP-LC50-48	Survival/LC50 Daphnia Magna 48 hours 🗶 2.	06-07-2022	04/07/2022 12:00	
EO2205135-001	Pond B	Water	LDPE carboy			06-07-2022	04/07/2022 12:00	

P4 - Due @ 08-JUL·2022 Temp See ACTR

Deji Wu D 2022/07/05 09:50

Job# C247502

Page 1 of 1

Page

9

Canada Toll Free: 1 800 668 9878

Are samples taken from a Regulated DW System? REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION Released by: Are samples for human consumption/ use? ALS Sample # (ALS use only) Street: PO / AFE: Job #: Contact: City/Province: SD ALS Account # / Quote #: Company: nvoice To Postal Code: ALS Lab Work Order # (ALS use only): hone: Contact: Company: Report To Drinking Water (DW) Samples¹ (client use) VES NO YES NO Pond B Ryley, AB (780) 663-2513 Pond B July 4 Robbi Gooding Clean Harbors Canada Same as Report To PO Box 390, 50114 Range Road 173 Copy of Invoice with Report TOB 4A0 Company address below will appear on the final Clean Harbors Canada Todd Webb, Stan Yuha Table 4.3B Todd Webb SHIPMENT RELEASE (client use) Contact and company name below will appear on the final report **Project Information** Sample Identification and/or Coordinates (This description will appear on the report) Date: Q82442 (Table 4.3B) 602205, YES YES [] Π Same analysis as EO2202394 Please rush. Analyze as per Table 4.3B (attached), including trout and Daphnia bioassays. report NO NO 24-Jun-22 Time: Notes / Specify Limits for result evaluation by selecting from drop-down below (Excel COC only) 200 8:00 Received by ALS Contact: Select Invoice Distribution: 🖉 EMAIL 🗌 MAIL AFE/Cost Center: Email 2 Email 1 or Fax gooding.robbi@cleanharbors.com Email 3 Email 1 or Fax webb.todd@cleanharbors.com Requisitioner: Major/Minor Code Email 2 Select Distribution: Select Report Format: Merge QC/QCI Reports with COA ocation: C Compare Results to Criteria on Report - provide details below if box checked **Oil and Gas Required Fields (client use)** INITIAL SHIPMENT RECEPTION (ALS use only) yuha.stan@cleanharbors.com Pamela Toledo (dd-mmm-yy) 4-Jul-22 I EMAIL Date **Reports / Recipients** Invoice Recipients WHITE - LABORATOR Date Sampler: Routing Code PO# MAIL (hh:mm) 12:00 Time 1014-2022 FAX V COPY Surface Water Fodd Webb Sample Type FAX YELLOW - CLIENT COPY S:54A Submission Comments identified on Sample Receipt Notification: Cooling Method: Routine [R] If received by 3pm M+F - no surcharges apply
 4 day [P4] if received by 3pm M+F - 20% rush surcharge minimum
 3 day [P3] if received by 3pm M+F - 25% rush surcharge minimum
 2 day [P2] if received by 3pm M+F - 50% rush surcharge minimum
 1 day [E] if received by 3pm M+F - 100% rush surcharge
 Same day [E2] if received by 10am M+S - 200% rush surcharge. Cooler Custody Seals Intact: 3 NUMBER OF CONTAINERS 12-6 Date and Time Required for all E&P TATs: P2 Table 4.3B INIITIAL COOLER TEMPERATURES °C Additional fees may apply to rush requests on weekends, statutory holidays and for non-routine tests Received by P4 Trout 96 hr multi conc. Acute Lethal **Turnaround Time (TAT) Requested** Indicate Filtered (F), Preserved (P) or Filtered and Preserved (F/P) below NONE P4 Daphnia 48 hr Static acute lethality For all tests with rush TATs requested, please contact your AM to confirm availability SAMPLE RE. □ ICE FINAL SHIPMENT RECEPTION (ALS use only) YES N/A ICE PACKS FROZEN Analysis Request Edmonton **Environmental Division** Telephone: +1 780 413 5227 Date Work Order Reference Sample Custody Seals Intact: FINAL COOLER TEMPERATURES °C AFFIX ALS BARCODE LABEL HERE YES COOLING INITIATED (ALS use only) ON O VES N/A Time. SAMPLES ON HOLD EXTENDED STORAGE REQUIRED SUSPECTED HAZARD (see notes)

1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the tacks and Conditions as specified on the back page of the white - report copy

EB 2022 FROM

8 stinu Hq 2.e - 0.6 Hq Maximum unless otherwise indicated *<u>HETEMARA9</u>* STIMITS TABLE 4.3-B: RUNOFF LIMITS FOR SURFACE WATER DETENTION POND

96-Hour Multiple Concentration Acute Lethality Test Jsing Rainbow Trout (Oncorhynchus mykiss)	50% or greater survival
Dil or other substances	Not present in amounts sufficient to create visible film or sheen
eteriding	500 mg/L
mibos	200 mg/L
Shioride	520 mg/L
(negotiv ss besserats) sinomm	շնա ց
SS.	շջ անչբ
SQ.	2500 mg/L
000	7/6w 09
	muum aud and aut

meen singed prize test tributes study 217072 v184