

2022 Annual Surface Water Quality Monitoring Report Clean Harbors Lambton Facility

Clean Harbors Canada Inc.

March 28, 2023

→ The Power of Commitment

Project name Clean Harbors Lambton Environmental Monitoring								
Documen	t title	2022 Annual Surfac	e Water Quality	Monitoring Repo	rt Clean Harbo	ors Lambton Fac	lity	
Project nu	umber	12572192						
File name		12572192-RPT-1-2022 Annual Surface Water Quality Monitoring Report.docx						
Status	Revision							
Status	Revision	Author	Reviewer		Approved for	issue		
Status Code	Revision	Author	Reviewer Name	Signature	Approved for Name	issue Signature	Date	

GHD

455 Phillip Street, Unit 100A

Waterloo, Ontario N2L 3X2, Canada

T +1 519 884 0510 | F +1 519 884 0525 | E info-northamerica@ghd.com | ghd.com

© GHD 2023

This document is and shall remain the property of GHD. The document may only be used for the purpose for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited.

Contents

1.	Introd	luction		1
	1.1	Purpose and Orgar	nization	1
	1.1	Purpose of this Rep	port	1
	1.2	Scope and Limitation	1	
	1.2	Site Location	1	
	1.3	Ownership and Key	y Personnel	2
	1.4	Waste Disposal Sit	e	2
	1.5	Water Managemen	it System	3
		1.5.1 Surface Wa	ater Management	3
		1.5.2 Process Wa	ater Management	4
		1.5.3 SWIP Ope	ration and Maintenance	4
2.	Physi	cal Setting		4
	2.1	Geology and Hydro	ogeology	4
	2.2	Surface Water Fea	tures	5
3.	Monit	oring Program		5
	3.1	Surface Water Mor	nitoring	5
		3.1.1 Daily Disch	arge Monitoring	6
		3.1.2 Monthly Dis	scharge Monitoring	6
		3.1.2.1	Monthly Discharge Monitoring	6 6
		3.1.2.3	Visual Observations	6
		3.1.2.4	Off-Site Surface Water Monitoring	7
	3.2	Provincial Officer's	Order No. 2681-BCPKUJ	7
4.	Monit	oring Results and As	ssessment	7
	4.1	Daily Discharge Mo	onitoring	7
	4.2	Monthly Discharge	Monitoring	8
		4.2.1 Monthly Dis	scharge Monitoring	8
		4.2.1.1	Equalization Pond	8
		4.2.1.2 4.2.2 Toxicity Mo	point A and Fond D	9 Q
		4.2.3 Visual Obse	ervation	9
	4.3	Supplementary Mo	nitoring	10
	4.4	Off-Site Surface W	ater Monitoring	10
5.	Surfa	ce Water Characteriz	zation	10
6.	Conc	usions and Recomm	nendations	11
-	6.1	Conclusions	· -	11
	6.2	Recommendations		11
7.	Refer	ences		12

i

Table index

Table 1	Geo-Reference	Data for the Lamb	ton Facility

 Table 4
 Effluent Discharge Criteria

Tables following text:

- Table 2Surface Water Monitoring Program
- Table 3Surface Water Monitoring Parameters
- Table 5Daily Analysis Equalization Pond
- Table 6Monthly Discharge Monitoring Equalization Pond, General Chemistry, Metals, and
VOCs/sVOCs
- Table 7
 Monthly Discharge Monitoring Equalization Pond, Microtox
- Table 8
 Monthly Discharge Monitoring Pond A, General Chemistry, Metals, and VOCs/sVOCs
- Table 9
 Monthly Discharge Monitoring Pond D, General Chemistry, Metals, and VOCs/sVOCs
- Table 10 Off Site Surface Water Monitoring

Figure index

- Figure 1 Site Location and Supplementary Off-Site Monitoring Locations
- Figure 2 Surface Water Management System

Appendices

- Appendix A Amendment to Off-Site Surface Water Locations
- Appendix B Provincial Officer's Order No. 2681 BCPKUJ
- Appendix C Analytical Data Reports Collected During Effluent Discharge
- Appendix D Analytical Data Verification Memo

1. Introduction

1.1 Purpose and Organization

GHD on behalf of Clean Harbors Canada, Inc. (Clean Harbors) has prepared the "2022 Annual Surface Water Quality Monitoring Report" for the Clean Harbors Lambton Facility (Lambton Facility or Site) located at 4090 Telfer Road, St. Clair Township, Ontario.

The Lambton Facility is a hazardous waste disposal facility owned and operated by Clean Harbors. The main hazardous waste disposal operations at the facility are the disposal of liquid waste in a liquid incinerator and the processing and disposal of solid waste in the landfill. The hazardous solid waste landfill component located at the Site operates in accordance with Environmental Compliance Approval No. A031806 (Waste ECA) issued by the Ministry of the Environment, Conservation and Parks (MECP).

In October of 2018, Clean Harbors applied for an amendment to the surface water management system to alter the on-site surface water ditches and ponds. Environmental Compliance Approval No. 4731-BNNT5Y dated April 20, 2020 (SW ECA) is a new ECA for the surface water management system. The SW ECA replaces ECA No. 1065-9VVJSW dated October 19, 2015, and ECA No. 2985-B9KKP2 dated September 9, 2019. Both the Waste ECA and SW ECA have conditions that relate to surface water monitoring and reporting requirements. Copies of the Waste ECA and SW ECA are provided in the 2022 Clean Harbors Lambton Facility Annual Landfill Monitoring Report (Landfill Annual Monitoring Report).

1.1 Purpose of this Report

The purpose of this report is to present and interpret the 2022 surface water monitoring results collected as part of the surface water monitoring program for the Lambton Facility.

1.2 Scope and Limitations

GHD was retained by Clean Harbors to review, summarize, and report the data provided by Clean Harbors as it relates to the assessment of surface water conditions. Clean Harbors holds the responsibility for field instrument calibration, precision and accuracy, quality assurance/quality control of the collected data, and provision of documented field observations/inspections. GHD has assumed that the data collected and provided by Clean Harbors is valid and reliable for the purposes of producing this monitoring report.

This report: has been prepared by GHD for Clean Harbors Canada Inc. and may only be used and relied on by Clean Harbors Canada Inc. for the purpose agreed between GHD and Clean Harbors Canada Inc. as set out in section 1 of this report.

GHD otherwise disclaims responsibility to any person other than Clean Harbors Canada Inc. arising in connection with this report. GHD also excludes implied warranties and conditions, to the extent legally permissible.

The services undertaken by GHD in connection with preparing this report were limited to those specifically detailed in the report and are subject to the scope limitations set out in the report.

The opinions, conclusions and any recommendations in this report are based on conditions encountered and information reviewed at the date of preparation of the report. GHD has no responsibility or obligation to update this report to account for events or changes occurring subsequent to the date that the report was prepared.

The opinions, conclusions and any recommendations in this report are based on assumptions made by GHD described in this report (refer section 6 of this report). GHD disclaims liability arising from any of the assumptions being incorrect.

1.2 Site Location

The Lambton Facility is a hazardous waste management complex on 121 hectares (ha) of land located within Lots 8 and 9, Concession 10 in St. Clair Township, Lambton County, operated by Clean Harbors. The facility location and site plan are presented on Figures 1 and 2. Geo-reference data for the Lambton Facility is presented in Table 1.

Table 1 Geo-Reference Data for the Lambton Facility

Location ⁽¹⁾	Northing	Easting
Northeast Corner of the Facility	4748849	394521
Southeast Corner of the Facility	4747490	394478
Northwest Corner of the Facility	4748882	393626
Southwest Corner of the Facility	4747582	393570

Notes: Geo-reference data based on digital map referencing UTM NAD83 Zone 17T (accuracy +/- 3 m). Location is in reference to the Lambton Operational Area as shown on Figure 1.

The Lambton Facility includes an analytical laboratory, transportation depot, high temperature incinerator, solid waste pre-treatment processes, and a secure landfill (waste disposal site). The solid waste pre-treatment processes at the facility include acid/akali pre-treatment system (AAPS), thermal desorber unit (TDU), land disposal restriction building (LDR), spent pot liner treatment (SPL), and organic debris treatment.

1.3 Ownership and Key Personnel

The Lambton Facility is owned and operated by Clean Harbors. Any environmental issues at the Site are addressed by the following personnel:

Mackenzie Costello, Senior Environmental Compliance Manager Clean Harbors Canada, Inc. 4090 Telfer Road, Rural Route #1 Corunna, Ontario N0N 1G0 Phone: (519) 864-3890, E-mail: costello.mackenzie@cleanharbors.com

GHD was retained by Clean Harbors to conduct the 2022 annual monitoring program. The Competent Environmental Practitioner (CEP) who reviewed the 2022 Annual Surface Water Quality Monitoring Report is:

Ben Kempel, P.Geo. GHD 455 Phillip Street Waterloo, Ontario N2L 3X2 Phone: (519) 884-0510, E-mail: <u>ben.kempel@GHD.com</u>

1.4 Waste Disposal Site

The secure landfill occupies a total fill area of approximately 56 ha that includes the pre-1986 fill area, Cell 16 completed in 1992, Cell 17 completed in early 1998, and Cell 18 completed in early 2016. The 2022 operational area (disposal area for landfilling at the Lambton Facility) was in Cell 20-1. The landfill disposal method and sequence is provided in the Design and Operations Report - Lambton Landfill Expansion (D&O Report) prepared by Tetra Tech WEI Inc. and dated October 8, 2015, and the most recent amendment for Waste ECA No. A031806. During the 2022 reporting period:

- 1. Disposal occurred in Cell 20-1 and a temporary divider berm was installed within Cell 20-1.
- 2. The perimeter leachate collection trench was extended in the south portion of Cell 20-1.
- 3. Interim cover was installed over the western fill limit of Cell 20-1. The majority of Cells 19-2 and 19-3 have received interim cover.
- 4. Buttresses was installed along the toe of the north and south slopes of Waste Disposal Cell 20-1.
- 5. The temporary waste storage cell leachate drain was constructed.
- 6. Cell 19-1 ditch was maintained and riprap was placed.
- 7. Leachate treatment system design and approval.

The 2015 vertical expansion of the Lambton Facility landfill means that the landfilled area will transition from a relatively flat/shallow grade final contour (less than 5 percent grade) to a more traditional landfill shape (25 percent side slope and 5 percent top slope grades). The amended surface water management system is presented in the October 3, 2018, report Surface Water Management Amendment prepared by GHD. The surface water management system was approved by the SW ECA No. 4731-BNNT5Y and was designed to accommodate surface water for the approved final contours.

The portion of the landfill area not directly used for landfilling contains drainage ditches, surface water ponds, access roads, and stockpiles of clay and topsoil. In the central portion of the landfill area, the Site is used for several waste processing components such as the TDU, SPL, container storage, and leachate storage (covered ponds). Undeveloped buffer land and berms separate the landfill operation from surrounding properties. The perimeter ditches and surface water ponds side slopes are routinely inspected for stability and signs of erosion. The construction of the revised surface water management system was completed by October 30, 2020. Major site features that relate to the revised surface water management system at the Site are shown on Figure 2. The SW ECA No. 4731-BNNT5Y addresses the amendments and the transition period required to address the various items.

Additional information regarding waste volumes received, landfill cell development, landfill operation and management, engineering controls, leachate management and incineration, and all other relevant waste disposal site developments during the current reporting period are presented within the 2022 Landfill Annual Monitoring Report.

1.5 Water Management System

The following presents a description of the Lambton Facility's water management system that includes surface water and process water. Leachate (surface water generated from the active waste disposal area) is discussed in the Landfill Annual Monitoring Report.

1.5.1 Surface Water Management

Surface water is generated from non-operational areas at the Lambton Facility. Non-impacted surface water runoff from undeveloped portions of the Site, perimeter berms, and capped and closed landfill cells, and waste disposal cells with interim cover is directed through a series of on-Site drainage ditches and ponds. The previous surface water management system (prior to early 2020) consisted of two on-Site surface water storage ponds (West Pond and East Pond). In 2020, the revised surface water management system was developed, and it now consists of four ponds identified as Pond A, B, C, and D (Figure 2). The four ponds are located in the southern portion of the Site and incorporated portions of the former East and West Ponds. The ponds are linked and operate as one large pond from a surface water point of view. The perimeter surface water ditches discharge to the ponds.

The Facility's Surface Water Treatment Plant (SWTP) for processing surface water pumped from Pond D is rated with a treatment capacity of 4,500 cubic metres per day (m³/day). The SWTP consists of the following:

- Two influent pumps (including one standby), each with rated capacity of 22.7 litres per second (L/s) at 310 kilopascals (kPa) (300 imperial gallons per minute [IGPM] at 45 pounds per square inch gauge [psig]).
- Two sand filters, each with 3.6 m outside diameter and 1.8 m high, containing 6.4 m³ of 0.3 mm of silica sand and 3.2 m³ of 1.0 mm anthracite, equipped with backwash pump rated at 49.3 L/s at 138 kPa (650 IGPM at 20 psig).
- One activated carbon filter consisting of a concrete above-ground basin with overall dimension of 2.4 m high, 4.3 m long, and 1.8 m wide containing 1.2 m³ of 20 mm clear crushed stone and 14.2 m³ of granular activated carbon.

The SWTP is operated when the live surface water storage across the Site needs to be increased, often driven by precipitation events and seasonal wet periods of high runoff. Each time upon start-up the SWTP operates in recirculation mode until the effluent discharge criteria established under Condition 5 of the SW ECA No. 4731-BNNT5Y are met. If an exceedance of the effluent discharge criteria is identified, the SWTP remains in recirculation mode until test results are in compliance with daily effluent discharge criteria. Likewise, if during operating mode and the daily effluent discharge criteria are exceeded, the SWTP is switched to recirculation mode.

Once the effluent from the SWTP is in compliance with the effluent discharge criteria, the treated water is discharged to the Equalization Pond. The effluent is subsequently discharged via a gated channel to the municipal drainage ditch located along the eastern side of Telfer Road.

The SWTP is maintained by Clean Harbors staff through backwashing of the filter systems, and occasionally through replacement of the filter media.

1.5.2 Process Water Management

Surface water runoff from the operational areas is considered to be process water and is directed to one of the four process water ponds (North Process Water Pond, South Process Water Pond, West Process Water Pond, and Process Water Pond 1402). The North and South Process Water Ponds and Process Water Pond 1402). The North and South Process Water Ponds and Process Water Pond 1402 receive process water either by ditches or through pumps, forcemains, or vacuum trucks. The West Process Water Pond, constructed in 2016, receives water from the South Process Water Pond through a forcemain and overland hosing.

The four process water ponds store the process water on-Site until the process water is used for facility operations including quench water in the on-Site incinerator. The incinerator requires up to 11 million L of quench water per month and 8 million L of process water for the spray dryer. When process water is low, surface water from Pond D is transferred to the process water ponds for use as quench water. This normally occurs during the dryer periods of the year (August through October).

1.5.3 SWTP Operation and Maintenance

Maintenance of the SWTP is conducted as required to maintain treatment flow and water quality. The timing of the maintenance depends on the amount of water treated and the performance of the SWTP. The following provides a summary of operation and maintenance activities conducted on the SWMP in the 2022 monitoring period:

- Began discharging on December 23, 2021 until January 11, 2022
- Recirculation mode was started on January 12, 2022
- Recirculation mode was stopped on January 13, 2022 to backflush sand filters and then recirculation mode was restarted
- Began discharging on January 16, 2022 until January 26, 2022. Water was directed towards the incinerator or south process water pond.
- Sand filters were backflushed and recirculation mode was started on March 18, 2022
- Began discharging on March 22, 2022 until April 3, 2022
- Sand filters were backflushed and recirculation mode was started on April 4, 2022
- Began discharging on April 6, 2022 until April 28, 2022
- Recirculation mode was started on April 29, 2022
- Discharging continued on April 30, 2022 until SWTP was shut down on May 5, 2022

2. Physical Setting

The Lambton Facility is a rectangular shaped piece of land situated on a 121.4 ha parcel. The Lambton Facility is bordered on all sides by rural residential and agricultural land. The Site location is provided on Figure 1.

2.1 Geology and Hydrogeology

The Lambton Facility lies within the Lambton Clay Plain which is a sub-region of the St. Clair Clay Plain physiographic region. The surficial geology is characterized by thick clay sediments and the area's topography is flat to slightly

undulating. The combination of relatively flat topography and the fine texture clay soil result in an area that has poor drainage. Alluvial sediments and organic deposits can be found in the local stream, stream valleys, and wetlands.

Detailed information on the geological and/or hydrogeological conditions at the Lambton Facility during the current monitoring period is presented in the 2022 Annual Groundwater Monitoring Report (Dillon, 2023).

2.2 Surface Water Features

The Lambton Facility resides within the Sydenham River basin watershed, which ultimately drains into Lake St. Clair. The main watercourse found in the Sydenham River watershed is Bear Creek. Bear Creek is approximately 70 kilometres (km) in length and is fed by numerous tributaries including those found in the vicinity of the Lambton Facility and the downstream catchment area.

Seasonally intermittent flow conditions occur within the eastern Telfer roadside ditch immediately downstream of the Lambton Facility's Equalization Pond discharge occur and flow is normally related to a precipitation event or discharge from the Equalization Pond. Local drainage patterns downstream are heavily influenced by the nearby agricultural farms, in that the extensive tile drainage and ditch systems have been constructed to deal with irrigation and rainfall in soils that have low infiltration.

3. Monitoring Program

3.1 Surface Water Monitoring

The surface water monitoring program is documented in the SW ECA No. 4731-BNNT5Y and is consistent with the letter prepared by GHD titled "Surface Water Monitoring Program and Surface Water Characterization Program, Lambton Facility, Corunna, Ontario" dated December 9, 2015. The surface water monitoring program generally did not change with the amendment to the stormwater management system (dated September 9, 2019).

Surface water is stored within the ponds at the Site and treated surface water is mainly discharged during the spring/summer periods. As such, the surface water quality discharging from the Site is not influenced by a specific precipitation event.

The surface water monitoring program for the Site is summarized in Tables 2 and 3, attached. The monitoring consists of daily discharge monitoring, monthly discharge monitoring conducted during discharge periods at on-site locations, and seasonal monitoring at off-site locations. The following sections provide information regarding the surface water monitoring program.

Surface water effluent discharge criteria are presented in Table 4, below.

Effluent Parameter	Concentration Limit (mg/L)
Total Suspended Solids (TSS)	15.0
Solvent Extractables	15.0
Phenols	0.02
pH of the effluent maintained between 5.5 to 9.5, inclusive, at all times	

Table 4 Effluent Discharge Criteria

3.1.1 Daily Discharge Monitoring

Location: Equalization Pond discharge

Frequency: Daily when the Equalization Pond is discharging to the off-Site drainage ditch

- Parameters: pH, specific conductivity, total suspended solids (TSS), phenols, and solvent extractables (oil & grease)
- Rationale: The parameters represent routine parameters that are representative of general surface water quality during the discharge period and indicate the overall performance of the treatment plant. Four parameters have Site-specific effluent discharge criteria pH, TSS, phenols, solvent extractables (Table 4).

3.1.2 Monthly Discharge Monitoring

The monthly discharge monitoring program consists of three components: chemical parameter monitoring, toxicity monitoring, and visual monitoring.

3.1.2.1 Monthly Discharge Monitoring

Location: Equalization Pond discharge, Pond D, Pond A

Frequency: a) At start of discharge, within 25 to 35 days after discharge commencement, and within 25 to 35 days after the previous sample collection when discharge occurring.

b) If discharge ceases for less than 30 days and discharge recommences, the initial monitoring schedule shall continue. If discharge ceases for greater than 30 days, monitoring shall revert as per item a).

- Parameters: General Chemistry, total metals, volatile organic compounds (VOC), and semi-volatile organic compounds (sVOC) as specified in Table 3.
- Rationale: Provides a detailed profile of the water prior to and during discharge periods for both pre- and post-treatment of the water. Parameters represent chemical constituents that are accepted at the Lambton Facility and as such may be present in the surface water system.

3.1.2.2 Toxicity Monitoring

Location: Equalization Pond discharge

Frequency: As per the monthly discharge monitoring program.

Parameters: Microtox for fresh water in accordance with Environment Canada test method and protocols.

Rationale: Monitors the overall water quality toxicity with an approved program.

Note that in the 2021 Annual Surface Water Quality Monitoring Report it was recommended that toxicity monitoring is discontinued as part of the monitoring program. This requirement has been maintained until receiving MECP concurrence.

3.1.2.3 Visual Observations

Location: Equalization Pond

- Frequency: As per the monthly discharge monitoring program.
- Parameters: Presence/absence of fish in the Equalization Pond through observation with food application at several locations around the Equalization Pond perimeter.

Rationale: Monitors whether fish are present in the pond and a general understanding of the overall health of the Equalization Pond and water quality with regard to aquatic life.

Note that in the 2021 Annual Surface Water Quality Monitoring Report it was recommended that visual observations for presence/absence of fish is discontinued as part of the monitoring program. This requirement has been maintained until receiving MECP concurrence.

3.1.2.4 Off-Site Surface Water Monitoring

- Location: STN6U (upstream of discharge) and STN6D (downstream of discharge). See Figure 1 for monitoring locations.
- Frequency: Two samples per year, one in the spring and one in the late summer/fall period. Samples to be collected when a discharge is occurring and on the same day as the monthly discharge samples are collected. The time period between the spring and late summer/fall sampling should be a minimum of 80 days.
- Parameters: General Chemistry, total metals as specified in Table 3. Analytical testing to be conducted by external Canadian certified laboratory.
- Rationale: Provides a detailed chemical profile of the water in a downstream drainage system prior to and after the discharge of water from the drainage ditch that serves the facility. Parameters are consistent with the discharge monitoring parameters.

Note that in 2022, the locations of the off-site surface water monitoring locations were adjusted. The historic locations (STN6 and STN6A) were impacted by fallen trees and were dangerous for field staff to collect the samples. Options were considered to amend the sample locations, with discussions with the landowners. Permission to use private land for sample location was not provided. As such, the location for the off-site samples were adjusted to reflect collection of the samples on public lands. The sample numbers were adjusted to reflect an upstream (U) and downstream (D) location. Correspondence was sent to the MECP to notify of the change, provided in Appendix A.

3.2 Provincial Officer's Order No. 2681-BCPKUJ

Provincial Officer's Order No. 2681-BCPKUJ (Order) was issued on June 5, 2019. A copy of the Order and related correspondence is provided in Appendix B.

The requirement to provide weekly reports to the MECP was removed from the order by MECP once the LCS returned to normal operating conditions in early May 2020 and the frac tanks were emptied and removed from Site in July 2020. The Provincial Officer's Order is still open.

4. Monitoring Results and Assessment

4.1 Daily Discharge Monitoring

The results of the daily discharge monitoring for the Equalization Pond are presented in Table 5. As shown in Table 5, effluent was discharged during the following period:

- Period 1: December 23, 2021¹ to January 26, 2022
- Period 2: March 22, 2022 to May 5, 2022

Data for all parameters regularly analyzed is available for Period 1 and 2. In 2022, there were no exceedances of the effluent discharge criteria for TSS, phenols, or solvent extractables specified in Condition 5 of the SW ECA No.

¹ Daily discharge results from December 2021 were included in this report as the discharge extended into January 2022.

4731-BNNT5Y. Effluent discharges presented in Table 5 during the noted periods were below the maximum discharge rate for the SWTP of 4.5 million litres per day (L/d) specified in the SW ECA No. 4731-BNNT5Y.

4.2 Monthly Discharge Monitoring

The results of the monthly discharge monitoring are presented in Tables 6 to 8, attached, with analytical reports provided in Appendix C. An analytical data verification memo summarizing GHD's assessment of the samples, supporting quality assurance/quality control (QA/QC) procedures is included in Appendix D. Where applicable, the data summarized in the tables have been qualified accordingly.

Note that the sample from December 14, 2021 was included in this report as it was the relevant sample for Discharge Period 1, which extended into January 2022.

4.2.1 Monthly Discharge Monitoring

Monthly discharge samples for the Equalization Pond, Pond A, and Pond D for general chemistry, metals, and sVOCs were taken on December 14, 2021 for Discharge Period 1, and March 22, 2022 and May 2, 2022 for Discharge Period 2. Samples were taken at intervals in compliance with the SW ECA No. 4731-BNNT5Y.

There are no Site-specific compliance criteria for the monthly discharge monitoring. For a point of reference, the results have been compared to the Provincial Water Quality Objectives (PWQO). Note that the PWQO are criteria which serve as chemical and physical indicators of desirable levels for surface water in Ontario. The PWQO are often used to provide guidance in making water quality management decisions, however it is noted that "background" surface water quality in the Province of Ontario commonly exceeds the PWQO for various parameters. It is therefore necessary to account for local conditions in assessing surface water quality against the PWQO.

The surface water quality is also evaluated through a relative comparison between locations, and through a comparison to the off-Site monitoring locations.

4.2.1.1 Equalization Pond

The results of the monthly discharge monitoring from the Equalization Pond are presented in Table 6.

The monthly monitoring generally showed low concentrations of general chemistry and metals parameters within the Equalization Pond. Concentrations were generally comparable to off-Site surface water collected from STN6U and STN6D.

The analytical results for Equalization Pond samples were generally below the PWQO, with the exception of total phenols (in three samples), unionzed ammonia (in one sample), aluminum (in two samples), and molybdenum (in three samples). Based on local background conditions in surface water and historical results, the concentrations of these parameters reported in 2022 are interpreted to be the result of natural variability in surface water. There is no evidence of site related surface water impact within the Equalization Pond.

Note that the PWQO objective for total phenols is significantly lower than the effluent discharge criterion (0.001 mg/L compared to 0.02 mg/L). Concentrations of phenols at the equalization pond were less than the effluent discharge criteria (0.02 mg/L).

Metals are collected as total concentrations (i.e. unfiltered). Concentrations of metals can be impacted by suspended particulates within the sample. Off-Site surface water locations also had exceedances of the PWQO for aluminum and iron, indicating metals can be elevated above the PWQO naturally in the area. Concentrations of molybdenum were slightly elevated above the PWQO at the Equalization Pond and were not elevated off-Site; however, concentrations were consistent between sampling events, with historical results, and between Pond A, Pond D, and the Equalization Pond.

It was noted that a number of VOC parameters were qualified in the May 2022 sample as the sample contained >5 % headspace and the results may be biased low. No VOCs were detected. Additionally, a number of sVOC parameters

had detection limits that were above their associated PWQO, with bis(2-Ethylhexyl)phthalate (DEHP) the highest with a detection limit of 2.5 µg/L and PWQO of 0.6 µg/L. The detection limit had to be adjusted due to insufficient sample.

4.2.1.2 Pond A and Pond D

The results of the monthly discharge monitoring from Pond A and Pond D are presented in Table 8 and 9, respectively.

The monthly monitoring generally showed low concentrations of general chemistry and metals parameters within Pond A and Pond D. Concentrations were generally comparable to off-Site surface water collected from STN6U and STN6D.

The analytical results for Pond A were generally below the PWQO with exception of total phenols (in two samples), phosphorus (in one sample), unionized ammonia (in one sample), aluminum (in three samples), chromium VI (in one sample), iron (in three samples), and molybdenum (in three samples).

Similar water quality was observed in Pond D. Concentrations at Pond D were below the PWQO with the exception of total phenols (in two samples), phosphorus (in two samples), aluminum (in three samples), iron (in three samples), and molybdenum (in three samples).

It is not interpreted that the PWQO exceedances within Pond A and Pond D are related to Site operations. Phenols concentrations were less than the effluent discharge criteria for the Site (0.02 mg/L). As described above, metals concentrations can naturally exceed the PWQO due to suspended particulates within the sample. Off-site location STN6U and STN6D also had PWQO exceedances for aluminum and iron.

There were no VOC or sVOC parameters detected in samples from Pond A and Pond D, although note that multiple VOC and sVOC parameters were qualified and detection limits were adjusted, similar to the samples from the Equalization Pond.

A comparison of the monitoring for Pond A and Pond D to the Equalization Pond indicates the following:

- The analytical results for total phenols and phosphorus at all three sampling locations is on approximately the same order of magnitude with no discernible trend noted between the concentrations at the three sampling locations.
- Individual concentrations of metals, including aluminum, iron, and silicon, were generally higher in Pond A and Pond D compared to the Equalization Pond.
- VOC and sVOC parameters were not detected in Pond A, Pond D, or the Equalization Pond

Generally, surface water quality is the same or slightly improves as the water moves from Pond A to Pond D and through the SWTP and the Equalization Pond.

4.2.2 Toxicity Monitoring

Toxicity monitoring samples from the Equalization Pond were taken on March 22, and May 3, 2022. The results of the toxicity monitoring are presented in Table 7.

All samples analyzed were within the specific limits to characterize the samples as being non-toxic.

Review of the toxicity monitoring data for the last 5 years has shown that results were non-toxic. The toxicity sample has a holding time of 72 hours and requires special shipment to a specialized laboratory. The toxicity sample is recommended to be removed from the surface water program given the samples have been non-toxic.

4.2.3 Visual Observation

Quarterly visual site inspections were undertaken by GHD on March 31, 2022, June 10, 2022, September 13, 2022, and December 13, 2022, including of the surface water management system.

No fish were observed in the Equalization Pond at the time of the quarterly inspections. The water is often murky at the time of the quarterly inspections, making it difficult to observe fish if they are in the deeper water.

The status of the water levels in the Equalization Pond was not noted during the quarterly inspections. Water levels were noted to be high in the SWMP during the first and second quarterly inspections, and moderate during the third and fourth quarterly inspections. A summary of the quarterly Site inspections is included in the Landfill Annual Monitoring Report.

The visual observation of fish in the Equalization Pond is difficult based on time of year, light conditions, and water temperature. The information collected with regard to whether fish are observed is not scientific in nature. It is recommended that visual observation for fish in the Equalization Pond is discontinued.

4.3 Supplementary Monitoring

There was no supplementary sampling completed outside of sampling during the discharge periods in 2022.

4.4 Off-Site Surface Water Monitoring

The background and downstream off-Site monitoring locations are typically monitored as part of the monitoring program if water is discharged from the Equalization Pond for an extended period. Samples are to be collected in spring and late summer/fall during discharge, with samples analyzed for general chemistry and total metals.

In 2022, the sample locations were adjusted due to fallen trees and dangerous sampling conditions (refer to Section 3.1.2.4 and Appendix B). Samples were collected from the revised upstream (STN6U) and downstream (STN6D) on May 3, 2022. There was no sample collected in fall 2022 as there was no discharge occurring.

Generally, the surface water quality showed comparable concentrations between the upstream (STN6U) and downstream (STN6D) locations. Surface water quality also showed comparable concentrations to the results from Pond A, Pond D, and the Equalization Pond.

The analytical results for off-Site locations were generally below the PWQO with exception of aluminum and iron. Alumium and iron concentrations exceeded the PWQO at upstream and downstream locations, indicating natural elevated concentrations within the receiving waterway (i.e. municipal ditch along road). As discussed previously, concentrations of metals can be elevated due to due to suspended particulates within the sample.

Overall, there was no apparent impact to off-Site surface water from Discharge Period 2.

5. Surface Water Characterization

Condition 9 of the SW ECA No. 4731-BNNT5Y specifies that a surface water characterization should be completed to evaluate surface water quality in relation to the vertical expansion and landfill operations. A key concern was the potential for dust/operational impacts since the active disposal cells are along the south, near the surface water ponds. A surface water characterization monitoring program was incorporated through the sampling of Ponds A and D (formerly the East Pond and West Pond) for 5 years following commencement of the landfill expansion. The landfill expansion commenced in 2016, however, the characterization was delayed for one year due to limited sample collection in 2020. The surface water characterization was provided in the 2021 Annual Surface Water Report.

It is recommended that the next review be completed in 2026 to determine if landfill-related impacts are occurring to surface water ponds. This review will cover the next 5-years of monitoring data, from 2022 to 2026. The March and May 2022 monitoring results from Pond A and Pond D will be used in the surface water characterization completed in 2026.

6. Conclusions and Recommendations

6.1 Conclusions

Based on the findings as documented in this report, the following conclusions are provided:

- 1. Effluent discharge criteria (TSS, solvent extractables, phenols, and flow rate) were met during each active day of discharge from the Equalization Pond.
- 2. Based on analysis of the daily and monthly discharge monitoring data collected during the monitoring period, no detrimental trends for surface water quality were identified.
- Comparison between various on-site surface water monitoring locations indicate that the surface water quality is comparable or improves as the water moves from Pond A to Pond D and through the SWTP and the Equalization Pond.
- 4. There was no apparent impact to off-Site surface water quality from Discharge Period 2.

6.2 Recommendations

The following recommendations are provided for consideration:

- 1. The monitoring programs detailed within this report and completed in accordance with the requirements of the MECP-approved Surface Water Monitoring Program should continue in subsequent years.
- 2. Consider modifying the Surface Water Monitoring Program to:
 - Remove Toxicity monitoring from sampling requirements, as per Section 3.1.2.2.
 - Remove the requirement to document visual observations for presence/absence of fish in the Equalization Pond, as per Section 3.1.2.3. Continue documenting the overall visual appearance of the Equalization Pond during the Quarterly Inspections.
 - Maintain the requirement to sample off-Site surface water locations (STN6U and STN6D), as per Section 3.1.3.
- 3. Include an evaluation of results in future annual reports to determine if landfill-related impacts are occurring to surface water ponds from expanded landfilling operations. Data analysis is to include a 5-year period of assessment of the surface water quality. A 5-year assessment was completed in the 2021 Annual Surface Water Report. The next review should be completed in 2026.
- 4. Based on future monitoring results, re-evaluate the surface water monitoring program in future annual reports.

7. References

- GHD. 2021 Annual Surface Water Report, Clean Harbors Lambton Facility. March 8, 2022.
- GHD (Formerly Conestoga-Rovers and Associates). Engineering and Design, Existing Conditions Report. October 2014.
- Ontario Ministry of the Environment, Conservation, and Parks (MECP). Amended Environmental Compliance Approval No. 4731-BNNT5Y dated April 20, 2020.
- Ontario MECP. Amended Environmental Compliance Approval No. A031806 (Waste ECA) dated October 20, 2016.
- Ontario MECP. Amended Environmental Compliance Approval No. 1065-9VVJSW dated October 19, 2015.
- Ontario MECP. Provincial Officer's Order No. 2681-BCPKUJ (Order), dated June 5, 2019.
- Tetra Tech WEI Inc. Design and Operations Report Lambton Landfill Expansion, Clean Harbors Canada, Inc. Lambton Landfill Site. October 2015.

Q:\GIS\PROJECTS\44000s\44985\Layouts\041\44985-20(041)GIS001.mxd Print date: 11 May 2022 - 13:45

Data source: . Source: MNRF NRVIS, 2017. Produced by GHD under licence from Ontario Ministry of Natural Resources and Forestry, © Queen's Printer 2022

SOURCE:

AERIAL IMAGE PROVIDED FROM DRAWING: C3D CLEAN HARBOURS TOPO 08-17-2022.DWG, SURVEYED AUGUST 17 2022

Surface Water Monitoring Program 2022 Annual Surface Water Quality Monitoring Report Lambton Facility Clean Harbors Canada Inc.

			Proposed	Surface Water Sampling	g Program
Monitoring Location	Previous SW ECA ⁽¹⁾⁽³⁾	Current SW ECA ⁽²⁾⁽³⁾	Daily Discharge	Monthly Discharge	Spring and late Summer/Fall
Equalization Reservoir Discharge	pH, Conductivity, TSS, Total Phenols, Chloride, Solvent Extractables	TSS, Solvent Extractables, Phenols, pH	•		
	-	Solvent Extractables		■ ⁽⁴⁾	
	Microtox	Microtox		■ ⁽⁴⁾	
	General Chemistry	General Chemistry		■ ⁽⁴⁾	
	Metals	Metals		■ ⁽⁴⁾	
	VOCs	VOCs		■ ⁽⁴⁾	
	sVOCs	sVOCs		■ ⁽⁴⁾	
Equalization Reservoir	Fish Presence	Fish Presence			
West Pond or Pond D	General Chemistry	General Chemistry			
	Metals	Metals		•	
	VOCs	VOCs		•	
	sVOCs	sVOCs			
East Pond or Pond A	General Chemistry	General Chemistry			
	Metals	Metals		•	
	VOCs	VOCs		•	
	sVOCs	sVOCs		•	
STN6U (off-site background)	General Chemistry	General Chemistry			(5)
	Metals	Metals			■ ⁽⁵⁾
STN6D (off-site downstream)	General Chemistry	General Chemistry			(5)
	Metals	Metals			■ ⁽⁵⁾

Notes:

1. Source: Letter to Erica Carabott, Clean Harbors Canada Inc. re: Surface Water Monitoring Program and Surface Water Characterization Program, Lambton Facility, dated December 9, 2015.

2. Source: Amended Environmental Compliance Approval No. 2985-B9KKP2 dated September 9, 2019 (Current SW ECA), Table 3.

3. General Chemistry, metals, VOC, and sVOC parameters as per detailed list provided in Table 3 of this annual report.

4. Previous SW ECA indicates that samples are to be collected prior to discharge from the Equalization Pond.

Current SW ECA indicates that samples are to be collected during a discharge event from the Equalization Pond within 25-35 days after the previous samples were collected.

5. Samples to be collected during discharge from Site and on same day as Monthly Discharge samples.

VOC - Volatile Organic Compounds

SVOC - Semi-Volatile Organic Compounds

TSS - Total Suspended Solids

Surface Water Monitoring Parameters 2022 Annual Surface Water Quality Monitoring Report Lambton Facility Clean Harbors Canada Inc.

Parameter	Analytes
General Chemistry Parameters	Alkalinity (total as CaCO3), Ammonia N, Bromide (dissolved), Chemical Oxygen Demand (COD), Chloride (dissolved), Conductivity (umhos/cm), Cyanide (total), Dissolved Organic Carbon (DOC), Fluoride, Hardness, Nitrate (as N), Nitrite (as N), pH (field), pH (lab), Phenolics (total), Phosphorus (total), Sulfate (dissolved), Temperature (field), Total Dissolved Solids (TDS), Total Kjeldahl Nitrogen (TKN), Total Suspended Solids (TSS), Un ionized Ammonia
Metals (Total)	Aluminium, Antimony, Arsenic, Barium, Beryllium, Bismuth, Boron, Cadmium, Calcium, Chromium (Hexavalent), Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silicon, Silver, Sodium, Strontium, Thallium, Tin, Vanadium, Zinc
Volatile Organic Compounds (VOC)	1,1,1,2 Tetrachloroethane, 1,1,1 Trichloroethane, 1,1,2,2 Tetrachloroethane, 1,1,2 Trichloroethane, 1,1 Dichloroethane, 1,2 Dibromoethane (Ethylene dibromide), 1,2 Dichlorobenzene, 1,2 Dichloroethane, 1,2 Dichloropropane, 1,3 Dichlorobenzene, 1,4 Dichlorobenzene, 2 Butanone (Methyl ethyl ketone), 4 Methyl 2 pentanone (Methyl isobutyl ketone), Acetone, Benzene, Bromodichloromethane, Bromoform, Bromomethane (Methyl bromide), Carbon tetrachloride, Chlorobenzene, Chloroethane, Chloroform (Trichloromethane), cis 1,2 Dichloroethene, cis 1,3 Dichloropropene, Dibromochloromethane, Dichlorodifluoromethane (CFC 12), Ethylbenzene, Hexane, m&p Xylenes, Methyl tert butyl ether (MTBE), Methylene chloride, o Xylene, Styrene, Tetrachloroethene, Toluene, trans 1,2 Dichloroethene, trans 1,3 Dichloropropene, Trichloroethene, Trichlorofluoromethane (CFC 11), Vinyl Chloride, Xylenes (total)
Semi Volatile Organic Compounds (sVOC)	1,2,4 Trichlorobenzene, 1,2 Dichlorobenzene, 1,3 Dichlorobenzene, 1,4 Dichlorobenzene, 1 Methylnaphthalene, 2,3,4,5 Tetrachlorophenol/2,3,4,6 Tetrachlorophenol, 2,3,6 Trichlorophenol, 2,4,5 Trichlorophenol, 2,4,6 Trichlorophenol, 2,4 Dichlorophenol, 2,4 Dimethylphenol, 2,4 Dinitrophenol, 2,4 Dinitrotoluene, 2,6 Dinitrotoluene, 2 Chlorophenol, 2 Methylnaphthalene, 3,3' Dichlorobenzidine, 4 Chloroaniline, Acenaphthene, Acenaphthylene, Anthracene, Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)flouranthene/Benzo(j)fluoranthene, Benzo(g,h,i)perylene, Benzo(k)fluoranthene, bis(2 Chloroethy)ether, bis(ethylhexy)phthalate (DEHP), Chrysene, Dibenz(a,h)anthracene, Diethyl phthalate, Dimethyl phthalate, Fluoranthene, Fluorene, Hexachlorobenzene, Hexachlorobutadiene, Indeno(1,2,3 cd)pyrene, Naphthalene, Pentachlorophenol, Perylene, Phenanthrene, Pyrene

Source:

1. Source: Letter to Erica Carabott, Clean Harbors Canada Inc. re: Surface Water Monitoring Program and Surface Water Characterization Program, Lambton Facility, dated December 9, 2015.

2. Amended Environmental Compliance Approval No. 2985-B9KKP2 dated September 9, 2019 (Current SW ECA), Table 4.

Daily Chemical Analysis - Equalization Pond 2022 Annual Surface Water Quality Monitoring Report Lambton Facility Clean Harbors Canada Inc.

WASTE WATER TREATMENT PLANT - REPORT OF ANALYSIS (EQ POND)

			Conductivity	TSS	Phenol	Solvent	Flow Rate	Daily Flow	
Date	Location	рН	(mS/cm)	(ma/L)	(ma/L)	Extractables (mg/L)	(LPM)	(L)	Comments
Effluent Disc	harge Criteria	5.5 to 9.5	-		0.02	15	-	-	
				DISC	HARGE PE	RIOD 1	-		
12/23/21	EQ POND	7.97	0.690	10.4	< 0.002	<5	0	0	Discharging starts
12/24/21		8.06	0.620	10.1	<0.002	<5	802	1,154,880	
12/25/21		8.02	0.800	77	<0.002	<5	790	1,137,000	
12/27/21	EQ POND	7.93	0.810	8.1	<0.002	<5	742	1.068.480	
12/28/21	EQ POND	7.93	0.750	4.8	< 0.002	<5	733	1,055,520	
12/29/21	EQ POND	7.88	0.780	11.1	<0.002	<5	724	1,042,560	
12/30/21	EQ POND	7.92	0.730	6.1	<0.002	<5	745	1,072,800	
12/31/21	EQ POND	7.95	0.690	8.3	< 0.002	<5	715	1,029,600	
1/1/22		7.94	0.794	7.0	< 0.002	<5	743	1,069,920	
1/2/22		7.99	0.744	5.0 10.0	<0.002	<5 <5	675	995,040	
1/4/22	EQPOND	7.98	0.800	13.2	<0.002	<5	656	944,640	
1/5/22	EQ POND	8.06	0.850	10.3	< 0.002	<5	646	930,240	
1/6/22	EQ POND	7.95	0.860	8.5	<0.002	<5	656	944,640	
1/7/22	EQ POND	8.07	0.779	7.0	<0.002	<5	625	900,000	
1/8/22	EQ POND	8.17	0.733	10.0	< 0.002	<5	640	921,600	
1/9/22	EQ POND	7.88	0.832	5.0	< 0.002	<5	630	907,200	
1/10/22		8.05	0.700	10.5	<0.002	<5	628	904,320	
1/11/22		8.02	0.790	5.2	<0.002	<5	022	093,000	Plant on Recirculation Mode
1/16/22	EQTONE	0.02	0.000	0.2	-0.00Z			0	Plant on Recirculation Mode
1/17/22	EQ POND	8.04	0.860	4.3	<0.002	5.2	850	1,224,000	
1/18/22	EQ POND	8.25	0.830	6.0	<0.002	<5	NA	-	Flow meter not working
1/19/22	EQ POND	8.29	0.820	7.1	< 0.002	<5	409	588,960	
1/20/22	EQ POND	8.06	0.824	4.8	< 0.002	<5	530	763,200	
1/21/22		8.27	0.900	10.6	<0.002	<5	690	993,600	
1/22/22		7.00 8.12	0.760	10.4	<0.002	<5	476	914,400 685.440	
1/24/22	EQ POND	8.13	0.770	9.6	< 0.002	<5	419	603.360	
1/25/22	EQ POND	7.99	0.899	8.6	< 0.002	<5	360	518,400	
1/26/22	EQ POND	8.07	0.690	6.4	<0.002	<5	325	468,000	
				DISC	CHARGE P	ERIOD 2	1	-	
3/21/22	EQ POND	8.77	0.736	3.0	< 0.002	<5		0	Plant on Recirculation Mode
3/23/22		8.70 7.98	0.754	4.0	<0.002	<5	681	980.640	Plant on Recirculation Mode
3/24/22		7.90	0.800	4.5	<0.002	<5	565	813 600	
3/25/22	EQ POND	7.90	0.790	5.0	< 0.002	<5	530	763.200	
3/26/22	EQ POND	7.87	0.766	2.7	<0.002	<5	491	707,040	
3/27/22	EQ POND	7.91	0.790	3.6	<0.002	<5	440	633,600	
3/28/22	EQ POND	7.88	0.783	5.5	<0.002	7.2	420	604,800	
3/29/22	EQ POND	7.92	0.790	6.3	< 0.002	<5	NA 400	-	How meter not working
3/30/22		/.9/ 2 02	0.770	4.9		<5 ~5	400	504 000	
4/1/22		8 11	0.800	ی.ی <1	<0.002	< <u>5</u>	354	509 760	
4/2/22	EQ POND	7.66	0.766	3.2	< 0.002	<5	324	466.560	
4/3/22	EQ POND	7.95	0.780	<1	< 0.002	<5	309	444,960	
4/4/22	EQ POND				<0.002			0	Plant on Recirculation Mode
4/5/22	EQ POND							0	Backwashing Sand Filters
4/6/22	EQ POND	8.11	0.790	2.6	< 0.002	<5	1010	4 405 000	Discharging starts
4/7/22		7.98	0.730	2.6	<0.002	<5	997	1,435,680	l
4/0/22 2/0/22		7.99 7.70	0.730	5.0 1 1	<0.002 <0.002	<u>></u> ⊃ <5	994 068	1,431,300	
4/10/22	EQ POND	8.06	0.780	2.8	<0.002	<5	1000	1,440.000	
4/11/22	EQ POND	8.09	0.790	3.3	< 0.002	<5	1000	1,440,000	
4/12/22	EQ POND	8.07	0.780	1.6	< 0.002	<5	1000	1,440,000	
4/13/22	EQ POND	7.95	0.770	<1	<0.002	<5	1036	1,491,840	
4/14/22	EQ POND	7.75	0.790	5.0	< 0.002	<5	1080	1,555,200	
4/15/22	EQ POND	7.98	0.784	5.0	< 0.002	<5	1075	1,548,000	
4/16/22		/.9/ 7 07	0.780	11.2	< 0.002	<5 ~5	1204	1,756,000	l
4/11/22 Δ/18/22		7 Q1	0.700	11.0 6.2	<0.002 <0.002	<5 <5	1220	1,750,800	
4/19/22	EQ POND	7.99	0.735	5.8	< 0.002	<5	1240	1,785,600	

Daily Chemical Analysis - Equalization Pond 2022 Annual Surface Water Quality Monitoring Report Lambton Facility Clean Harbors Canada Inc.

WASTE WATER TREATMENT PLANT - REPORT OF ANALYSIS (EQ POND)

				TOO		0 - 1	El D. t.		
			Conductivity	155	Phenoi	Solvent	Flow Rate	Dally Flow	
						Extractables			
Date	Location	рН	(mS/cm)	(mg/L)	(mg/L)	(mg/L)	(LPM)	(L)	Comments
4/20/22	EQ POND	7.68	0.758	4.0	<0.002	<5	1220	1,756,800	
4/21/22	EQ POND	8.03	0.786	6.6	<0.002	<5	1297	1,867,680	
4/22/22	EQ POND	7.95	0.790	3.9	<0.002	<5	1200	1,728,000	
4/23/22	EQ POND	7.98	0.800	3.0	<0.002	<5	1219	1,755,360	
4/24/22	EQ POND	7.99	0.790	3.4	<0.002	<5	1200	1,728,000	
4/25/22	EQ POND	8.13	0.770	4.0	<0.002	<5	883	1,271,520	
4/26/22	EQ POND	8.13	0.781	3.0	<0.002	<5	802	1,154,880	
4/27/22	EQ POND	8.00	0.790	7.0	<0.002	<5	807	1,162,080	
4/28/22	EQ POND	8.04	0.800	8.4	<0.002	<5	783	1,127,520	
4/29/22	EQ POND	7.78	0.790	0	<0.002	<5		0	Plant on Recirculation Mode
4/30/22	EQ POND	7.60	0.790	9.8	<0.002	<5	750	1,080,000	
5/1/22	EQ POND	7.85	0.750	9.5	<0.002	<5	820	1,180,800	
5/2/22	EQ POND	8.32	0.752	2.2	<0.002	<5	838	1,206,720	
5/3/22	EQ POND	7.45	0.755	8.6	< 0.002	<5	1094	1,575,360	
5/4/22	EQ POND	8.00	0.840	4.1	< 0.002	<5	NA	-	VERY LOW FLOW
5/5/22	EQ POND	7.88	0.790	6.6	<0.002	<5	1100	1,584,000	

Notes:

Data and comments provided by Clean Harbours Canada Inc. TSS - Total Suspended Solids Phenol - Total Phenols

LPM - litres per minute ppm - parts per million

Monthly Discharge Monitoring – Equalization Pond, General Chemistry, Metals, and VOCs/sVOCs 2022 Annual Surface Water Quality Monitoring Report Lambton Facility Clean Harbors Canada Inc.

Sample Location: Sample Date: Parameters	Units	PWOO	EQ Pond 12/14/2021	EQ Pond 3/22/2022	EQ Pond 5/2/2022
	onito	ingo			
General Chemistry	"				140
Alkalinity, total (as CaCO3)	mg/L	-	96	93.3	112
Ammonia-N Bromido	mg/L	-	0.164	1.28 DLHC	0.163
Chemical oxygen demand (COD)	mg/L	-	2.30	20	1.59 11 SP
Chloride	mg/L	-	86.8	57.6	54.5
Conductivity	umhos/cm	-	842	716	805
Cyanide (total)	mg/L	0.005	ND (0.0020)	ND (0.0020)	ND (0.0020)
Dissolved organic carbon (DOC)	ma/l	_	1 50	1 93	1 21
(dissolved)	ing/L		4.00	4.00	7.27
Fluoride	mg/L	-	0.879	0.942	1.09
Hardness	mg/L	-	-	-	285
Nitrate (as N)	mg/L	-	0.151 ND (0.010)	0.109 ND (0.010)	
nH lab	nig/L	- 65-85	ND (0.010) 8 11	8.52	ND (0.010) 8 15
Phenolics (total)	ma/l	0.0-0.0	0.0056	0.02	0.0024
Phosphorus	mg/L	0.03	0.0109	0.0268	0.0121
Sulfate	mg/L	-	186	197	-
Total dissolved solids (TDS)	mg/L	-	497	428 DLDS	485 DLDS
Total kjeldahl nitrogen (TKN)	mg/L	-	0.52	2.62	0.741
Total suspended solids (TSS)	mg/L	-	5.1	3.6	4.4
Trihalomethanes	ug/L	-	ND (2.0)	ND (2.0)	-
Un-ionized ammonia	mg/L	0.02	0.003	0.132	0.005
Field Parameters					
pH, field	s.u.	6.5-8.5	8		
Temperature, field	Deg C	-	7.5		
Metals					
Aluminum	mg/L	0.075	0.063	0.11	0.29
Antimony	mg/L	0.02	0.00043	0.0004	0.00047
Arsenic	mg/L	0.005	0.00106	0.00098	0.00122
Barium	mg/L	-	0.0419	0.0322	0.0411
Beryllium	mg/L	0.011	ND (0.00010)	ND (0.00010)	ND (0.000020)
Bismuth	mg/L	- 0.2	ND (0.000050)	ND (0.000050)	ND (0.000050)
Cadmium	mg/L	0.2			
Calcium	mg/L	-	59.5	64.6	73.8
Chromium VI (hexavalent)	mg/L	0.001	ND (0.00050)	0.00051	0.00062
Cobalt	mg/L	0.0009	ND (0.00010)	0.0002	0.0003
Copper	mg/L	0.005	ND (0.0010)	0.002	0.00213
Iron	mg/L	0.3	0.068	0.087	0.272
Lead	mg/L	0.005	0.00018	0.00019	0.000206
Magnesium	mg/L	-	25.6	22.7	24.5
Manganese	mg/L	-			
Molybdenum	mg/L	0.0002	0.0507	0.0518	0.0555
Nickel	mg/L	0.025	0.00329	0.00349	0.00387
Potassium	mg/L	-	10.8	6.76	7.17
Selenium	mg/L	0.1	0.000918	0.00219	0.00262
Silicon	mg/L	-	0.79	1.64	2.26
Silver	mg/L	0.0001	ND (0.000050)	ND (0.000050)	ND (0.000010)
Sodium	mg/L	-	59.8	40.4	40.5
Strontium	mg/L	-	0.535	0.537	0.646
i nallium Tip	mg/L	0.0003	U.UUUU19	0.00026	
Vanadium	mg/L	-			(10,000,00) שאו חחחח
Zinc	ma/l	0.000	ND (0.00030)	ND (0.00000)	0.0003
	ing/L	0.00	(0.0000)		0.0001

Monthly Discharge Monitoring – Equalization Pond, General Chemistry, Metals, and VOCs/sVOCs 2022 Annual Surface Water Quality Monitoring Report Lambton Facility Clean Harbors Canada Inc.

Sample Location: Sample Date:	Unito	BWOO	EQ Pond 12/14/2021	EQ Pond 3/22/2022	EQ Pond 5/2/2022
Farameters	Units	FWQU			
Volatiles					
1,1,1,2-Tetrachloroethane	ug/L	20	ND (0.50)	ND (0.50)	ND (0.50) VOCHS
1,1,1-Trichloroethane	ug/L	10	ND (0.50)	ND (0.50)	ND (0.50) VOCHS
1,1,2,2-Tetrachloroethane	ug/L	70	ND (0.50)	ND (0.50)	ND (0.50) VOCHS
1,1,2-Trichloroethane	ug/L	800	ND (0.50)	ND (0.50)	ND (0.50) VOCHS
1,1-Dichloroethane	ug/L	200	ND (0.50)	ND (0.50)	ND (0.50) VOCHS
1,1-Dichloroethene	ug/L	40	ND (0.50)	ND (0.50)	ND (0.50) VOCHS
1,2-Dibromoethane (Ethylene	ua/l	Б		ND (0.20)	
dibromide)	uy/L	5	ND (0.20)	ND (0.20)	
1,2-Dichlorobenzene	ug/L	2.5	ND (0.50)	ND (0.50)	ND (0.50) VOCHS
1,2-Dichloroethane	ug/L	100	ND (0.50)	ND (0.50)	ND (0.50) VOCHS
1,2-Dichloropropane	ug/L	0.7	ND (0.50)	ND (0.50)	ND (0.50) VOCHS
1,3-Dichlorobenzene	ug/L	2.5	ND (0.50)	ND (0.50)	ND (0.50) VOCHS
1,4-Dichlorobenzene	ug/L	4	ND (0.50)	ND (0.50)	ND (0.50) VOCHS
2-Butanone (Methyl ethyl ketone)	ua/L	400	ND (20)	ND (20)	ND (20) VOCHS
(MEK)	Ū				
4-Methyl-2-pentanone (Methyl	ua/L	-	ND (20)	ND (20)	ND (20) VOCHS
isobutyl ketone) (MIBK)	g, _				
Acetone	ug/L	-	ND (20)	ND (20)	ND (20) VOCHS
Benzene	ug/L	100	ND (0.50)	ND (0.50)	ND (0.50) VOCHS
Bromodichloromethane	ug/L	200	ND (1.0)	ND (1.0)	ND (0.50) VOCHS
Bromoform	ug/L	60	ND (1.0)	ND (1.0)	ND (0.50) VOCHS
Bromomethane (Methyl bromide)	ug/L	0.9	ND (0.50)	ND (0.50)	ND (0.50) VOCHS
Carbon tetrachloride	ug/L	-	ND (0.50)	ND (0.50)	ND (0.20) VOCHS
Chlorobenzene	ug/L	15	ND (0.50)	ND (0.50)	ND (0.50) VOCHS
Chloroethane	ug/L	-	ND (1.0)	ND (1.0)	ND (0.50) VOCHS
Chloroform (Trichloromethane)	ug/L	-	ND (1.0)	ND (1.0)	ND (0.50) VOCHS
cis-1,2-Dichloroethene	ug/L	200	ND (0.50)	ND (0.50)	ND (0.50) VOCHS
cis-1,3-Dichloropropene	ug/L	-	ND (0.50)	ND (0.50)	ND (0.30) VOCHS
	ug/L	40	ND (1.0)	ND (1.0)	ND (0.50) VOCHS
Dichlorodifluoromethane (CFC-12)	ug/L	-	ND (1.0)	ND (1.0)	ND (0.50) VOCHS
Ethylbenzene	ug/L	8	ND (0.50)	ND (0.50)	ND (0.50) VOCHS
Hexane	ug/L	-	ND (0.50)	ND (0.50)	ND (0.50) VOCHS
m&p-Xylenes	ug/L	2	ND (1.0)	ND (1.0)	ND (0.40) VOCHS
Methyl tert butyl etner (MIBE)	ug/L	200	ND (0.50)	ND (0.50)	
Methylene chloride	ug/L	100	ND (2.0)	ND (2.0)	
o-Xylene	ug/L	40	ND (0.50)	ND (0.50)	
Styrene	ug/L	4	ND (0.50)	ND (0.50)	
Tetrachioroethene	ug/L	50	ND (0.50)	ND (0.50)	
Toluene	ug/L	0.8	ND (0.50)	ND (0.50)	
trans-1,2-Dichloroptnene	ug/L	200	ND (0.50)	ND (0.50)	
trans-1,3-Dichloropropene	ug/L	7	ND (0.50)	ND (0.50)	
Trichlorofluoromothana (CEC 11)	ug/L	20	ND (0.50)	ND (0.50)	
	ug/L	-			
Viriyi chioride Xylonos (total)	ug/L	600	ND (0.50)	ND (0.50)	
Ayichico (lutal)	uy/L	-	и р (т.т <i>)</i>	(ו.ו)	UC.00)
Semi-Volatiles		e -			
1,2,4-Trichlorobenzene	ug/L	0.5	ND (0.40)	ND (0.80) DLIS	ND (1.00) DLIS
1,2-Dichlorobenzene	ug/L	2.5	ND (0.40)	ND (0.80) DLIS	ND (1.00) DLIS
1,3-Dichlorobenzene	ug/L	2.5	ND (0.40)	ND (0.80) DLIS	ND (1.00) DLIS

Monthly Discharge Monitoring – Equalization Pond, General Chemistry, Metals, and VOCs/sVOCs 2022 Annual Surface Water Quality Monitoring Report Lambton Facility Clean Harbors Canada Inc.

Sample Location: Sample Date:			EQ Pond 12/14/2021	EQ Pond 3/22/2022	EQ Pond 5/2/2022
Parameters	Units	PWQO			
1,4-Dichlorobenzene	ug/L	4	ND (0.40)	ND (0.80) DLIS	ND (1.00) DLIS
1-Methylnaphthalene	ug/L	2	ND (0.40)	ND (0.80) DLIS	ND (1.00) DLIS
2,3,4,5-Tetrachlorophenol	ug/L	-	ND (0.50)	ND (1.0) DLIS	ND (1.25) DLIS
2,3,4,6-Tetrachlorophenol	ug/L	-	ND (0.50)	ND (1.0) DLIS	ND (1.25) DLIS
2,3,6-Trichlorophenol	ug/L	-	ND (0.50)	ND (1.0) DLIS	ND (0.20)
2,4,5-Trichlorophenol	ug/L	18	ND (0.50)	ND (1.0) DLIS	ND (1.25) DLIS
2,4,6-Trichlorophenol	ug/L	18	ND (0.50)	ND (1.0) DLIS	ND (1.25) DLIS
2,4-Dichlorophenol	ug/L	0.2	ND (0.30)	ND (0.60) DLIS	ND (0.75) DLIS
2,4-Dimethylphenol	ug/L	10	ND (0.50)	ND (1.0) DLIS	ND (1.25) DLIS
2,4-Dinitrophenol	ug/L	-	ND (1.0)	ND (2.0) DLIS	ND (2.5) DLIS
2,4-Dinitrotoluene	ug/L	4	ND (0.40)	ND (0.80) DLIS	ND (1.00) DLIS
2,6-Dinitrotoluene	ug/L	6	ND (0.40)	ND (0.80) DLIS	ND (1.00) DLIS
2-Chlorophenol	ug/L	7	ND (0.30)	ND (0.60) DLIS	ND (0.75) DLIS
2-Methylnaphthalene	ug/L	2	ND (0.40)	ND (0.80) DLIS	ND (1.00) DLIS
3,3'-Dichlorobenzidine	ug/L	0.6	ND (0.40) J	ND (0.80) DLIS	ND (1.00) DLIS
4-Chloroaniline	ug/L	-	ND (0.40)	ND (0.80) DLIS	ND (1.00) DLIS
Acenaphthene	ug/L	-	ND (0.20)	ND (0.40) DLIS	ND (0.50) DLIS
Acenaphthylene	ug/L	-	ND (0.20)	ND (0.40) DLIS	ND (0.50) DLIS
Anthracene	ug/L	0.0008	ND (0.20)	ND (0.40) DLIS	ND (0.50) DLIS
Benzo(a)anthracene	ug/L	0.0004	ND (0.20)	ND (0.40) DLIS	ND (0.50) DLIS
Benzo(a)pyrene	ug/L	-	ND (0.050)	ND (0.10) DLIS	ND (0.125) DLIS
Benzo(b)fluoranthene	ug/L	-	ND (0.20)	ND (0.40) DLIS	-
Benzo(g,h,i)perylene	ug/L	0.00002	ND (0.20)	ND (0.40) DLIS	ND (0.50) DLIS
Benzo(k)fluoranthene	ug/L	0.0002	ND (0.20)	ND (0.40) DLIS	ND (0.50) DLIS
bis(2-Chloroethyl)ether	ug/L	200	ND (0.40)	ND (0.80) DLIS	ND (1.00) DLIS
bis(2-Ethylhexyl)phthalate (DEHP)	ug/L	0.6	ND (2.0)	ND (2.0) DLIS	ND (2.5) DLIS
Chrysene	ug/L	0.0001	ND (0.20)	ND (0.40) DLIS	ND (0.50) DLIS
Dibenz(a,h)anthracene	ug/L	0.002	ND (0.20)	ND (0.40) DLIS	ND (0.50) DLIS
Diethyl phthalate	ug/L	-	ND (0.20)	ND (0.40) DLIS	-
Dimethyl phthalate	ug/L	-	ND (0.20)	ND (0.40) DLIS	-
Fluoranthene	ug/L	0.0008	ND (0.20)	ND (0.40) DLIS	ND (0.50) DLIS
Fluorene	ug/L	0.2	ND (0.20)	ND (0.40) DLIS	ND (0.50) DLIS
Hexachlorobenzene	ug/L	0.0065	ND (0.040)	ND (0.080) DLIS	ND (0.100) DLIS
Hexachlorobutadiene	ug/L	0.009	ND (0.20)	ND (0.40) DLIS	ND (0.50) DLIS
Indeno(1,2,3-cd)pyrene	ug/L	-	ND (0.20)	ND (0.40) DLIS	ND (0.50) DLIS
Naphthalene	ug/L	7	ND (0.20)	ND (0.40) DLIS	ND (0.50) DLIS
Pentachlorophenol	ug/L	0.5	ND (0.50)	ND (1.0) DLIS	ND (1.25) DLIS
Perylene	ug/L	0.00007	ND (0.20)	ND (0.40) DLIS	ND (0.50) DLIS
Phenanthrene	ug/L	0.03	ND (0.20)	ND (0.40) DLIS	ND (0.50) DLIS
Pyrene	ug/L	-	ND (0.20)	ND (0.40) DLIS	ND (0.50) DLIS

Notes:

0.01 Analytical results above the Provincial Water Quality Objectives (PWQO)

ND= Not detected at the associated reporting limit.

J= Estimated concentration.

- = Not Applicable

DLDS - Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical Conductivity.

DLHC - Detection Limit Raised: Dilution required due to high concentration of test analyte(s).

DLIS - Detection Limit Adjusted due to insufficient sample.

DLM - Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity).

DLUI - Detection Limit Raised: Unknown interference generated an apparent false positive test result.

ND - Not detected at the associated reporting limit.

PEHT - Parameter exceeded recommended holding time prior to analysis.

SP - Sample was preserved at the laboratory.

VOCHS - VOC analysis was conducted for a water sample that contained > 5% headspace. Results may be biased low.

> - Greater than reported value.

- - Not applicable.

Monthly Discharge Monitoring – Equalization Pond, Microtox 2022 Annual Surface Water Quality Monitoring Report Lambton Facility Clean Harbors Canada Inc.

Sample Location: Sample ID: Sample Date:		EQ Pond EQ POND DISCHARGE 3/22/2022	EQ Pond EQ POND DISCHARGE 5/03/2022
Parameters	Units		
Color (true)	none	Colorless	Colorless
Color Correction		No	No
MTX IC20 (15 min)	%	>100	> 90
MTX IC20 (30 Min)	%	-	> 90
MTX IC20 (5 min)	%	80.7	> 90
MTX IC50 (15 min)	%	>100	> 90
MTX IC50 (30 Min)	%	-	> 90
MTX IC50 (5 min)	%	>100	> 90
Odor		Mild	Mild
Initial pH	s.u.	8.6	7.81
Interpretation	none	NON TOXIC	NON TOXIC
Turbidity	none	-	Low

Monthly Discharge Monitoring – Pond A, General Chemistry, Metals, and VOCs/sVOCs 2022 Annual Surface Water Quality Monitoring Report Lambton Facility Clean Harbors Canada Inc.

Sample Location: Sample Date: Parameters	Units	PWQO	Pond A 12/14/2021	Pond A 3/22/2022	Pond A 5/2/2022
General Chemistry	ma a /l		115	07.0	110
Ankalinity, total (as CaCO3)	mg/L mg/l	-	0.065		0 353
Bromide	mg/L	-	1 22	1 43	1.88
Chemical oxygen demand (COD)	ma/L	-	20	19	13 SP
Chloride	mg/L	-	36	49.9	54.7
Conductivity	umhos/cm	-	748	722	798
Cyanide (total)	mg/L	0.005	ND (0.0020)	ND (0.0020)	ND (0.0020)
Dissolved organic carbon (DOC)	ma/l	_	3 0	4 46	4.6
(dissolved)	mg/L	_	0.0	7.70	4.0
Fluoride	mg/L	-	0.891	1.12	1.12
Hardness	mg/L	-	-	-	288
Nitrate (as N)	mg/L	-	0.758	0.241 ND (0.010)	U.186
nume (as n) nH lab	mg/∟	- 6585	7.05	ND (0.010) 8.18	(0.010) 8 33
Phenolics (total)	ma/l	0.0-0.0	ND (0.010)	0.10	0.0031
Phosphorus	ma/L	0.03	0.0387	0.0238	0.0165
Sulfate	mg/L	-	225	197	209
Total dissolved solids (TDS)	mg/L	-	488	431 DLDS	468 DLDS
Total kjeldahl nitrogen (TKN)	mg/L	-	0.44	2.11	0.491
Total suspended solids (TSS)	mg/L	-	15.8	7.1	6.2
Trihalomethanes	ug/L	-	ND (2.0)	ND (2.0)	-
Un-ionized ammonia	mg/L	0.02	0.000125	0.0399	0.0086
Field Parameters					
pH, field	s.u.	6.5-8.5	7	8.1	-
Temperature, field	Deg C	-	7.9	10	7.9
Metals					
Aluminum	mg/L	0.075	1.05	0.678	0.432
Antimony	mg/L	0.02	0.00058	0.0005	0.00048
Arsenic	mg/L	0.005	0.00138	0.00126	0.00132
Barium	mg/L	-	0.0422	0.0351	0.0398
Beryllium	mg/L	0.011	ND (0.00010)	ND (0.00010)	ND (0.000020)
Bismuth	mg/L	-	ND (0.000050)	ND (0.000050)	ND (0.000050)
Cadmium	mg/L	0.2			
Calcium	ma/L	-	75.3	69.6	75.4
Chromium VI (hexavalent)	mg/L	0.001	0.00085	0.00118	0.00067
Cobalt	mg/L	0.0009	0.00079	0.00069	0.00041
Copper	mg/L	0.005	0.0034	0.0033	0.00265
Iron	mg/L	0.3	1.12	0.702	0.45
Lead	mg/L	0.005	0.00198	0.00088	0.000377
Magnesium	mg/L	-	24.2	22.6	24.2
Mercury	mg/L	-	0.0275	0.0011	
Molybdenum	mg/L	0.0002	0.0000230	0.0513	0.0558
Nickel	ma/L	0.025	0.00461	0.00473	0.00415
Potassium	mg/L	-	8.19	6.6	7.13
Selenium	mg/L	0.1	0.00666	0.00295	0.00268
Silicon	mg/L	-	3.92	2.93	2.51
Silver	mg/L	0.0001	ND (0.000050)	ND (0.000050)	ND (0.000010)
Sodium	mg/L	-	30.6	36.3	40.7
Suonuum	mg/L	-	U.754 0.00075	0.555 0.00042	00000 000000
Tin	ma/L	-		0.000043 ND (0.00010)	0.000020 ND (0.00010)
Vanadium	ma/l	0.006	0.0024	0.00159	0.00123
Zinc	mg/L	0.03	0.0116	0.0114	0.0031
Volatilos					
1 1 1 2-Tetrachloroethane	ua/l	20	ND (0.50)	ND (0.50)	
1.1.1-Trichloroethane	ua/L	10	ND (0.50)	ND (0.50)	ND (0.50) VOCHS
1,1,2,2-Tetrachloroethane	ug/L	70	ND (0.50)	ND (0.50)	ND (0.50) VOCHS
1,1,2-Trichloroethane	ug/L	800	ND (0.50)	ND (0.50)	ND (0.50) VOCHS

Monthly Discharge Monitoring – Pond A, General Chemistry, Metals, and VOCs/sVOCs 2022 Annual Surface Water Quality Monitoring Report Lambton Facility

Clean Harbors Canada Inc.

Sample Location: Sample Date:	11	DWOO	Pond A 12/14/2021	Pond A 3/22/2022	Pond A 5/2/2022
Parameters	Units	PWQU			
	ug/L	200	ND (0.50)	ND (0.50)	ND (0.50) VOCHS
1,1-Dichloroethene	ug/L	40	ND (0.50)	ND (0.50)	ND (0.50) VOCHS
1,2-Dibromoethane (Ethylene	ua/L	5	ND (0.20)	ND (0.20)	ND (0.20) VOCHS
dibromide)	ug/L	U	(0.20)	(0.20)	
1,2-Dichlorobenzene	ug/L	2.5	ND (0.50)	ND (0.50)	ND (0.50) VOCHS
1,2-Dichloroethane	ug/L	100	ND (0.50)	ND (0.50)	ND (0.50) VOCHS
1,2-Dichloropropane	ug/L	0.7	ND (0.50)	ND (0.50)	ND (0.50) VOCHS
1,3-Dichlorobenzene	ug/L	2.5	ND (0.50)	ND (0.50)	ND (0.50) VOCHS
1,4-Dichlorobenzene	ug/L	4	ND (0.50)	ND (0.50)	ND (0.50) VOCHS
2-Butanone (Methyl ethyl ketone) (MEK)	ug/L	400	ND (20)	ND (20)	ND (20) VOCHS
4-Methyl-2-pentanone (Methyl isobutyl ketone) (MIBK)	ug/L	-	ND (20)	ND (20)	ND (20) VOCHS
Acetone	ua/L	-	ND (20)	ND (20)	ND (20) VOCHS
Benzene	ua/L	100	ND (0.50)	ND (0.50)	ND (0.50) VOCHS
Bromodichloromethane	ua/l	200	ND (1.0)	ND (1.0)	ND (0.50) VOCHS
Bromoform	ug/L	60	ND (1.0)	ND (1.0)	ND (0.50) VOCHS
Bromomethane (Methyl bromide)	ug/L	0.9	ND (0.50)	ND (0.50)	ND (0.50) VOCHS
Carbon tetrachloride	ug/L	-	ND (0.50)	ND (0.50)	ND (0.20) VOCHS
Chlorobenzene	ug/L	15	ND (0.50)	ND (0.50)	ND (0.50) VOCHS
Chloroethane	ug/L	-	ND (1.0)	ND (1.0)	ND (0.50) VOCHS
Chloroform (Trichloromethane)	ug/L	-	ND (1.0)	ND (1.0)	ND (0.50) VOCHS
cis-1,2-Dichloroethene	ug/L	200	ND (0.50)	ND (0.50)	ND (0.50) VOCHS
cis-1,3-Dichloropropene	ug/L	-	ND (0.50)	ND (0.50)	ND (0.30) VOCHS
Dibromochloromethane	ug/L	40	ND (1.0)	ND (1.0)	ND (0.50) VOCHS
Dichlorodifluoromethane (CFC-12)	ug/L	-	ND (1.0)	ND (1.0)	ND (0.50) VOCHS
Ethylbenzene	ug/L	8	ND (0.50)	ND (0.50)	ND (0.50) VOCHS
Hexane	ug/L	-	ND (0.50)	ND (0.50)	ND (0.50) VOCHS
m&p-Xylenes	ug/L	2	ND (1.0)	ND (1.0)	ND (0.40) VOCHS
Methyl tert butyl ether (MTBE)	ug/L	200	ND (0.50)	ND (0.50)	ND (0.50) VOCHS
Methylene chloride	ug/L	100	ND (2.0)	ND (2.0)	ND (1.0) VOCHS
o-Xylene	ug/L	40	ND (0.50)	ND (0.50)	ND (0.30) VOCHS
Styrene	ug/L	4	ND (0.50)	ND (0.50)	ND (0.50) VOCHS
Tetrachloroethene	ug/L	50	ND (0.50)	ND (0.50)	ND (0.50) VOCHS
Toluene	ug/L	0.8	0.55	ND (0.50)	ND (0.50) VOCHS
trans-1,2-Dichloroethene	ug/L	200	ND (0.50)	ND (0.50)	ND (0.50) VOCHS
trans-1.3-Dichloropropene	ua/L	7	ND (0.50)	ND (0.50)	ND (0.30) VOCHS
Trichloroethene	ug/L	20	ND (0.50)	ND (0.50)	ND (0.50) VOCHS
Trichlorofluoromethane (CFC-11)	ug/L	-	ND (1.0)	ND (1.0)	ND (0.50) VOCHS
Vinyl chloride	ug/L	600	ND (0.50)	ND (0.50)	ND (0.50) VOCHS
Xylenes (total)	ug/L	-	ND (1.1)	ND (1.1)	ND (0.50) VOCHS
Semi-Volatiles					
1,2,4-Trichlorobenzene	ug/L	0.5	ND (0.40)	ND (0.80) DLIS	ND (1.00) DLIS
1.2-Dichlorobenzene	ua/L	2.5	ND (0.40)	ND (0.80) DLIS	ND (1.00) DLIS
1.3-Dichlorobenzene	ua/L	2.5	ND (0.40)	ND (0.80) DLIS	ND (1.00) DLIS
1.4-Dichlorobenzene	ua/L	4	ND (0.40)	ND (0.80) DLIS	ND (1.00) DLIS
1-Methylnaphthalene	ua/L	2	ND (0.40)	ND (0.80) DLIS	ND (1.00) DLIS
2 3 4 5-Tetrachlorophenol	ua/l	-	ND (0.50)	ND(10)DUS	ND (1 25) DUS
2 3 4 6-Tetrachlorophenol	ua/l	_	ND (0.50)	ND(10)DUS	ND (1 25) DUS
2.3.6-Trichlorophenol	ug/L	_	ND (0.50)		ND (0.20)
2,0,0 Thenerephenol	ug/L	18	ND (0.50)		
2,4,6 Trichlorophenol	ug/L	18	ND (0.50)		
	ug/L	0			
2,4-Dimothylphonol	ug/L	U.Z 10	ND (0.30)		
2.4 Dinitrophonol	uy/L	10			
	ug/L	-	UD (1.0)	ND (2.0) DLIS	
	ug/L	4	ND (0.40)		
	ug/L	0	ND (0.40)		
2-Chiorophenol	ug/L	(ND (0.30)	ND (0.60) DLIS	ND (0.75) DLIS
2-Methylnaphthalene	ug/L	2	ND (0.40)	ND (0.80) DLIS	ND (1.00) DLIS
3,3'-Dichlorobenzidine	ug/L	0.6	ND (0.40) J	ND (0.80) DLIS	ND (1.00) DLIS

Monthly Discharge Monitoring – Pond A, General Chemistry, Metals, and VOCs/sVOCs 2022 Annual Surface Water Quality Monitoring Report Lambton Facility

Clean Harbors Canada Inc.

Sample Location: Sample Date:			Pond A 12/14/2021	Pond A 3/22/2022	Pond A 5/2/2022
Parameters	Units	PWQO			
4-Chloroaniline	ug/L	-	ND (0.40)	ND (0.80) DLIS	ND (1.00) DLIS
Acenaphthene	ug/L	-	ND (0.20)	ND (0.40) DLIS	ND (0.50) DLIS
Acenaphthylene	ug/L	-	ND (0.20)	ND (0.40) DLIS	ND (0.50) DLIS
Anthracene	ug/L	0.0008	ND (0.20)	ND (0.40) DLIS	ND (0.50) DLIS
Benzo(a)anthracene	ug/L	0.0004	ND (0.20)	ND (0.40) DLIS	ND (0.50) DLIS
Benzo(a)pyrene	ug/L	-	ND (0.050)	ND (0.10) DLIS	ND (0.125) DLIS
Benzo(b)fluoranthene	ug/L	-	ND (0.20)	ND (0.40) DLIS	-
Benzo(g,h,i)perylene	ug/L	0.00002	ND (0.20)	ND (0.40) DLIS	ND (0.50) DLIS
Benzo(k)fluoranthene	ug/L	0.0002	ND (0.20)	ND (0.40) DLIS	ND (0.50) DLIS
bis(2-Chloroethyl)ether	ug/L	200	ND (0.40)	ND (0.80) DLIS	ND (1.00) DLIS
bis(2-Ethylhexyl)phthalate (DEHP)	ug/L	0.6	ND (2.0)	ND (2.0) DLIS	ND (2.5) DLIS
Chrysene	ug/L	0.0001	ND (0.20)	ND (0.40) DLIS	ND (0.50) DLIS
Dibenz(a,h)anthracene	ug/L	0.002	ND (0.20)	ND (0.40) DLIS	ND (0.50) DLIS
Diethyl phthalate	ug/L	-	ND (0.20)	ND (0.40) DLIS	-
Dimethyl phthalate	ug/L	-	ND (0.20)	ND (0.40) DLIS	-
Fluoranthene	ug/L	0.0008	ND (0.20)	ND (0.40) DLIS	ND (0.50) DLIS
Fluorene	ug/L	0.2	ND (0.20)	ND (0.40) DLIS	ND (0.50) DLIS
Hexachlorobenzene	ug/L	0.0065	ND (0.040)	ND (0.080) DLIS	ND (0.100) DLIS
Hexachlorobutadiene	ug/L	0.009	ND (0.20)	ND (0.40) DLIS	ND (0.50) DLIS
Indeno(1,2,3-cd)pyrene	ug/L	-	ND (0.20)	ND (0.40) DLIS	ND (0.50) DLIS
Naphthalene	ug/L	7	ND (0.20)	ND (0.40) DLIS	ND (0.50) DLIS
Pentachlorophenol	ug/L	0.5	ND (0.50)	ND (1.0) DLIS	ND (1.25) DLIS
Perylene	ug/L	0.00007	ND (0.20)	ND (0.40) DLIS	ND (0.50) DLIS
Phenanthrene	ug/L	0.03	ND (0.20)	ND (0.40) DLIS	ND (0.50) DLIS
Pyrene	ug/L	-	ND (0.20)	ND (0.40) DLIS	ND (0.50) DLIS

Notes:

0.01 Analytical results above the Provincial Water Quality Objectives (PWQO)

ND= Not detected at the associated reporting limit.

J= Estimated concentration.

- = Not Applicable

DLDS - Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical Conductivity.

DLHC - Detection Limit Raised: Dilution required due to high concentration of test analyte(s).

DLIS - Detection Limit Adjusted due to insufficient sample.

DLM - Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity).

DLUI - Detection Limit Raised: Unknown interference generated an apparent false positive test result.

ND - Not detected at the associated reporting limit.

PEHT - Parameter exceeded recommended holding time prior to analysis.

SP - Sample was preserved at the laboratory.

VOCHS - VOC analysis was conducted for a water sample that contained > 5% headspace. Results may be biased low.

> - Greater than reported value.

Monthly Discharge Monitoring – Pond D, General Chemistry, Metals, and VOCs/sVOCs 2022 Annual Surface Water Quality Monitoring Report Lambton Facility Clean Harbors Canada Inc.

Sample Location: Sample ID: Sample Date:	Unito	DWOO	Pond D POND D WEST POND 12/14/2021	Pond D POND D WEST POND 3/22/2022	Pond D Pond D 5/2/2022
Falalleters	Units	FWQU			
General Chemistry					
Alkalinity, total (as CaCO3)	mg/L	-	105	101	112
Ammonia-N	mg/L	-	2.87	0.595 DLHC	0.319
Bromide	mg/L	-	2.03	1.61	1.87
Chemical oxygen demand (COD)	mg/L	-	24	21	14 SP
Conductivity	mg/L	-	00.0 825	50.Z	55.4 708
Cvanide (total)	ma/l	-	035 ND (0.0020)	ND (0.0020)	790 ND (0.0020)
Dissolved organic carbon (DOC) (di	mg/L	0.000 -	5 79	4 87	4 83
Fluoride	mg/L	-	1.05	1.06	1.13
Hardness	mg/L	-	-	-	288
Nitrate (as N)	mg/L	-	0.13	0.18	0.187
Nitrite (as N)	mg/L	-	ND (0.010)	ND (0.010)	ND (0.010)
pH, lab	s.u.	6.5-8.5	8.01	8.02	8.29
Phenolics (total)	mg/L	0.001	ND (0.010)	0.0013	0.0024
Phosphorus	mg/L	0.03	0.0407	0.0325	0.0148
Sulfate	mg/L	-	219	202	210
Total dissolved solids (TDS)	mg/L	-	518	459 DLDS	484 DLDS
Total kjeldahl nitrogen (TKN)	mg/L	-	3.4	1.43	0.783
Total suspended solids (TSS)	mg/L	-	16.7	13.4	5.6
Irihalomethanes	ug/L	-	ND (2.0)	ND (2.0)	-
Un-Ionized ammonia	mg/L	0.02	0.00554	0.00838	0.0118
Field Parameters					
pH, field	s.u.	6.5-8.5	7	7.8	-
Temperature, field	Deg C	-	8	10	7.5
	ma/l	0.075	4.24	0.66	0.225
Antimony	mg/L	0.075	0.00046	0.00046	0.00052
Arsenic	mg/L	0.02	0.00040	0.00040	0.00032
Barium	mg/L	0.000	0.0443	0.0377	0.00144
Beryllium	mg/L	0 011	ND (0 00010)	ND (0.00010)	ND (0.00020)
Bismuth	mg/L	-	ND (0.000050)	ND (0.000050)	ND (0.000050)
Boron	mg/L	0.2	0.131	0.114	0.117
Cadmium	mg/L	0.0002	ND (0.00020)	ND (0.000080) DLM	ND (0.000100) DLM
Calcium	mg/L	-	` 71.5	68.1	75.3
Chromium VI (hexavalent)	mg/L	0.001	ND (0.00050)	0.00075	0.00085
Cobalt	mg/L	0.0009	0.00073	0.00057	0.00041
Copper	mg/L	0.005	0.003	0.0028	0.003
Iron	mg/L	0.3	1.25	0.849	0.358
Lead	mg/L	0.005	0.00084	0.00063	0.000365
Magnesium	mg/L	-	26.5	24.1	24.4
Manganese	mg/L	-	0.0226	0.051	0.0247
Mercury	mg/L	0.0002	ND (0.0000050)	ND (0.0000050)	ND (0.0000050)
Molybdenum	mg/L	0.04	0.0552	0.051	0.0583
	mg/L	0.025	0.0053	0.00438	0.00428
Polassium	mg/L	-	7.2	7.04	7.11
Selenium	mg/L	0.1	0.00275	0.00200	0.00294
Silicon	mg/L	-		2.93 ND (0.00050)	
Sodium	mg/L	0.0001	טפטטטט.ט) שא) א א	טפטטטט.ט) שא א הג	ערו 10000,0) שאו א א גע
Strontium	mg/L	-	49.0 ೧ 501	40.0 0 501	41.4 0.637
Thallium	ma/l	0 0003	0.091	0.091	0.007
Tin	ma/l	-	ND (0.00010)	ND (0 00010)	
Vanadium	mg/L	0.006	0.00277	0.00154	0.00099
	5	-			-

Monthly Discharge Monitoring – Pond D, General Chemistry, Metals, and VOCs/sVOCs 2022 Annual Surface Water Quality Monitoring Report Lambton Facility Clean Harbors Canada Inc.

Sample Location: Sample ID: Sample Date:			Pond D POND D WEST POND 12/14/2021	Pond D POND D WEST POND 3/22/2022	Pond D Pond D 5/2/2022
Parameters	Units	PWQO			
Zinc	mg/L	0.03	0.0049	0.0072	0.0031
Volatiles					
1,1,1,2-Tetrachloroethane	ug/L	20	ND (0.50)	ND (0.50)	ND (0.50) VOCHS
1,1,1-Trichloroethane	ug/L	10	ND (0.50)	ND (0.50)	ND (0.50) VOCHS
1,1,2,2-Tetrachloroethane	ug/L	70	ND (0.50)	ND (0.50)	ND (0.50) VOCHS
1,1,2-Trichloroethane	ug/L	800	ND (0.50)	ND (0.50)	ND (0.50) VOCHS
1,1-Dichloroethane	ug/L	200	ND (0.50)	ND (0.50)	ND (0.50) VOCHS
1,1-Dichloroethene	ug/L	40	ND (0.50)	ND (0.50)	ND (0.50) VOCHS
1,2-Dibromoethane (Ethylene dibror	ug/L	5	ND (0.20)	ND (0.20)	ND (0.20) VOCHS
1,2-Dichlorobenzene	ug/L	2.5	ND (0.50)	ND (0.50)	ND (0.50) VOCHS
1,2-Dichloroethane	ug/L	100	ND (0.50)	ND (0.50)	ND (0.50) VOCHS
1,2-Dichloropropane	ug/L	0.7	ND (0.50)	ND (0.50)	ND (0.50) VOCHS
1,3-Dichlorobenzene	ug/L	2.5	ND (0.50)	ND (0.50)	ND (0.50) VOCHS
1,4-Dichlorobenzene	ug/L	4	ND (0.50)	ND (0.50)	ND (0.50) VOCHS
2-Butanone (Methyl ethyl ketone) (M	ug/L	400	ND (20)	ND (20)	ND (20) VOCHS
4-Methyl-2-pentanone (Methyl Isobu	ug/L	-	ND (20)	ND (20)	ND (20) VOCHS
Acetone	ug/L	-	ND (20)	ND (20)	ND (20) VOCHS
Benzene	ug/L	100	ND (0.50)	ND (0.50)	ND (0.50) VOCHS
Bromodicnioromethane	ug/L	200	ND (1.0)	ND (1.0)	ND (0.50) VOCHS
Bromotorm	ug/L	60	ND (1.0)	ND (1.0)	ND (0.50) VOCHS
Bromomethane (Methyl bromide)	ug/L	0.9	ND (0.50)	ND (0.50)	
Carbon tetrachionde	ug/L	-	ND (0.50)	ND (0.50)	
Chloropenzene	ug/L	15	ND (0.50)	ND (0.50)	
Chloroform (Trichloromothono)	ug/∟	-	ND (1.0)	ND (1.0)	
chioroform (Thenloromethane)	ug/L	-	ND (1.0)	ND (1.0)	
cis-1,2-Dichloropropopo	ug/L	200	ND (0.50)	ND (0.50)	
Dibromochloromothano	ug/L	-	ND (0.50)	ND(0.50)	
Dichlorodifluoromethane (CEC 12)	ug/L	40	ND (1.0)	ND (1.0)	
Ethylbenzene	ug/L	- 8	ND (0.50)	ND (0.50)	
Hevane	ug/L	0	ND (0.50)	ND (0.50)	
m&n_Xylenes	ug/L	- 2		ND (0.50)	
Methyl tert butyl ether (MTRE)	ug/∟ ⊔g/l	200	ND (0.50)	ND (0.50)	
Methylene chloride	ug/L	100	ND (2.0)	ND(2.0)	
o-Xylene	ug/L	40	ND (0.50)	ND (0.50)	ND (0.30) VOCHS
Styrene	ug/L	40	ND (0.50)	ND (0.50)	ND (0.50) VOCHS
Tetrachloroethene	ug/L	50	ND (0.50)	ND (0.50)	ND (0.50) VOCHS
Toluene	ug/L	0.8	ND (0.50)	ND (0.50)	ND (0.50) VOCHS
trans-1 2-Dichloroethene	ug/L	200	ND (0.50)	ND (0.50)	ND (0.50) VOCHS
trans-1.3-Dichloropropene	ug/L	7	ND (0.50)	ND (0.50)	ND (0.30) VOCHS
Trichloroethene	ua/L	20	ND (0.50)	ND (0.50)	ND (0.50) VOCHS
Trichlorofluoromethane (CFC-11)	ug/L	-	ND (1.0)	ND (1.0)	ND (0.50) VOCHS
Vinvl chloride	ua/L	600	ND (0.50)	ND (0.50)	ND (0.50) VOCHS
Xylenes (total)	ug/L	-	ND (1.1)	ND (1.1)	ND (0.50)
Semi-Volatiles					
1,2,4-Trichlorobenzene	ug/L	0.5	ND (0.40)	ND (0.80) DLIS	ND (1.00) DLIS
1,2-Dichlorobenzene	ug/L	2.5	ND (0.40)	ND (0.80) DLIS	ND (1.00) DLIS
1,3-Dichlorobenzene	ug/L	2.5	ND (0.40)	ND (0.80) DLIS	ND (1.00) DLIS
1,4-Dichlorobenzene	ug/L	4	ND (0.40)	ND (0.80) DLIS	ND (1.00) DLIS
1-Methylnaphthalene	ug/L	2	ND (0.40)	ND (0.80) DLIS	ND (1.00) DLIS
2,3,4,5-Tetrachlorophenol	ug/L	-	ND (0.50)	ND (1.0) DLIS	ND (1.25) DLIS
2,3,4,6-Tetrachlorophenol	ug/L	-	ND (0.50)	ND (1.0) DLIS	ND (1.25) DLIS
2,3,6-Trichlorophenol	ug/L	-	ND (0.50)	ND (1.0) DLIS	ND (0.20)
2,4,5-Trichlorophenol	ug/L	18	ND (0.50)	ND (1.0) DLIS	ND (1.25) DLIS

Monthly Discharge Monitoring – Pond D, General Chemistry, Metals, and VOCs/sVOCs 2022 Annual Surface Water Quality Monitoring Report Lambton Facility Clean Harbors Canada Inc.

Sample Location: Sample ID: Sample Date: Parameters	Units	PWQO	Pond D POND D WEST POND 12/14/2021	Pond D POND D WEST POND 3/22/2022	Pond D Pond D 5/2/2022
2,4,6-Trichlorophenol	ug/L	18	ND (0.50)	ND (1.0) DLIS	ND (1.25) DLIS
2,4-Dichlorophenol	ug/L	0.2	ND (0.30)	ND (0.60) DLIS	ND (0.75) DLIS
2,4-Dimethylphenol	ug/L	10	ND (0.50)	ND (1.0) DLIS	ND (1.25) DLIS
2,4-Dinitrophenol	ug/L	-	ND (1.0)	ND (2.0) DLIS	ND (2.5) DLIS
2,4-Dinitrotoluene	ug/L	4	ND (0.40)	ND (0.80) DLIS	ND (1.00) DLIS
2,6-Dinitrotoluene	ug/L	6	ND (0.40)	ND (0.80) DLIS	ND (1.00) DLIS
2-Chlorophenol	ug/L	7	ND (0.30)	ND (0.60) DLIS	ND (0.75) DLIS
2-Methylnaphthalene	ug/L	2	ND (0.40)	ND (0.80) DLIS	ND (1.00) DLIS
3,3'-Dichlorobenzidine	ug/L	0.6	ND (0.40) J	ND (0.80) DLIS	ND (1.00) DLIS
4-Chloroaniline	ug/L	-	ND (0.40)	ND (0.80) DLIS	ND (1.00) DLIS
Acenaphthene	ug/L	-	ND (0.20)	ND (0.40) DLIS	ND (0.50) DLIS
Acenaphthylene	ug/L	-	ND (0.20)	ND (0.40) DLIS	ND (0.50) DLIS
Anthracene	ug/L	0.0008	ND (0.20)	ND (0.40) DLIS	ND (0.50) DLIS
Benzo(a)anthracene	ug/L	0.0004	ND (0.20)	ND (0.40) DLIS	ND (0.50) DLIS
Benzo(a)pyrene	ug/L	-	ND (0.050)	ND (0.10) DLIS	ND (0.125) DLIS
Benzo(b)fluoranthene	ug/L	-	ND (0.20)	ND (0.40) DLIS	-
Benzo(g,h,i)perylene	ug/L	0.00002	ND (0.20)	ND (0.40) DLIS	ND (0.50) DLIS
Benzo(k)fluoranthene	ug/L	0.0002	ND (0.20)	ND (0.40) DLIS	ND (0.50) DLIS
bis(2-Chloroethyl)ether	ug/L	200	ND (0.40)	ND (0.80) DLIS	ND (1.00) DLIS
bis(2-Ethylhexyl)phthalate (DEHP)	ug/L	0.6	ND (2.0)	ND (2.0) DLIS	ND (2.5) DLIS
Chrysene	ug/L	0.0001	ND (0.20)	ND (0.40) DLIS	ND (0.50) DLIS
Dibenz(a,h)anthracene	ug/L	0.002	ND (0.20)	ND (0.40) DLIS	ND (0.50) DLIS
Diethyl phthalate	ug/L	-	ND (0.20)	ND (0.40) DLIS	-
Dimethyl phthalate	ug/L	-	ND (0.20)	ND (0.40) DLIS	-
Fluoranthene	ug/L	0.0008	ND (0.20)	ND (0.40) DLIS	ND (0.50) DLIS
Fluorene	ug/L	0.2	ND (0.20)	ND (0.40) DLIS	ND (0.50) DLIS
Hexachlorobenzene	ug/L	0.0065	ND (0.040)	ND (0.080) DLIS	ND (0.100) DLIS
Hexachlorobutadiene	ug/L	0.009	ND (0.20)	ND (0.40) DLIS	ND (0.50) DLIS
Indeno(1,2,3-cd)pyrene	ug/L	-	ND (0.20)	ND (0.40) DLIS	ND (0.50) DLIS
Naphthalene	ug/L	7	ND (0.20)	ND (0.40) DLIS	ND (0.50) DLIS
Pentachlorophenol	ug/L	0.5	ND (0.50)	ND (1.0) DLIS	ND (1.25) DLIS
Perylene	ug/L	0.00007	ND (0.20)	ND (0.40) DLIS	ND (0.50) DLIS
Phenanthrene	ug/L	0.03	ND (0.20)	ND (0.40) DLIS	ND (0.50) DLIS
Pyrene	ug/L	-	ND (0.20)	ND (0.40) DLIS	ND (0.50) DLIS

Notes:

0.01 Analytical results above the Provincial Water Quality Objectives (PWQO) ND= Not detected at the associated reporting limit.

J= Estimated concentration.

- = Not Applicable

Off Site Surface Water Monitoring 2022 Annual Surface Water Quality Monitoring Report Lambton Facility Clean Harbors Canada Inc.

Sample Location:			STN6U	STN6D
Sample ID:			STN6	STN6A
Sample Date:			5/3/2022	5/3/2022
Parameters	Units	PWQO		
General Chemistry				
Alkalinity, total (as CaCO3)	mg/L	-		
Ammonia-N	mg/L	-	280	283
Bromide	mg/L	-	0.0136 SP	0.0121 SP
Chemical oxygen demand (COD)	mg/L	-	ND (0.10)	ND (0.10)
Chloride	mg/L	-	21 SP	23 SP
Conductivity	umhos/cm	-	53.0	54.7
Cyanide (total)	mg/L	0.005	ND (0.0020)	ND (0.0020)
Dissolved organic carbon (DOC) (dis	mg/L	-	7.65	9.15
Fluoride	mg/L	-	0.317	0.204
Hardness	mg/L	-	364	364
Nitrate (as N)	mg/L	-	2.35	2.91
Nitrite (as N)	mg/L	-	0.021	0.021
pH, lab	s.u.	6.5-8.5	8.42 PEHT	8.38 PEHT
Phenolics (total)	mg/L	0.001	ND (0.0010) SP	ND (0.0010) SP
Phosphorus	mg/L	0.03	0.0151	0.0256
Sulfate	mg/L	-	92.4	63.2
Total dissolved solids (TDS)	mg/L	-	450 DLDS	433 DLDS
Total kjeldahl nitrogen (TKN)	mg/L	-	0.662 SP	0.857 SP
Total suspended solids (TSS)	mg/L	-	7.6	6.2
Trihalomethanes	ug/L	-	-	-
Un-ionized ammonia	mg/L	0.02	0.0003	0.0002
Field Parameters				
pH, field	s.u.	6.5-8.5	-	-
Temperature, field	Deg C	-	8.00	8.00
Metals				
Aluminum	mg/L	0.075	0.369	0.351
Antimony	mg/L	0.02	0.00017	0.00012
Arsenic	mg/L	0.005	0.00091	0.00086
Barium	mg/L	-	0.0322	0.0276
Beryllium	mg/L	0.011	ND (0.000020)	ND (0.000020)
Bismuth	mg/L	-	ND (0.000050)	ND (0.000050)
Boron	mg/L	0.2	0.047	0.037
Cadmium	mg/L	0.0002	0.0000256	0.0000207
Calcium	mg/L	-	81.6	84.2
Chromium VI (hexavalent)	mg/L	0.001	ND (0.00050)	ND (0.00050)

Off Site Surface Water Monitoring 2022 Annual Surface Water Quality Monitoring Report Lambton Facility Clean Harbors Canada Inc.

Sample Location:			STN6U	STN6D
Sample ID:			STN6	STN6A
Sample Date:			5/3/2022	5/3/2022
Parameters	Units	PWQO		
Cobalt	mg/L	0.0009	0.00031	0.00027
Copper	mg/L	0.005	0.00185	0.00173
Iron	mg/L	0.3	0.397	0.367
Lead	mg/L	0.005	0.000216	0.000176
Magnesium	mg/L	-	38.9	37.3
Manganese	mg/L	-	0.0301	0.0309
Mercury	mg/L	0.0002	ND (0.0000050)	ND (0.0000050)
Molybdenum	mg/L	0.04	0.00875	0.00355
Nickel	mg/L	0.025	0.00181	0.00152
Potassium	mg/L	-	2.55	2.03
Selenium	mg/L	0.1	0.000898	0.000900
Silicon	mg/L	-	1.36	1.54
Silver	mg/L	0.0001	ND (0.000010)	ND (0.000010)
Sodium	mg/L	-	28.3	27.8
Strontium	mg/L	-	0.433	0.402
Thallium	mg/L	0.0003	0.000016	ND (0.000010)
Tin	mg/L	-	ND (0.00010)	ND (0.00010)
Vanadium	mg/L	0.006	0.00149	0.00143
Zinc	mg/L	0.03	ND (0.0030)	ND (0.0030)
Volatiles				
1,1,1,2-Tetrachloroethane	ug/L	20	-	-
1,1,1-Trichloroethane	ug/L	10	-	-
1,1,2,2-Tetrachloroethane	ug/L	70	-	-
1,1,2-Trichloroethane	ug/L	800	-	-
1,1-Dichloroethane	ug/L	200	-	-
1,1-Dichloroethene	ug/L	40	-	-
1,2-Dibromoethane (Ethylene dibror	ug/L	5	-	-
1,2-Dichlorobenzene	ug/L	2.5	-	-
1,2-Dichloroethane	ug/L	100	-	-
1,2-Dichloropropane	ug/L	0.7	-	-
1,3-Dichlorobenzene	ug/L	2.5	-	-
1,4-Dichlorobenzene	ug/L	4	-	-
2-Butanone (Methyl ethyl ketone) (N	ug/L	400	-	-
4-Methyl-2-pentanone (Methyl isobu	ug/L	-	-	-
Acetone	ug/L	-	-	-
Benzene	ug/L	100	-	-
Bromodichloromethane	ug/L	200	-	-

Off Site Surface Water Monitoring 2022 Annual Surface Water Quality Monitoring Report Lambton Facility Clean Harbors Canada Inc.

Sample Location:			STN6U	STN6D
Sample ID:			STN6	STN6A
Sample Date:			5/3/2022	5/3/2022
Parameters	Units	PWQO		
Bromoform	ug/L	60	-	-
Bromomethane (Methyl bromide)	ug/L	0.9	-	-
Carbon tetrachloride	ug/L	-	-	-
Chlorobenzene	ug/L	15	-	-
Chloroethane	ug/L	-	-	-
Chloroform (Trichloromethane)	ug/L	-	-	-
cis-1,2-Dichloroethene	ug/L	200	-	-
cis-1,3-Dichloropropene	ug/L	-	-	-
Dibromochloromethane	ug/L	40	-	-
Dichlorodifluoromethane (CFC-12)	ug/L	-	-	-
Ethylbenzene	ug/L	8	-	-
Hexane	ug/L	-	-	-
m&p-Xylenes	ug/L	2	-	-
Methyl tert butyl ether (MTBE)	ug/L	200	-	-
Methylene chloride	ug/L	100	-	-
o-Xylene	ug/L	40	-	-
Styrene	ug/L	4	-	-
Tetrachloroethene	ug/L	50	-	-
Toluene	ug/L	0.8	-	-
trans-1,2-Dichloroethene	ug/L	200	-	-
trans-1,3-Dichloropropene	ug/L	7	-	-
Trichloroethene	ug/L	20	-	-
Trichlorofluoromethane (CFC-11)	ug/L	-	-	-
Vinyl chloride	ug/L	600	-	-
Xylenes (total)	ug/L	-	-	-
, , ,	0			
Semi-Volatiles				
1,2,4-Trichlorobenzene	ug/L	0.5	-	-
1,2-Dichlorobenzene	ug/L	2.5	-	-
1,3-Dichlorobenzene	ug/L	2.5	-	-
1,4-Dichlorobenzene	ug/L	4	-	-
1-Methylnaphthalene	ug/L	2	-	-
2,3,4,5-Tetrachlorophenol	ug/L	-	-	-
2,3,4,6-Tetrachlorophenol	ug/L	-	-	-
2,3,6-Trichlorophenol	ug/L	-	-	-
2,4,5-Trichlorophenol	ug/L	18	-	-
2,4,6-Trichlorophenol	ug/L	18	-	-
2,4-Dichlorophenol	ug/L	0.2	-	-

Off Site Surface Water Monitoring 2022 Annual Surface Water Quality Monitoring Report Lambton Facility Clean Harbors Canada Inc.

Sample Location:			STN6U	STN6D
Sample ID:			STN6	STN6A
Sample Date:			5/3/2022	5/3/2022
Parameters	Units	PWQO		
2,4-Dimethylphenol	ug/L	10	-	-
2,4-Dinitrophenol	ug/L	-	-	-
2,4-Dinitrotoluene	ug/L	4	-	-
2,6-Dinitrotoluene	ug/L	6	-	-
2-Chlorophenol	ug/L	7	-	-
2-Methylnaphthalene	ug/L	2	-	-
3,3'-Dichlorobenzidine	ug/L	0.6	-	-
4-Chloroaniline	ug/L	-	-	-
Acenaphthene	ug/L	-	-	-
Acenaphthylene	ug/L	-	-	-
Anthracene	ug/L	0.0008	-	-
Benzo(a)anthracene	ug/L	0.0004	-	-
Benzo(a)pyrene	ug/L	-	-	-
Benzo(b)fluoranthene	ug/L	-	-	-
Benzo(g,h,i)perylene	ug/L	0.00002	-	-
Benzo(k)fluoranthene	ug/L	0.0002	-	-
bis(2-Chloroethyl)ether	ug/L	200	-	-
bis(2-Ethylhexyl)phthalate (DEHP)	ug/L	0.6	-	-
Chrysene	ug/L	0.0001	-	-
Dibenz(a,h)anthracene	ug/L	0.002	-	-
Diethyl phthalate	ug/L	-	-	-
Dimethyl phthalate	ug/L	-	-	-
Fluoranthene	ug/L	0.0008	-	-
Fluorene	ug/L	0.2	-	-
Hexachlorobenzene	ug/L	0.0065	-	-
Hexachlorobutadiene	ug/L	0.009	-	-
Indeno(1,2,3-cd)pyrene	ug/L	-	-	-
Naphthalene	ug/L	7	-	-
Pentachlorophenol	ug/L	0.5	-	-
Perylene	ug/L	0.00007	-	-
Phenanthrene	ug/L	0.03	-	-
Pyrene	ug/L	-	-	-

Notes:

0.01 Analytical results above the Provincial Water Quality Objectives (PWQO) ND= Not detected at the associated reporting limit.

J= Estimated concentration.

- = Not Applicable
Appendices

Appendix A Amendment to Off-Site Surface Water Locations

455 Phillip Street, Unit 100A Waterloo, Ontario N2L 3X2 Canada www.ghd.com

Our ref: 044985

May 11, 2022

Heather Mitchell Ministry of the Environment, Conservation and Parks Sarnia District Office 1094 London Road Sarnia, Ontario N7S 1P1

Amendment to Off-Site Surface Water Locations, Lambton Landfill

Dear Heather Mitchell,

The historic location for the off-Site surface water locations was located in the confluence of two steams that are located on private property. The area has several fallen trees and branches and is dangerous for staff to collect the surface water samples. As well, the quality of the samples was impacted by getting to the sample location.

Based on the above, options were considered with regard to amending the sample location and discussions occurred with landowners. Use of private land for sample location was not provided. As such, the location for the off-site samples were adjusted to reflect collection of the samples on public lands.

The attached figure presents the two new sample locations. The sample numbers have been adjusted to reflect an upstream (U) and downstream (D) location.

This letter provides notice of the change in location to the Ministry of the Environment, Conservation and Parks. The most recent samples collected in April 2022 were as per the locations noted on the figure.

Regards

James R. Yardley, P.Eng Senior Engineer 519-340-4265

jim.yardley@ghd.com

Copy to: Mackenzie Costello, Clean Harbors Meghan O'Brien, GHD

→ The Power of Commitment

Grid: NAD 1983 UTM Zone 17N

Q:\GIS\PROJECTS\44000s\44985\Layouts\041\44985-20(041)GIS001.mxd Print date: 11 May 2022 - 13:45 Data source: . Source: MNRF NRVIS, 2017. Produced by GHD under licence from Ontario Ministry of Natural Resources and Forestry, @ Queen's Printer 2022

SITE LOCATION MAP

FIGURE 1

Appendix B Provincial Officer's Order No. 2681 BCPKUJ

Ministry of the Environment, Conservation and Parks Ministère de l'Environnement, de la Protection de la nature et des Parcs

Provincial Officer's Order

Environmental Protection Act, R.S.O. 1990, c. E.19 (EPA) Ontario Water Resources Act, R.S.O. 1990, c. O.40 (OWRA) Pesticides Act, R.S.O. 1990, c. P.11 (PA) Safe Drinking Water Act, 2002, S.O. 2002, c.32 (SDWA) Nutrient Management Act, 2002, S.O. 2002, c.4 (NMA) Order Number 2681-BCPKUJ

Incident Report No. 5210-BAWQQ3

To: Clean Harbors Canada Inc. 4090 Telfer Rd St. Clair, Ontario, N0N 1G0 Canada

Site: 4090 Telfer Rd St. Clair, County of Lambton

Pursuant to my authority under OWRA Section 16.2, I order you to do the following:

Work Ordered

Item No. 1	Compliance Date	2019/06/06
Upon service of this Order, implement the with the timelines specified therein.	e Updated Leachate Management	t Plan, in accordance

Item No. 2 Compliance Date 2019/11/01 (YYYY/MM/DD) By June 7, 2019, and continuing for the duration of this Order, submit to the Provincial Officer a written report every seven (7) days that includes, but is not limited to, the following: a description of all work related to the Updated Leachate Management Plan performed in (a) the previous seven days; a description of any work to be carried out in relation to the Updated Leachate (b) Management Plan during the next seven days; and a summary of all available sampling results taken in the previous seven days; and (c) a description and rationale for any proposed change or modification to the Updated (d)

(d) a description and rationale for any proposed change or modification to the Upda Leachate Management Plan.

Compliance Date

2019/11/01

(YYYY/MM/DD)

Upon service of this Order, no modifications, amendments or variation to the work described in the Updated Leachate Management Plan shall be implemented without prior written consent of the Provincial Officer.

Item No. 4 2019/11/01 (YYYY/MM/DD) Upon service of this Order, written notice shall be provided forthwith to the Provincial Officer upon receiving any sampling results from the Equalization Pond that indicate that any treatment system is not adequately managing leachate as described in the Updated Leachate Management Plan.

Item No. 5 Compliance Date 2019/11/01

Upon service of this Order, copies of all documents, records and information required under this Order shall immediately be made available to the Provincial Officer or the District Manager upon request.

- While this Order is in effect, a copy or copies of this order shall be posted in a A. conspicuous place.
- В. While this Order is in effect, report in writing, to the District or Area office, any significant changes of operation, emission, ownership, tenancy or other legal status of the facility or operation.
- C. Unless otherwise specified, all requirements of this Order are effective upon service of this Order

This Order is being issued for the reasons set out in the annexed Provincial Officers Report which forms part of this Order.

Issued at Sarnia this 5th day of June, 2019.

Whow Anneguli

Maisa Fumagalli Badge No: Sarnia District Office Tel: (519) 336-4743

Compliance Date

REQUEST FOR REVIEW

You may request that this Order be reviewed by a Director.

Your request must be made (i) in writing (or if made orally, with written confirmation) and (ii) served on the Director at the address below within seven (7) calendar days after being served with a copy of this Order.

In the written request or written confirmation of an oral request, you must include:

(a) the portions of the Order in respect of which the review is requested;

(b) any submissions that you wish the Director to consider; and

(c) an address for service to be used by the Director.

In response to your request for review, the Director may confirm, alter or revoke this Order and will serve you with a copy of the Director's decision or Order.

A request for review does not automatically stay this Order. If you wish to have the Director stay the Order you must also include this in your request and the Order is not stayed unless the Director makes an order granting a stay.

DEEMED CONFIRMATION OF THIS ORDER

If you do not receive oral or written notice of the Director's decision on your request for review within (7) calendar days of receipt of your request, and the Director has not stayed the Order, this Order shall be deemed to be confirmed by order of the Director and deemed to be served upon you.

In the case of a deemed confirmation, you may require a hearing before the Environmental Review Tribunal (Tribunal), if, within fifteen (15) calendar days from the deemed date of service of the Director's order, you serve written notice of your appeal on the Tribunal and the Director. Your notice must state:

(a) the portion(s) of the Order in respect of which the hearing is required; and (b) the grounds on which you intend to rely at the hearing.

Except with leave of the Tribunal, you are not entitled to appeal a portion of the Order or to rely on a ground that is not stated in the notice requiring the hearing. Unless stayed by the Tribunal, the Order remains in effect from the date of service.

Written notice requiring a hearing can be served upon:

and	Director
	Ministry of the Environment, Conservation and Parks
	Sarnia District Office
	1094 London Rd
	Sarnia ON N7S 1P1
	Fax: (519) 336-4280
	Tel: (519)336-4030
	and

Further information on the Tribunal and requirements for an appeal can be obtained directly from the Tribunal by:

Tel: (416) 212-6349 or 1(866) 448-2248	Fax: (416) 326-5370 or 1(844) 213-3474
TTY 1-800-855-1155 via Bell Relay	Web: www.ert.gov.on.ca

FOR YOUR INFORMATION

The following is for your information:

Service of the documentation referred to above can be made personally, by mail, by fax, by commercial courier or by email in accordance with the legislation under which the Order is made and any corresponding Service Regulation . Further information can be obtained from e- Laws at www.e-laws.gov.on.ca. Please note that choosing service by mail does not extend any of the above mentioned timelines.

Unless stayed, this Order is effective from the date of service. Non-compliance with the requirements of this Order constitutes an offence.

The requirements of this Order are minimum requirements only and do not relieve you from complying with the following:

- (a) any applicable federal legislation,
- (b) any applicable provincial legislation or requirements that are not addressed in this Order, and
- (c) any applicable municipal law.

The requirements of this Order are severable. If any requirement of this Order or the application of any requirement to any circumstances is held invalid, the application of such requirement to other circumstances and the remainder of the Order are not affected.

Further orders may be issued in accordance with the legislation as circumstances require.

The procedures and other information provided above are intended as a guide. The legislation and/or regulations should be consulted for additional details and accurate reference.

Clean Harbors - Consolidated Management Plan (June 4, 2019).pdf

Ministry of the Environment, Conservation and Parks Ministère de l'Environnement, de la Protection de la nature et des Parcs

Provincial Officer's Report

Order Number 2681-BCPKUJ

Clean Harbors Canada Inc. 4090 Telfer Rd St. Clair, Ontario, N0N 1G0 Canada

Site 4090 Telfer Rd St. Clair, County of Lambton

Observations

PROVINCIAL OFFICER'S REPORT

1. Authority to Issue Order

I have authority as a provincial officer to issue Orders under the EPA to further the purpose of the EPA, namely, to provide for the protection and conservation of the natural environment. I also have authority as a provincial officer to issue Orders under the OWRA, to further the purpose of the OWRA, namely, to provide for the conservation, protection and management of Ontario's waters.

2. Definitions

For the purposes of this Order, the following terms shall have the meanings described below:

"Adverse effect" has the same meaning as in the EPA.

"Company" means Clean Harbors Canada, Inc.

"Design and Operations Report" means the report entitled "Revised Design and Operations Report – Lambton Landfill Expansion, Clean Harbors Canada Inc." authored by Tetra Tech and dated October 8, 2015. This report is included as Item 26 of Schedule A of Landfill ECA Amendment No. 9, issued October 19, 2015.

"ECA" means an Environmental Compliance Approval (formerly known as a Certificate of Approval) issued under Part II.1 of the EPA.

"EPA" means the Environmental Protection Act, R.S.O. 1990, c. E 19, as amended.

"Equalization Pond" refers to the Equalization Pond that is part of the Surface Water System and has the same meaning as that term is described in the Sewage Works ECA.

"Fractionalization Tank" or "Frac Tank" means a fractionalization tank brought to the Site to temporarily store leachate or leachate contaminated water; or water from the south ditch for batch treatment.

"Incinerator ECA" means Amended ECA No. 8-1030-94-006 issued April 19, 1994, and includes the Operating Manual referenced in Condition 11, as required by section 9 of the EPA.

"Landfill" means the waste disposal site authorized in Amended Environmental Compliance Approval No. A031806, dated September 5, 1997 and last amended September 22, 2017, including the landfill pre-treatment system and temporary storage and transfer activities as described therein.

"Landfill ECA" means Amended ECA No. A031806 issued September 5, 1997 and last amended September 22, 2017, as required by section 27 of the EPA.

"LDR" means Land Disposal Restrictions and has the same meaning as in the Landfill ECA.

"LDR Storage Report" means the weekly report required by Condition 23v of the Landfill ECA.

"Leachate Collection System" means all components and equipment for the collection and management of leachate approved under the Landfill ECA.

"Leachate Pond Cover ECA" means ECA No. 2005-8RHJL6 issued February 27, 2012, as required by section 53 of the OWRA.

"Maintenance Yard" means the yard area immediately outside the Vehicle Maintenance Building.

"Ministry" or "MECP" means the Ontario Ministry of the Environment, Conservation and Parks.

"Mobile Sewage ECA" means ECA No. 2423-B6CN2D issued December 19, 2018, as required by section 53 of the OWRA.

"Mobile Treatment Unit" means the mobile sewage works and related equipment approved under

the Mobile Sewage ECA.

"Order" means this Provincial Officer's Order Number No. 2681-BCPKUJ, as may be amended, or 8210-BBCPS2.

"Provincial Officer" means the undersigned Provincial Officer, or in the event the undersigned person is unable to act, any other provincial officer with the MECP Sarnia District Office authorized to act under the EPA and OWRA. Any document that is required to be submitted to the Provincial Officer under this Order shall be sent to the attention of Maisa Fumagalli, either via email to Maisa.Fumagalli@ontario.ca or via mail to the MECP Sarnia District Office, 1094 London Road, Sarnia ON N7S 1P1.

"Provincial Officer's Report" means this Provincial Officer's Report, which comprises part of this Order.

"Regulation 347" means General – Waste Management, R.R.O. 1990, Regulation 347 under the EPA.

"Sewage Works ECA" means Amended ECA No. 1065-9VVJSW, issued October 19, 2015, as required by section 53 of the OWRA.

"Site" means the property legally described as Part of Lots 8 and 9, Concession 10, and Part of Lots 8 and 9, Concession 9, formerly Township of Moore and now part of Township of St. Clair, County of Lambton, Ontario and being all of PINS 43293-0053, 43293-0055, 43293-0056, 43293-0065 and 43293-0066; and municipally known as 4090 Telfer Road, Rural Route No. 1, Corunna, St. Clair Township, County of Lambton, Ontario N0N 1G0.

"South Ditch" means the Waste Dump Ditch and the Southwest Perimeter Ditch as those terms are described in the Sewage Works ECA, both of which are part of the Surface Water System.

"Surface Water System" means the contact stormwater collection, management, and treatment system approved in the Sewage Works ECA, and includes the Waste Dump Ditch, Southwest Perimeter Ditch, West Pond, East Pond, Equalization Pond, and Wastewater Treatment Plant as those terms are described in the Sewage Works ECA.

"Tribunal" means the Environmental Review Tribunal.

"Updated Leachate Management Plan" means the document entitled "Clean Harbors South Ditch, Water and Leachate Management Plan," originally dated May 23, 2019, amended on June 4, 2019; and prepared by Clean Harbors; a copy of the most recent Plan is attached to this Order as Schedule "A".

3. Site Description

Site Description

The Company owns and operates an integrated hazardous waste management facility site consisting of a secure landfill and a liquid waste incinerator. Waste disposal operations have been carried out at the Site since the early 1960s under a series of successive owners. The Company acquired the Site in 2002.

The land adjacent to the Site is primarily used for agriculture. The Site's north drainage outlet drains to Perch Creek, which in turn drains to Lake Huron. The south drainage outlet drains to Bear Creek, which in turn drains to the Sydenham River and Lake St. Clair. The natural environment at and surrounding the Site includes fish and amphibian habitat, and woodlots which provide habitat for wildlife.

Surface Water Management

The Sewage Works ECA authorizes an industrial sewage works for the collection, treatment and disposal of contact stormwater, process wastewater, and sanitary sewage from the Site. The works consists of the Surface Water System, a non-contact stormwater management system, a process wastewater treatment system, and a sanitary sewage system.

The Surface Water System includes the Waste Dump Ditch, Southwest Perimeter Ditch, West Pond, East Pond, Equalization Pond, and Wastewater Treatment Plant all as described in the Sewage Works ECA.

The Surface Water System discharges offsite from the Equalization Pond through an outlet into the Telfer Side Road ditch. The ditch drains into the watercourse Bear Creek, which then drains into Sydenham River and Lake St. Clair.

Leachate Management

The existing Leachate Collection System (LCS) is authorized by the Landfill ECA. Pursuant to the Landfill ECA, leachate is captured in a perimeter leachate collection trench. Sumps equipped with pumps transfer leachate collected in the perimeter trench via a forcemain to a leachate pumping station and central storage unit. The leachate pumping station in turn pumps the accumulated leachate to an above ground storage tank and three leachate storage ponds.

The three ponds are covered with floating membranes that can be vented pursuant to the Leachate Pond Cover ECA. Discharge from the vents is sent to a scrubber to remove harmful compounds, followed by an activated carbon bed for treatment. The treated discharge from the carbon bed exhausts into the atmosphere through a stack.

Leachate is transferred from the active disposal areas to the leachate ponds primarily by pumping through an underground pipeline. Leachate is transferred from the covered ponds to an incinerator for disposal through an underground pipeline.

4. Events Leading to the Provincial Officer's Order

I have been the assigned Environmental Officer for Clean Harbors since May 2019. Provincial Officer Don Hayes was previously assigned to conduct inspections of the Site and reported weather and other conditions that resulted in the generation of hazardous waste leachate at a rate of approximately 35 liters per minute. The Site's incinerator is currently able to incinerate leachate generated by the landfill at a rate of 20 to 30 liters per minute. Since 2015, the rate of leachate generation at the Site has outpaced the rate at which it could be disposed of. These conditions have led to the Site's leachate storage ponds nearing maximum storage capacity.

On April 4, 2019 the Company reported that a seep from the Leachate Collection System was allowing landfill leachate to enter the Surface Water System. On April 5, 2019, the Company reported that the leachate levels within the Leachate Collection System perimeter trench were measured at 201.3 meters above sea level ("mASL"). In accordance with the Design and Operations Report, the maximum leachate level for the Leachate Collection System is 196 mASL. The presence of leachate exceeding 196 mASL results in a risk that the leachate will be discharged to the natural environment.

The Landfill ECA allows for a total leachate storage capacity at the Site of 41,159,610 litres, comprised of specifically approved storage containers. As of March 31, 2019, Officer Hayes notes that the Ministry was aware that the Site's leachate storage contained well over 90% of its approved storage capacity. On May 2, 2019, a meeting was held at the Site and attended by six Ministry officials, including myself and representatives for the Company. Officer Hayes noted that the Company's consultant, Jim Yardley, reported that the Leachate Collection System was not being operated in accordance with the Design and Operations Report. The notes continue that an additional 4 to 5 million litres of previously unreported leachate is currently being stored within the Leachate Collection System. This additional leachate is the reason that the leachate level within the system was measured to be 201.3 mASL in April 2019.

Pursuant to Regulation 347, landfill leachate is a designated hazardous waste. Officer Hayes reports that the Ministry has conducted sampling of the leachate from the Site which indicated that the leachate contains high levels of volatile organic compounds, hydrogen sulphides, and other harmful chemicals. Seepage of the leachate into the Surface Water System may result in the discharge of material onsite and potentially offsite, that may impair the quality of water.

In addition, the Equalization Pond and West Pond that make up part of the Surface Water System contain aquatic organisms including fish. Currently, there is no evidence of any adverse impacts to aquatic organisms, however, the risk of impairment exists if leachate continues to seep into the Surface Water System.

To prevent leachate seeps from the Leachate Collection System into the Surface Water System, the leachate levels within the Leachate Collection System must be lowered, as required under the Company's approvals. To prevent or reduce the risk of a discharge from the Leachate Collection System to the natural environment, additional temporary leachate storage is needed at the Site.

One significant leachate seep had been identified and was contaminating a portion of the Surface Water System along the South Ditch and flowing into the West Pond. Under Order No.

8210-BBCPS2, the seep was isolated with berms, the water within it was pumped to the Leachate Control System, and the section was filled with clay on May 14, 2019. On May 14, 2019, I attended the site and the Company advised of potential minor seepage into the rest of the South Ditch. It is necessary to ensure the South Ditch is not connected to, nor receiving leachate from the Leachate Control System and any newly identified seeps must be dealt with swiftly to prevent impairment to the natural environment.

The East Pond normally conveys water through the South Ditch into the West Pond prior to reaching the Equalization Pond and discharged to the Telfer Side Road ditch. To prevent or reduce the risk of further surface water from being contaminated by leachate, it is necessary for the surface water from the East Pond to be directed to the Equalization Pond in a manner that will bypass the location of the seepage and ensure the contaminated area is isolated.

On April 10, 2019, the Company submitted the an abatement plan to the Ministry, which contained a proposal intended to address the seep from the Leachate Collection System to the Surface Water System. On May 7, 2019, the Company submitted the Surface Water Management Strategy, which was an updated abatement plan intended to further address the seep from the Leachate Collection System to the Surface Water System.

On May 23, 2019, the Company submitted the Updated Leachate Management Plan, which consolidates and further updates the previous leachate abatement plans. The Updated Leachate Management Plan forms the basis for this Order, and takes precedence over any previously discussed work or arrangements between the Ministry and the Company, including but not limited to any of the work described above. In the event of a conflict between the requirements of this Order and the Updated Leachate Management Plan, the requirements of the Order take precedence and prevail to the extent of any conflict.

In addition, the Company has been advised on April 18, 2019, May 3, 2019, and May 21, 2019 that carrying out the work further to the discussions between the Ministry and the Company did not and does not exempt the Company from any applicable legal requirements.

5. Legal Authority and Reasons

This Order is issued pursuant to sections 157.1, and 196 of the EPA and sections 16.1, 16.2 and 104 of the OWRA.

I reasonably believe the requirements of the Order are necessary or advisable to prevent or reduce the risk of a discharge of a contaminant, namely landfill leachate, into the natural environment from the undertaking or the property, or to prevent, decrease or eliminate an adverse effect, namely impairment of the quality of the natural environment for any use that may be made of it, and/or injury or damage to animal or plant life, that may result from (i) the discharge of the contaminant from the undertaking, or (ii) the presence or discharge of the contaminant in, on or under the property.

I reasonably believe that the requirements of this Order are generally in the public interest, and

necessary to prevent a discharge of material, namely landfill leachate, into Bear Creek that may impair the quality of water.

8. Attachments

The attachments listed below form a part of this Provincial Officer's Report:

1. Schedule "A" - Updated Leachate Management Plan

Offence(s)

Suspected Violation(s)/Offence(s): Act - Regulation - Section, Description {General Offence}

What Stroneguli

Maisa Fumagalli Provincial Officer Badge Number: Date: 2019/06/05 District Office: Sarnia District Office

June 4, 2019

Clean Harbors South Ditch, Water and Leachate Management Plan

1. Introduction

The following is a consolidated remedial work program to address the seepage of leachate at several locations along the South Ditch at the Clean Harbors Lambton Landfill. The work program addresses items that have been impacted by the seep either directly or indirectly by the leachate seeps and the removal of the South Ditch from the sites stormwater management system. The work program addresses surface water management, South Ditch remediation, leachate management, sampling plan, contingency plans, and reporting.

2. Surface Water Management

2.1 East Retention Pond Surface Water Management

The East Retention Pond water normally discharges to the West Retention Pond via the South Ditch. The construction of berms, B2 and B7, located at the east and west end of the South Ditch were installed to contain the water in the ditch and isolated the East Retention Pond from transfer to the West Retention Pond for surface water treatment and discharge.

Analytical results from the East Retention Pond and East Ditch showed that the surface water was not impacted by the leachate seeps.

The current approach for surface water management for the East Retention Pond includes the following:

- Water from East Retention Pond is treated by a mobile carbon filtration system
- Following water treatment with the mobile carbon filtration system, the effluent water is piped overland to the Equalization Pond (EQ Pond). The temporary pipe system extends south to the security fence, west along the security fence, and then along the western limit of the West Retention Pond to the discharge point at the Equalization Pond.
- Water within the EQ Pond is sampled for ECA compliance parameters and additional for volatile organic compounds (VOCs) daily during discharge events to Telfer Road ditch.

2.2 West Retention Pond Surface Water Management

The West Retention Pond is the final surface water retention pond with all surface water from the site stored in this pond for treatment and discharge. The surface water quality in the West Retention Pond indicated a minor impact due to the leachate seepage event and as such the Site's Surface Water Treatment Plant (SWTP) was turned off and the west ditch inlet to the pond was bermed off through the construction of berm B1. The most recent water testing (April 30th) for the West Retention Pond indicated

that the primary VOC parameter detected, acetone, was 59 ug/L. Due to rain events, the West Retention Pond has back-flowed into the west ditch (over flowed berm B1).

The SWTP retrofit, which included new activated carbon and some minor repairs to the distribution pipes in the carbon filter unit, was completed on May 22, 2019. The amount and type of carbon are in accordance with the ECA approval for the facility.

The sand filter has been backwashed for a minimum of two hours (normally requires routine backwash for 15 to 20 minutes to remove sediment from the filter). The SWTP is now ready for return to service. As per normal protocol, the SWTP will be operated in recirculation mode until test samples confirm that the unit is operating within the ECA compliance parameters.

When the SWTP testing has concluded that the SWTP is operating within compliance requirements, the surface water management for the Site will consist of the following:

- Water from the West Retention Pond will be treated by the on-Site SWTP and discharged to the EQ Pond
- The mobile treatment system that is currently treating the East Retention Pond water will be removed and the temporary piping system will be adjusted to extend from the East Retention Pond pumphouse to the south end of the West Retention Pond
- Water within the EQ Pond will be sampled for ECA compliance parameters and VOCs daily during discharge to Telfer Road. Section 5 provides additional details with regards to sample locations, schedule, and completion period.

2.3 South Ditch Water Management

The South Ditch has been separated with a series of berms to contain the impacted surface water. In addition, temporary diversion berms have been installed to redirect overland surface water flow from the South Ditch and the east ditch has been connected to the East Retention Pond. The following figure provides an overview of the key remedial works that have been or are currently being installed at the Site and provides a base for the remedial work plan.

The portion of the South Ditch from Berm B2 to B4 has been remediated at this time in accordance with procedure outline in later sections. This remediated section drains to the west ditch.

2.3.1 Water Treatment

2.3.1.1 Water Treatment Pilot Testing

A pilot test for treating the surface water within the South Ditch was conducted, which involved treating 200,000 L of water from the South Ditch with a mobile carbon filtration system. The mobile carbon filtration system includes a bag filter to remove sediment and two activated carbon filters operated in series. The pilot test was conducted from water that was located between B4 and B6 and the intake was close to B4. The water tested is considered representative of water that is located within the South Ditch.

The pilot test treatment successfully treated the water to reduce the primary VOC detected, acetone, to non-detect levels. The following table provides the influent and effluent test results for the pilot test program. The treated water was returned to the South Ditch following treatment. Based on the pilot test results, the mobile treatment system has demonstrated that it is capable to treat the South Ditch water to VOC levels that are below the Provincial Water Quality Objectives (PWQO).

Appendix A has VOC analytical results from May 17th that indicate the VOC levels have significantly reduced since May 7th. With the reduced VOC levels in the South Ditch area B4 to B6 the carbon treatment systems should have no problem with treating the ditch water to acceptable discharge standards.

Client Sample ID			SOUTH DITCH BEFORE CARBON (BC)	SOUTH DITCH AFTER CARBON (AC)	Client Sample ID			SOUTH DITCH BEFORE CARBON (BC)	SOUTH DITCH AFTER CARBON (AC)
Date Sampled			7-May-2019	7-May- 2019	Date Sampled			7-May- 2019	7-May- 2019
Time Sampled			13:15	13:15	Time Sampled			13:15	13:15
ALS Sample ID			L2268948-1	L2268948- 2	ALS Sample ID			L2268948- 1	L2268948- 2
Parameter	Lowest Detection Limit	Units	Water	Water	Parameter	Lowest Detection Limit	Units	Water	Water
Volatile Organic Compo (Water)	unds								
Acetone	20	ug/L	7530	<20	Dichloromethane	2.0	ug/L	18.7	<2.0
Benzene	0.50	ug/L	1.02	<0.50	1,2-Dichloropropane	0.50	ug/L	<0.50	<0.50
Bromodichloromethane	1.0	ug/L	<1.0	<1.0	cis-1,3- Dichloropropene	0.50	ug/L	<0.50	<0.50
Bromoform	1.0	ug/L	<1.0	<1.0	trans-1,3- Dichloropropene	0.50	ug/L	<0.50	<0.50
Bromomethane	0.50	ug/L	<0.50	<0.50	Ethylbenzene	0.50	ug/L	3.89	<0.50
Carbon Disulfide	1.0	ug/L	2.2	<1.0	n-Hexane	0.50	ug/L	<0.50	<0.50
Carbon tetrachloride	0.50	ug/L	<0.50	<0.50	2-Hexanone	20	ug/L	<20	<20
Chlorobenzene	0.50	ug/L	<0.50	<0.50	Methyl Ethyl Ketone	20	ug/L	2540	<20
Dibromochloromethane	1.0	ug/L	<1.0	<1.0	Methyl Isobutyl Ketone	20	ug/L	<500	<20
Chloroethane	1.0	ug/L	<1.0	<1.0	MTBE	0.50	ug/L	22.9	<0.50
Chloroform	1.0	ug/L	<1.0	<1.0	Styrene	0.50	ug/L	0.81	<0.50
Chloromethane	1.0	ug/L	<1.0	<1.0	1,1,1,2- Tetrachloroethane	0.50	ug/L	<0.50	<0.50
1,2-Dibromoethane	0.20	ug/L	<0.20	<0.20	1,1,2,2- Tetrachloroethane	0.50	ug/L	<0.50	<0.50
1,2-Dichlorobenzene	0.50	ug/L	<0.50	<0.50	Tetrachloroethylene	0.50	ug/L	<0.50	<0.50
1,3-Dichlorobenzene	0.50	ug/L	<0.50	<0.50	Toluene	0.50	ug/L	54.9	<0.50
1,4-Dichlorobenzene	0.50	ug/L	<0.50	<0.50	1,1,1-Trichloroethane	0.50	ug/L	<0.50	<0.50
Dichlorodifluoromethane	1.0	ug/L	<1.0	<1.0	1,1,2-Trichloroethane	0.50	ug/L	<0.50	<0.50
1,1-Dichloroethane	0.50	ug/L	<0.50	<0.50	Trichloroethylene	0.50	ug/L	9.49	<0.50
1,2-Dichloroethane	0.50	ug/L	0.91	<0.50	Trichlorofluoromethane	1.0	ug/L	<1.0	<1.0
1,1-Dichloroethylene	0.50	ug/L	<0.50	<0.50	Vinyl chloride	0.50	ug/L	<0.50	<0.50
cis-1,2-Dichloroethylene	0.50	ug/L	39.9	<0.50	o-Xylene	0.50	ug/L	12.1	<0.50
trans-1,2- Dichloroethylene	0.50	ug/L	<0.50	<0.50	m+p-Xylenes	1.0	ug/L	19.5	<1.0
					Xylenes (Total)	1.1	ug/L	31.6	<1.1

2.3.1.2 Proposed Water Treatment for the South Ditch

Water from the South Ditch is proposed for treatment using a mobile carbon filtration system with the same configuration as the pilot test program. The proposed approach for water treatment includes the following:

- The mobile carbon filtration system will be installed on Cell 19-1.
- Initially, ten (10) frac tanks will be installed on Cell 19-1 to temporary receive the treated water for confirmation testing. At Clean Harbors discretion, an additional ten (10) frac tanks (20 in total) may be used as temporary treated water storage on Cell 19-1. The additional frac tanks will be used to optimize the volume of treated water.
- Water from between berms B4 to B5 will be pumped directly into the mobile carbon filtration system. The effluent from the mobile carbon filtration system will be discharged to the frac tanks for confirmation testing.
- Water will be treated in batches and will be stored in 5 frac tanks per batch (the batch volume will depend on the frac tanks available). In general, a treated batch will represent approximately 450,000 L.
- Samples will be collected from the influent and effluent water from the mobile carbon filtration system during the final stage of filling the fifth and final frac tank of each batch. The effluent samples will be tested for VOC parameters. The influent sample will be held pending the effluent results. If the effluent results are acceptable, the influent sample will be disposed of. If the effluent result is unacceptable, the influent sample that was held will be analyzed by the laboratory. Pending the results, Clean Harbor may sample the individual frac tanks to assess treatment performance and discharge acceptability.
- Effluent water will be stored in the 5 frac tanks until analytical results are obtained.
 - If the results indicate adequate treatment to concentrations lower than the VOC PWQOs (including 280 ug/L for acetone), the frac tanks will be discharged via overland hose/pipe to the West Retention Pond.
 - If the results indicate elevated concentrations still exist above the PWQO, the effluent water stored in the frac tanks will be redirected for re-treatment.
 - Additionally, the influent sample will be analyzed, the mobile carbon filtration system will be assessed for carbon breakthrough.
- The treatment operation will be managed in a manner to allow continuous treatment of the South Ditch water, i.e. the next five frac tanks will be filled with treated water while testing from the previous batch is occurring.

Ten frac tanks, to a maximum of 20 frac tanks, will be used to store effluent water. This will allow for treating multiple batches while waiting for analytical results. The use of frac tanks for effluent storage may be increased to 20 based on operational capability.

Carbon in the mobile treatment system will be replaced as required based on testing. The mobile treatment plant that is currently treating the East Retention Pond water will provide a back-up treatment system for the South Ditch water during carbon change out or will be used to provide additional treatment by running the two plants in parallel.

In the event the two carbon treatment systems are run in parallel each system would complete their own separate batching and sampling program.

Water from berm B5 to B6 of the ditch will be transferred to berm B4 to B5 area as required by the South Ditch remediation.

3. South Ditch Remediation

The South Ditch will be remediated in sections based on the existing berms. Sections may be subdivided further based on the size that can be effectively managed and based on observations during the work and site conditions. The work program to infill the South Ditch has commenced and the section between B2 and B4 has been infilled through the procedures presented herein. The South Ditch will be remediated in four major sections.

3.1 Between berm B6-B7:

Berms B6-B7 are located at the southeast corner of the South Ditch. Water from between B6-B7 will be managed separately from other portions of South Ditch due to a leachate seep in the bank.

Water was pumped from this area into the LCS via the southeast cleanout. Sump 4 was operated to lower the leachate level within southeast area of LCS by transfer of the leachate to the leachate holding tank located prior to incineration.

The area has been temporarily remediated by installing a temporary clay plug in the area. Clay was stockpiled on the south side of ditch. As the water level was lowered within ditch, clay was placed within ditch and compacted.

Once the LCS is operating with the normal operational range (196 to 197 mASL), the temporary clay plug will be removed, along with any sediment/vegetation/root growth zone, and the excavation filled with compacted clay. The method of final infill will be based on the experience and lessons learned during the infill of B2 to B6.

3.2 Between berms B5-B6:

The area between berms B5-B6 represents the section of the east ditch that located adjacent to the LCS that does not contain the landfill perimeter berm above the LCS. Minor leachate seepage/staining was visually noted directly above the LCS when the LCS was at the peak hydraulic pressure. Currently, there are no visual observations of leachate seeps within this area. It is anticipated the risk for potential leachate seepage during remediation is low if the LCS hydraulic pressure is managed. Currently water from the South Ditch has flooded the vertical projection of the LCS trench.

Berm B5A has been constructed to provide the initial remediation zone for the B5 to B6 area. The remediation for the area will consist of the following:

- Water from Berm 5 to 5A will be pumped to berm B4 to B5
- Temporary berm above the LCS has been constructed for the section and will be installed along the complete B5 to B6 section.
- The excavation and clay placement will be conducted in a manner to ensure that at the end of the work day the bulk of the excavated area has been backfilled with compacted clay to above the LCS level (approximately 201 mASL). The overall section will take several days to complete the excavation and infill work.
- After water removal, the area will be excavated to remove the sediment, vegetation, and root growth zone for the daily work area. The excavation will extend to the native undisturbed clay. The excavated material will be trucked to the disposal area north of Cell 19-2A and shown on the following plan.
- Clay (free of vegetation and roots) from the South Berm will be will be excavated and trucked to the area, placed and compacted.
- During remediation activities, the LCS will be pumped in accordance with the leachate management plan (Section 4)

The section between berms B5A and B6 will be remediated as per berm B5 and B5A. Depending on site conditions and water level, a temporary berm(s) may or may not be installed to create a manageable work area. Any lessons learned will be incorporated into the infilling of the next section. The following figure provides the B5 to B6 zone for reference.

3.3 Between berms B4-B5:

Berms B4-B5 are located in the area that has the perimeter berm constructed above the LCS and is currently landfilled or currently being landfilled. No leachate seeps have been observed within this area. This area is proposed to be used to store water prior to treatment due to it's current status and that an increased water level in this section will have minimal inflow to the LCS if the South Ditch water elevation is higher than the LCS leachate elevation.

Water from between B4-B5 will be pumped to the mobile carbon filtration system. The water located in the B4-B5 area will be the source water for the temporary water treatment plant. Remediation and infilling of the ditch between berms B4-B5 will occur after remediation is complete between berms B5-B6.

The remediation of the area between berms B4 and B5 will be conducted in a manner that is similar to the B5 to B6 zone. Any lessons learned will be used to optimize the remediation for this section. The use of temporary berms to create workable zones will be assessed prior to filling the overall section and the amount of water that remains in the zone and that requires treatment. The LCS will be controlled in accordance with the leachate management section.

3.4 Between B1 and B2

Analytical results within this section of the ditch shows that this water does not require any prior treatment prior to being moved to the West Retention Pond. There does not appear to be any risk for potential leachate seeps in this area due to the distance between B1 - B2 ditch and the LCS. Therefore, this area will be remediated by moving the water to the West Retention Pond, and installing a clay plug and the anchor trench. This section will be the last section to be completed.

3.5 Final Cover Anchor Trench

Once the remedial South Ditch infill work has been completed and the LCS leachate level is approaching the normal operating range (196 to 197 mASL), the final cover anchor trench will be installed. The anchor trench is current being designed in preparation for the installation of final cover on Cell 19-1. The anchor trench will extend along the total length of the South Ditch. The anchor trench will in accordance with the concept and dimensions provided in the approved Design and Operations Report.

3.6 West Process Pond

The company will empty the West Process Pond, and once empty will have the pond liner mended by a contractor. Once the liner is mended, the south ditch water will be moved into this pond. This will facilitate the timely remediation of the south ditch and installation of the clay plug.

The water collected in the West Process Pond will then be treated as per section 2.3.1.2.

4. Leachate Collection System

4.1 Leachate Frac Tanks

To handle the high levels within the LCS the company proposes to use up to 20 Frac tanks onsite for temporary storage. Leachate from the LCS would be pumped into the Frac tanks to reduce leachate levels within in the LCS. Throughout this the company will continue to dispose of leachate through the incinerator secondary zone. The Frac tanks would be stored within individual containment provided by the vendor. The Frac tanks will be managed to the following requirements:

- 1) No more than 20 Frac Tanks shall be installed at the Site for temporary leachate storage;
- 2) All Frac tanks shall; have secondary containment supplied by the vendor
- 3) Operate, use and maintain the frac tanks in accordance with the incinerator ECA;
- 4) Store all Frac tanks in the maintenance yard at the site;
- 5) All frac tank vents will be connected in series and vented through a caustic scrubber (as approved in the leachate pond cover ECA) and a carbon bed;
- 6) Monitor and record the pressure of the frac tanks on the inlet to the caustic scrubber once daily;
- 7) Monitor the volume of leachate added or removed from the frac tanks on a daily basis; provide this information to MECP weekly on a separate tab of the LDR storage report;
- 8) By June 28, 2019 provide a plan to the Provincial Officer with a plan for the removal of the frac tanks from the site. The plan needs to include the removal of leachate, the cleaning of the frac tanks and timelines.

4.2 Operation During Remediation Activities

During the remediation period, the objective is to maintain the LCS leachate elevation at a level that is lower than the South Ditch water elevation. This will maintain an inward gradient from the South Ditch to the LCS and minimize the potential for leachate to seep to the South Ditch.

During active remediation in an area (excavation and initial filling), the LCS sump that is closest to the remediation zone will be pumped and the leachate transferred to the main leachate holding tank prior to incineration or to the frac tanks for storage. This will minimize the potential for localized leachate seepage into the dewatered area. During the remediation period on May 14th, Sump No. 3 was pumped to lower the leachate head in the area of the work. The following table provides hourly results related to volume pumped during the hour and the leachate head at Sump 3 (south west corner) and Sump 4 (mid-point of South Ditch). The results indicated that the LCS leachate elevation can be lowered by 0.5 to 0.7 m in the local area and by 0.2 m about 200 m along the trench. The reduction in leachate elevation successfully prevented the seep from draining and allowed the seep area to be excavated and sealed with compacted clay.

Sump 3 Volume Pumped	Sump 3 Leachate Elevation	Sump 4 Leachate Elevation
(L)	(m ASL)	(m ASL)
0	201.53	201.82
9979	201.18	201.82
14273	201.05	201.82
14320	201.00	201.80
14515	200.95	201.78
14727	200.93	201.76
14456	200.89	201.73
14325	200.86	201.71
14548	200.83	201.68
14645	201.16	201.60
4375	201.31	201.63
155	201.33	201.66
	Sump 3 Volume Pumped (L) 0 9979 14273 14320 14515 14727 14456 14325 14548 14645 4375 155	Sump 3 Sump 3 Volume Leachate Pumped Elevation (L) 201.53 9979 201.18 14273 201.05 14320 201.00 14515 200.95 14727 200.93 14456 200.86 14548 200.83 14645 201.16 4375 201.31

4.3 Leachate Management

Clean Harbors is committed to destroy a minimum of 1.3 million litres of leachate each month. In addition to committing to the leachate destruction rate, the following actions will be conducted:

- The size of the active subcells for Cell 19-2 will be reduced from 12,000 m² to be approximately 5,000 m²/subcell to reduce leachate generation. This size of active subcell will supply about 4 to 6 weeks of waste disposal capacity. The implementation of smaller cells should provide on average an 800,000 liters of surplus leachate volume which can be utilized to reduce the LCS, elimination of the leachate Frac tanks and eventually leachate within the three leachate ponds.
- Interim cover will be installed once a subcell reaches finished waste grades (subject to weather conditions)
- Final cover will be installed on Cell 19-1 (approximately 6 hectares) in 2019.
- The final cover anchor trench will be installed along the full length of the South Ditch to minimize stormwater infiltration to the LCS.
- Leachate destruction will be focused on returning the LCS to the normal operating elevations, then to destruction of leachate that is stored in the frac tanks, and finally to the destruction of the leachate that is stored in the on-site leachate storage ponds. The rate of destruction will depend on weather conditions, and the timing Long Term Leachate Management Strategy submitted to the MECP.
- Clean Harbors will continue to discuss with MECP approvals staff the options proposed for increasing the leachate destruction rate.

5. Sampling Plan

The sampling program will consist of the routine samples required of the EQ Pond, the West Retention Pond and the East Retention Pond and as specified in the storm water management plan ECA. This is testing is not discussed further. The time period for request the laboratory to provide the results will be determined by Clean Harbors. Initial or critical samples will be requested for rush analysis, the other samples will be normal turn-around time. The additional sampling plan is summarized as follows:

Location	Parameter	Rate	Comments
EQ Pond Discharge	VOC (standard list)	Daily (regular third- party laboratory turn-around time)	Until South Ditch is infilled and one week after the last of the South Ditch treated water has been discharged to West Pond
South Ditch Treatment Plant Discharge	VOC (standard list)	Every 5 th frac tank (third-party laboratory rush 24- hour turn-around time)	Required until South Ditch Water treated.
	Metals (standard list)	One sample monthly (regular third-party laboratory turn- around time)	Required until South Ditch Water treated. To be sampled on the same day as the monthly surface water monitoring samples.
South Ditch Treatment Plant Influent	VOC (standard list)	Every 5 th frac tank	Sample held pending result and only tested if effluent shows an impact
	Metals (standard list)	One sample monthly (regular third-party laboratory turn- around time)	Required until South Ditch Water treated. To be sampled on the same day as the monthly surface water monitoring samples.

On May 23, 2019 the company will conduct another south ditch treatment test through the carbon treatment unit. Samples will be collected of the influent and effluent and submitted to the ALS analysis for metal and VOC analysis. Samples will be requested for rush analysis and results will be submitted to MECP for their review.

Clean Harbors will collect additional samples of the South Ditch or pond water on an as required basis to assess the general strength of the water, potential concerns, or obtaining general knowledge and confirmation.

Water elevations will be collected by Clean Harbors at minimum of twice per week of the pond and ditch levels, and the LCS levels. These levels will allow the water levels to be assessed and to assess the potential water movement direction for various sections/locations.

6. Contingency Plans

6.1 Leachate Seeps

During remedial work in an area, the LCS will be pumped at Sumps 3 and/or 4 to provide a localized reduction in the LCS during the active remedial work. This LCS level management will reduce the potential for a leachate seep to be present, especially in the upper surface zone, and to reduce the hydraulic pressure on the LCS side wall.

Should a leachate seep be identified the remedial response will be as follows:

- Isolate the seep location with clay berms or other materials that will contain the seep and minimize/reduce the impact area.
- Pump the collected leachate to the local LCS clean-out. If volume is small and quickly controlled a site vacuum truck may be used to remove the leachate.
- Assess the ability of the LCS system to control the seep discharge
- Take steps to the reduce the seep flow and seal the seep area with a clay plug and additional compacted clay material

6.2 Carbon Breakthrough

Assess the VOC analytical results for treatment effluent samples and EQ Pond samples when received to determine if VOC results show VOC levels that are below the PWQO including acetone level. If sample results are unacceptable as noted in this plan, assess influent results to assess breakthrough and need to replace activated carbon.

7. Schedule and Reporting

The work program provided represents the current discussions. Clean Harbors will provide a weekly email update to the MECP on Friday afternoons. The weekly update will include information documenting work performed in the previous week and plans for the future week. An update on sampling results will be provided if available. Minor amendments to the work program based on lessons learned and data collected will be provided as part of the weekly email.

Clean Harbors will contact the MECP immediately upon receiving EQ sampling results that indicate any of the treatment system are not performing as intended in the document (i.e. unacceptable VOC levels).

APPENDIX A

Results Summary L2276181

Job Reference	44985-30-10								
Report To	LAURA ERMETA, GHD Limited (Waterloo)								
Date Received	21-May-2019 14:36								
Report Date	22-May-2019 12:31								
Report Version	1								
- Client Sample ID			BD#1	BD#2	BD#3				
Date Sampled			17-May-	17-May-	17-May-				
Time Sampled			2019 15:00	2019 15:00	2019 15:00				
ALS Sample ID			L2276181-	L2276181-	L2276181-				
ALS Sample ID	Louiset		1 D4 D5	2	3				
Parameter	Detection Limit	Units	Water	Water	Water				
Volatile Organic Compounds (Water)									
Acetone	20	ug/L	1720	650	11400				
Benzene	0.50	ug/L	< 0.50	< 0.50	1.29				
Bromodichloromethane	1.0	ug/L	<1.0	<1.0	<1.0				
Bromoform	1.0	ug/L	<1.0	<1.0	<1.0				
Bromomethane	0.50	ug/L	< 0.50	< 0.50	< 0.50				
Carbon Disulfide	1.0	11g/L	<1.0	<1.0	14.5				
Carbon tetrachloride	0.50	110/L	<0.50	<0.50	<0.50				
Chlorobenzene	0.50	110/L	<0.50	<0.50	<0.50				
Dibromochloromethane	1.0	1107/I	<1.0	<1.0	<1.0				
Chloroothano	1.0	ug/L	<1.0	<1.0	<1.0				
Chloroform	1.0	ug/L	<1.0	<1.0	<1.0				
Chloromethane	1.0	ug/L	<1.0	<1.0	<1.0				
1.2 Dibuomentheme	1.0	ug/L	<1.0	<1.0	<1.0				
1,2-Dibromoetnane	0.20	ug/L	<0.20	<0.20	<0.20				
1,2-Dichlorobenzene	0.50	ug/L	< 0.50	< 0.50	< 0.50				
1,3-Dichlorobenzene	0.50	ug/L	< 0.50	< 0.50	<0.50				
1,4-Dichlorobenzene	0.50	ug/L	< 0.50	< 0.50	<0.50				
Dichlorodifluoromethane	1.0	ug/L	<1.0	<1.0	<1.0				
1,1-Dichloroethane	0.50	ug/L	< 0.50	< 0.50	0.73				
1,2-Dichloroethane	0.50	ug/L	< 0.50	< 0.50	1.31				
1,1-Dichloroethylene	0.50	ug/L	< 0.50	< 0.50	< 0.50				
cis-1,2-Dichloroethylene	0.50	ug/L	1.56	1.44	42.2				
trans-1,2-Dichloroethylene	0.50	ug/L	< 0.50	< 0.50	< 0.90				
Dichloromethane	2.0	ug/L	<2.0	<2.0	24.0				
1,2-Dichloropropane	0.50	ug/L	< 0.50	< 0.50	< 0.50				
cis-1,3-Dichloropropene	0.50	ug/L	< 0.50	< 0.50	< 0.50				
trans-1.3-Dichloropropene	0.50	ug/L	< 0.50	< 0.50	< 0.50				
Ethylbenzene	0.50	$\frac{100}{10}$	< 0.50	< 0.50	2.27				
n-Heyane	0.50	110/L	<0.50	<0.50	<0.50				
2-Hexanone	20	110/L	<20	<20	<20				
Methyl Fthyl Ketone	20	11g/L	370	130	4900				
Methyl Isobutyl Ketono	20	ug/L	-20	-20	270				
MTDE	20	ug/L	1.64	1 40	279				
MIDE	0.50	ug/L	1.04	1.40	52.9				
1112 Tetrachland athread	0.50	ug/L	<0.50	<0.50	<0.50				
1,1,1,2-1 etrachioroethane	0.50	ug/L	< 0.50	< 0.50	< 0.50				
1,1,2,2-Tetrachloroethane	0.50	ug/L	< 0.50	< 0.50	<0.50				
Tetrachloroethylene	0.50	ug/L	< 0.50	< 0.50	< 0.50				
Toluene	0.50	ug/L	1.49	< 0.50	58.3				
1,1,1-Trichloroethane	0.50	ug/L	< 0.50	< 0.50	< 0.50				
1,1,2-Trichloroethane	0.50	ug/L	< 0.50	< 0.50	< 0.50				
Trichloroethylene	0.50	ug/L	< 0.50	< 0.50	1.59				
Trichlorofluoromethane	1.0	ug/L	<1.0	<1.0	<1.0				
Vinyl chloride	0.50	ug/L	< 0.50	< 0.50	< 0.50				
o-Xylene	0.50	ug/L	< 0.50	< 0.50	6.20				
m+p-Xylenes	1.0	ug/L	<1.0	<1.0	10.5				
Xylenes (Total)	1.1	ug/L	<1.1	<1.1	16.7				
		5,							

Appendix C Analytical Data Reports Collected During Effluent Discharge

GHD Limited (Waterloo) ATTN: Kory Ozgun 455 PHILLIP STREET WATERLOO ON N2L 3X2 Date Received: 23-MAR-22 Report Date: 30-MAR-22 15:02 (MT) Version: FINAL

Client Phone: 519-884-0510

Certificate of Analysis

Lab Work Order #: L2694108 Project P.O. #: 73506479-1 Job Reference: 44985-20-21 C of C Numbers: Legal Site Desc:

Rich Hawthong

Rick Hawthorne Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 60 Northland Road, Unit 1, Waterloo, ON N2V 2B8 Canada | Phone: +1 519 886 6910 | Fax: +1 519 886 9047 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 💭

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2694108-1 EQ POND DISCHARGE							
Sampled By: CLIENT on 22-MAR-22 @ 11:00							
Field Tests							
pH Client Supplied	8 70		0.10	nH		24-MAR-22	R5749751
Temperature Client	10.0		-50	Deg C		24-MAR-22	R5749751
Physical Tests	10.0			209.0			
Conductivity	716		1.0	umhos/cm		24-MAR-22	R5750260
рН	8.52		0.10	pH units		24-MAR-22	R5750260
Total Suspended Solids	3.6		3.0	mg/L	25-MAR-22	26-MAR-22	R5750898
Total Dissolved Solids	428	DLDS	20	mg/L		25-MAR-22	R5750678
Anions and Nutrients							
Alkalinity, Total (as CaCO3)	93.3		1.0	mg/L		24-MAR-22	R5750260
Unionized ammonia	0.132		0.0052	mg/L		28-MAR-22	
Ammonia, Total (as N)	1.28	DLHC	0.050	mg/L		25-MAR-22	R5750741
Bromide (Br)	1.66		0.10	mg/L		24-MAR-22	R5750162
Chloride (Cl)	57.6		0.50	mg/L		24-MAR-22	R5750162
Fluoride (F)	0.942		0.020	mg/L		24-MAR-22	R5750162
Nitrate (as N)	0.109		0.020	mg/L		24-MAR-22	R5750162
Nitrite (as N)	<0.010		0.010	mg/L		24-MAR-22	R5750162
Total Kjeldahl Nitrogen	2.62		0.050	mg/L	28-MAR-22	28-MAR-22	R5750843
Phosphorus, Total	0.0268		0.0030	mg/L	29-MAR-22	30-MAR-22	R5751788
Sulfate (SO4)	197		0.30	mg/L		24-MAR-22	R5750162
	0.0000		0.0000				D5750040
Organic / Inorganic Carbon	<0.0020		0.0020	mg/∟		24-IVIAR-22	R5750210
Dissolved Carbon Filtration Location	LAB					24-MAR-22	R5749698
Dissolved Organic Carbon	4.93		0.50	ma/L	24-MAR-22	24-MAR-22	R5750251
Total Metals			0.00				
Aluminum (Al)-Total	0.110		0.010	mg/L	23-MAR-22	24-MAR-22	R5749909
Antimony (Sb)-Total	0.00040		0.00010	mg/L	23-MAR-22	24-MAR-22	R5749909
Arsenic (As)-Total	0.00098		0.00010	mg/L	23-MAR-22	24-MAR-22	R5749909
Barium (Ba)-Total	0.0322		0.00020	mg/L	23-MAR-22	24-MAR-22	R5749909
Beryllium (Be)-Total	<0.00010		0.00010	mg/L	23-MAR-22	24-MAR-22	R5749909
Bismuth (Bi)-Total	<0.000050		0.000050	mg/L	23-MAR-22	24-MAR-22	R5749909
Boron (B)-Total	0.104		0.010	mg/L	23-MAR-22	24-MAR-22	R5749909
Cadmium (Cd)-Total	<0.000050	DLM	0.000050	mg/L	23-MAR-22	24-MAR-22	R5749909
Calcium (Ca)-Total	64.6		0.50	mg/L	23-MAR-22	24-MAR-22	R5749909
Cobalt (Co)-Total	0.00020		0.00010	mg/L	23-MAR-22	24-MAR-22	R5749909
Copper (Cu)-Total	0.0020		0.0010	mg/L	23-MAR-22	24-MAR-22	R5749909
Iron (Fe)-Total	0.087		0.050	mg/L	23-MAR-22	24-MAR-22	R5749909
Lead (Pb)-Total	0.00019		0.00010	mg/L	23-MAR-22	24-MAR-22	R5749909
Magnesium (Mg)-Total	22.7		0.050	mg/L	23-MAR-22	24-MAR-22	R5749909
Manganese (Mn)-Total	0.00827		0.00050	mg/L	23-MAR-22	24-MAR-22	R5749909
Mercury (Hg)-Total	<0.000050		0.0000050	mg/L		24-MAR-22	R5750023
Molybdenum (Mo)-Total	0.0518		0.000050	mg/L	23-MAR-22	24-MAR-22	R5749909

* Refer to Referenced Information for Qualifiers (if any) and Methodology.

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2694108-1 EQ POND DISCHARGE Sampled By: CLIENT on 22-MAR-22 @ 11:00 Matrix: WATER							
Total Metals							
Nickel (Ni)-Total	0.00349		0.00050	mg/L	23-MAR-22	24-MAR-22	R5749909
Potassium (K)-Total	6.76		0.050	mg/L	23-MAR-22	24-MAR-22	R5749909
Selenium (Se)-Total	0.00219		0.000050	mg/L	23-MAR-22	24-MAR-22	R5749909
Silicon (Si)-Total	1.64		0.10	mg/L	23-MAR-22	24-MAR-22	R5749909
Silver (Ag)-Total	<0.000050		0.000050	mg/L	23-MAR-22	24-MAR-22	R5749909
Sodium (Na)-Total	40.4		0.50	mg/L	23-MAR-22	24-MAR-22	R5749909
Strontium (Sr)-Total	0.537		0.0010	mg/L	23-MAR-22	24-MAR-22	R5749909
Thallium (TI)-Total	0.000026		0.000010	mg/L	23-MAR-22	24-MAR-22	R5749909
Tin (Sn)-Total	0.00012		0.00010	mg/L	23-MAR-22	24-MAR-22	R5749909
Vanadium (V)-Total	<0.00050		0.00050	mg/L	23-MAR-22	24-MAR-22	R5749909
Zinc (Zn)-Total	<0.0030		0.0030	mg/L	23-MAR-22	24-MAR-22	R5749909
Speciated Metals							
Chromium, Hexavalent	0.00051		0.00050	mg/L		24-MAR-22	R5750232
Aggregate Organics							
COD	20		10	mg/L		24-MAR-22	R5750062
Phenols (4AAP)	0.0011		0.0010	mg/L		25-MAR-22	R5750872
	.00		20				DEZEDOOE
Acetone	<20		20	ug/L		28-MAR-22	R5750995
Promodiobleromothene	<0.50		0.50	ug/∟		20-IVIAR-22	R5750995
Bromodichioromethane	<1.0		1.0	ug/L		28-MAR-22	R5750995
Bromonothana	<1.0		1.0	ug/L		20-IVIAR-22	R5750995
	<0.50		0.50	ug/∟		20-IVIAR-22	R5750995
	<0.50		0.50	ug/L		28-MAR-22	R5750995
	<0.50		0.50	ug/∟		20-IVIAR-22	R5750995
Chloroothoro	<1.0		1.0	ug/∟		20-IVIAR-22	R5750995
Chloroform	<1.0		1.0	ug/∟		20-IVIAR-22	R5750995
1.2 Dibromoethano	<1.0		1.0	ug/∟		20-IVIAR-22	R5750995
	<0.20		0.20	ug/L		20-IVIAR-22	R5750005
	<0.50		0.50	ug/∟		20-MAR-22	R5750995
1 4-Dichlorobenzene	<0.50		0.50	ug/L		20-MAR-22	R5750005
Dichlorodifluoromethane	<0.50		1.0	ug/∟		20-MAR-22	R5750995
1 1-Dichloroethane	<0.50		0.50	ug/L		20-MAR-22	R5750005
1.2-Dichloroethane	<0.50		0.50	ug/L		20-MAR-22	R5750005
1 1-Dichloroethylene	<0.50		0.50	ug/L		20-MAR-22	R5750005
cis-1 2-Dichloroethylene	<0.50		0.50	ug/L		20-MAR-22	R5750005
trans-1 2-Dichloroethylene	<0.50		0.50	ug/L		20-10/AIX-22	R5750005
Dichloromethane	<0.00		2.0	ug/L		20-10/712-22 28-MAR-22	R5750005
1 2-Dichloropropane	~0.50		2.0	ug/L		28-MAR-22	R5750005
cis-1 3-Dichloropropene	<0.50		0.50	ug/L		28-MAR-22	R5750005
trans-1.3-Dichloropropene	<0.50		0.50	ua/l		28-MAR-22	R5750005
Fthylbenzene	<0.50		0.50	ug/L		28-MAR-22	R5750005
	<0.00		0.50	uy/L		20-101/411-22	1/01/00/990

* Refer to Referenced Information for Qualifiers (if any) and Methodology.

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2694108-1 EQ POND DISCHARGE Sampled By: CLIENT on 22-MAR-22 @ 11:00 Matrix: WATER							
Volatile Organic Compounds							
n-Hexane	<0.50		0.50	ug/L		28-MAR-22	R5750995
Methyl Ethyl Ketone	<20		20	ug/L		28-MAR-22	R5750995
Methyl Isobutyl Ketone	<20		20	ug/L		28-MAR-22	R5750995
МТВЕ	<0.50		0.50	ug/L		28-MAR-22	R5750995
Styrene	<0.50		0.50	ug/L		28-MAR-22	R5750995
1,1,1,2-Tetrachloroethane	<0.50		0.50	ug/L		28-MAR-22	R5750995
1,1,2,2-Tetrachloroethane	<0.50		0.50	ug/L		28-MAR-22	R5750995
Tetrachloroethylene	<0.50		0.50	ug/L		28-MAR-22	R5750995
Toluene	<0.50		0.50	ug/L		28-MAR-22	R5750995
1,1,1-Trichloroethane	<0.50		0.50	ug/L		28-MAR-22	R5750995
1,1,2-Trichloroethane	<0.50		0.50	ug/L		28-MAR-22	R5750995
Trichloroethylene	<0.50		0.50	ug/L		28-MAR-22	R5750995
Trichlorofluoromethane	<1.0		1.0	ug/L		28-MAR-22	R5750995
Vinyl chloride	<0.50		0.50	ug/L		28-MAR-22	R5750995
o-Xylene	<0.50		0.50	ug/L		28-MAR-22	R5750995
m+p-Xylenes	<1.0		1.0	ug/L		28-MAR-22	R5750995
Xylenes (Total)	<1.1		1.1	ug/L		28-MAR-22	
Surrogate: 4-Bromofluorobenzene	97.9		70-130	%		28-MAR-22	R5750995
Surrogate: 1,4-Difluorobenzene	101.5		70-130	%		28-MAR-22	R5750995
Trihalomethanes							
Total THMs	<2.0		2.0	ug/L		28-MAR-22	
Acid Extractables							
2,3,6-Trichlorophenol	<1.0	DLIS	1.0	ug/L	29-MAR-22	30-MAR-22	R5751680
Surrogate: 2,4,6-Tribromophenol	113.2		40-150	%	29-MAR-22	30-MAR-22	R5751680
	-0.40	פווח	0.40	ug/I	20 MAP 22	20 MAP 22	D5751570
Acenaphthylene	<0.40	DUIS	0.40	ug/L	29-MAR-22	30-MAR-22	R5751579
	<0.40	DUS	0.40	ug/L	20-MAR-22	30-MAR-22	R5751579
Benzo(a)anthracene	<0.40	DUS	0.40	ug/L	20-MAR-22	30-MAR-22	R5751579
Benzo(a)pyrene	<0.40	DLIS	0.40	ug/L	29-MAR-22	30-MAR-22	R5751579
Benzo(b)fluoranthene	<0.10	DLIS	0.40	ug/L	29-MAR-22	30-MAR-22	R5751579
Benzo(abi)pervlene	<0.40	DLIS	0.40	ug/L	29-MAR-22	30-MAR-22	R5751579
Benzo(k)fluoranthene	<0.40	DLIS	0.40	ug/L	29-MAR-22	30-MAR-22	R5751579
4-Chloroaniline	<0.80	DLIS	0.80	ug/L	29-MAR-22	30-MAR-22	R5751579
Bis(2-chloroethyl)ether	<0.80	DLIS	0.80	ug/L	29-MAR-22	30-MAR-22	R5751579
2-Chlorophenol	<0.60	DLIS	0.60	ug/l	29-MAR-22	30-MAR-22	R5751579
Chrysene	<0.00	DLIS	0.00	ug/L	29-MAR-22	30-MAR-22	R5751579
Dibenz(a.h)anthracene	<0.40	DLIS	0.40	ua/L	29-MAR-22	30-MAR-22	R5751579
1.2-Dichlorobenzene	<0.80	DLIS	0.80	ua/l	29-MAR-22	30-MAR-22	R5751579
1.3-Dichlorobenzene	<0.80	DLIS	0.80	ua/L	29-MAR-22	30-MAR-22	R5751579
1,4-Dichlorobenzene	<0.80	DLIS	0.80	ug/L	29-MAR-22	30-MAR-22	R5751579
3,3-Dichlorobenzidine	<0.80	DLIS	0.80	ug/L	29-MAR-22	30-MAR-22	R5751579
		1		5	_		

* Refer to Referenced Information for Qualifiers (if any) and Methodology.
| Sample Details/Parameters | Result | Qualifier* | D.L. | Units | Extracted | Analyzed | Batch |
|--|---------|------------|---------|----------|-----------|-----------|----------|
| L2694108-1 EQ POND DISCHARGE
Sampled By: CLIENT on 22-MAR-22 @ 11:00
Matrix: WATER | | | | | | | |
| Semi-Volatile Organics | | | | | | | |
| 2,4-Dichlorophenol | <0.60 | DLIS | 0.60 | ug/L | 29-MAR-22 | 30-MAR-22 | R5751579 |
| Diethylphthalate | <0.40 | DLIS | 0.40 | ug/L | 29-MAR-22 | 30-MAR-22 | R5751579 |
| Dimethylphthalate | <0.40 | DLIS | 0.40 | ug/L | 29-MAR-22 | 30-MAR-22 | R5751579 |
| 2,4-Dimethylphenol | <1.0 | DLIS | 1.0 | ug/L | 29-MAR-22 | 30-MAR-22 | R5751579 |
| 2,4-Dinitrophenol | <2.0 | DLIS | 2.0 | ug/L | 29-MAR-22 | 30-MAR-22 | R5751579 |
| 2,4-Dinitrotoluene | <0.80 | DLIS | 0.80 | ug/L | 29-MAR-22 | 30-MAR-22 | R5751579 |
| 2,6-Dinitrotoluene | <0.80 | DLIS | 0.80 | ug/L | 29-MAR-22 | 30-MAR-22 | R5751579 |
| Bis(2-ethylhexyl)phthalate | <2.0 | DLIS | 2.0 | ug/L | 29-MAR-22 | 30-MAR-22 | R5751579 |
| Fluoranthene | <0.40 | DLIS | 0.40 | ug/L | 29-MAR-22 | 30-MAR-22 | R5751579 |
| Fluorene | <0.40 | DLIS | 0.40 | ug/L | 29-MAR-22 | 30-MAR-22 | R5751579 |
| Hexachlorobenzene | <0.080 | DLIS | 0.080 | ug/L | 29-MAR-22 | 30-MAR-22 | R5751579 |
| Hexachlorobutadiene | <0.40 | DLIS | 0.40 | ug/L | 29-MAR-22 | 30-MAR-22 | R5751579 |
| Indeno(1,2,3-cd)pyrene | <0.40 | DLIS | 0.40 | ug/L | 29-MAR-22 | 30-MAR-22 | R5751579 |
| 1-Methylnaphthalene | <0.80 | DLIS | 0.80 | ug/L | 29-MAR-22 | 30-MAR-22 | R5751579 |
| 2-Methylnaphthalene | <0.80 | DLIS | 0.80 | ug/L | 29-MAR-22 | 30-MAR-22 | R5751579 |
| Naphthalene | <0.40 | DLIS | 0.40 | ug/L | 29-MAR-22 | 30-MAR-22 | R5751579 |
| Pentachlorophenol | <1.0 | DLIS | 1.0 | ug/L | 29-MAR-22 | 30-MAR-22 | R5751579 |
| Perylene | <0.40 | DLIS | 0.40 | ug/L | 29-MAR-22 | 30-MAR-22 | R5751579 |
| Phenanthrene | <0.40 | DLIS | 0.40 | ug/L | 29-MAR-22 | 30-MAR-22 | R5751579 |
| Pyrene | <0.40 | DLIS | 0.40 | ug/L | 29-MAR-22 | 30-MAR-22 | R5751579 |
| 2,3,4,5-Tetrachlorophenol | <1.0 | DLIS | 1.0 | ug/L | 29-MAR-22 | 30-MAR-22 | R5751579 |
| 2,3,4,6-Tetrachlorophenol | <1.0 | DLIS | 1.0 | ug/L | 29-MAR-22 | 30-MAR-22 | R5751579 |
| 1,2,4-Trichlorobenzene | <0.80 | DLIS | 0.80 | ug/L | 29-MAR-22 | 30-MAR-22 | R5751579 |
| 2,4,5-Trichlorophenol | <1.0 | DLIS | 1.0 | ug/L | 29-MAR-22 | 30-MAR-22 | R5751579 |
| 2,4,6-Trichlorophenol | <1.0 | DLIS | 1.0 | ug/L | 29-MAR-22 | 30-MAR-22 | R5751579 |
| Surrogate: 2-Fluorobiphenyl | 84.3 | | 40-130 | % | 29-MAR-22 | 30-MAR-22 | R5751579 |
| Surrogate: Nitrobenzene d5 | 86.5 | | 40-130 | % | 29-MAR-22 | 30-MAR-22 | R5751579 |
| Surrogate: d14-Terphenyl | 85.5 | | 40-130 | % | 29-MAR-22 | 30-MAR-22 | R5751579 |
| L2694108-2POND D WEST PONDSampled By:CLIENT on 22-MAR-22 @ 11:00Matrix:WATER | | | | | | | |
| Field Tests | | | | | | | |
| pH, Client Supplied | 7.80 | | 0.10 | pН | | 24-MAR-22 | R5749751 |
| Temperature, Client | 10.0 | | -50 | Deg. C | | 24-MAR-22 | R5749751 |
| Physical Tests | | | | | | | |
| Conductivity | 737 | | 1.0 | umhos/cm | | 24-MAR-22 | R5750260 |
| pH | 8.02 | | 0.10 | pH units | | 24-MAR-22 | R5750260 |
| Total Suspended Solids | 13.4 | | 3.0 | mg/L | 25-MAR-22 | 26-MAR-22 | R5750898 |
| Total Dissolved Solids | 459 | DLDS | 20 | mg/L | | 25-MAR-22 | R5750678 |
| Anions and Nutrients | | | | | | | |
| Alkalinity, Total (as CaCO3) | 101 | | 1.0 | mg/L | | 24-MAR-22 | R5750260 |
| Unionized ammonia | 0.00838 | | 0.00070 | mg/L | | 28-MAR-22 | |

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2694108-2 POND D WEST POND Sampled By: CLIENT on 22-MAR-22 @ 11:00 Matrix: WATER							
Anions and Nutrients							
Ammonia, Total (as N)	0.595	DLHC	0.050	mg/L		25-MAR-22	R5750741
Bromide (Br)	1.61		0.10	mg/L		24-MAR-22	R5750162
Chloride (Cl)	56.2		0.50	mg/L		24-MAR-22	R5750162
Fluoride (F)	1.06		0.020	mg/L		24-MAR-22	R5750162
Nitrate (as N)	0.180		0.020	mg/L		24-MAR-22	R5750162
Nitrite (as N)	<0.010		0.010	mg/L		24-MAR-22	R5750162
Total Kjeldahl Nitrogen	1.43		0.050	mg/L	28-MAR-22	28-MAR-22	R5750843
Phosphorus, Total	0.0325		0.0030	mg/L	29-MAR-22	30-MAR-22	R5751788
Sulfate (SO4)	202		0.30	mg/L		24-MAR-22	R5750162
Cyanides				0			
Cyanide, Total	<0.0020		0.0020	mg/L		24-MAR-22	R5750210
Organic / Inorganic Carbon							
Dissolved Carbon Filtration Location	LAB					24-MAR-22	R5749698
Dissolved Organic Carbon	4.87		0.50	mg/L	24-MAR-22	24-MAR-22	R5750251
Total Metals							
Aluminum (Al)-Total	0.660		0.010	mg/L	23-MAR-22	24-MAR-22	R5749909
Antimony (Sb)-Total	0.00046		0.00010	mg/L	23-MAR-22	24-MAR-22	R5749909
Arsenic (As)-Total	0.00141		0.00010	mg/L	23-MAR-22	24-MAR-22	R5749909
Barium (Ba)-Total	0.0377		0.00020	mg/L	23-MAR-22	24-MAR-22	R5749909
Beryllium (Be)-Total	<0.00010		0.00010	mg/L	23-MAR-22	24-MAR-22	R5749909
Bismuth (Bi)-Total	<0.000050		0.000050	mg/L	23-MAR-22	24-MAR-22	R5749909
Boron (B)-Total	0.114		0.010	mg/L	23-MAR-22	24-MAR-22	R5749909
Cadmium (Cd)-Total	<0.000080	DLM	0.000080	mg/L	23-MAR-22	24-MAR-22	R5749909
Calcium (Ca)-Total	68.1		0.50	mg/L	23-MAR-22	24-MAR-22	R5749909
Cobalt (Co)-Total	0.00057		0.00010	mg/L	23-MAR-22	24-MAR-22	R5749909
Copper (Cu)-Total	0.0028		0.0010	mg/L	23-MAR-22	24-MAR-22	R5749909
Iron (Fe)-Total	0.849		0.050	mg/L	23-MAR-22	24-MAR-22	R5749909
Lead (Pb)-Total	0.00063		0.00010	mg/L	23-MAR-22	24-MAR-22	R5749909
Magnesium (Mg)-Total	24.1		0.050	mg/L	23-MAR-22	24-MAR-22	R5749909
Manganese (Mn)-Total	0.0510		0.00050	mg/L	23-MAR-22	24-MAR-22	R5749909
Mercury (Hg)-Total	<0.000050		0.0000050	mg/L		24-MAR-22	R5750023
Molybdenum (Mo)-Total	0.0510		0.000050	mg/L	23-MAR-22	24-MAR-22	R5749909
Nickel (Ni)-Total	0.00438		0.00050	mg/L	23-MAR-22	24-MAR-22	R5749909
Potassium (K)-Total	7.04		0.050	mg/L	23-MAR-22	24-MAR-22	R5749909
Selenium (Se)-Total	0.00268		0.000050	mg/L	23-MAR-22	24-MAR-22	R5749909
Silicon (Si)-Total	2.93		0.10	mg/L	23-MAR-22	24-MAR-22	R5749909
Silver (Ag)-Total	<0.000050		0.000050	mg/L	23-MAR-22	24-MAR-22	R5749909
Sodium (Na)-Total	40.5		0.50	mg/L	23-MAR-22	24-MAR-22	R5749909
Strontium (Sr)-Total	0.591		0.0010	mg/L	23-MAR-22	24-MAR-22	R5749909
Thallium (TI)-Total	0.000039		0.000010	mg/L	23-MAR-22	24-MAR-22	R5749909
Tin (Sn)-Total	<0.00010		0.00010	mg/L	23-MAR-22	24-MAR-22	R5749909
Vanadium (V)-Total	0.00154		0.00050	mg/L	23-MAR-22	24-MAR-22	R5749909

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2694108-2 POND D WEST POND							
Sampled By: CLIENT on 22-MAR-22 @ 11:00							
Matrix: WATER							
	0.0070		0.0000				D 57 40000
Speciated Metals	0.0072		0.0030	mg/L	23-IVIAR-22	24-MAR-22	R5749909
Chromium Hexavalent	0.00075		0 00050	ma/l		24-MAR-22	R5750232
Aggregate Organics	0.00075		0.00000	ing/L			10100202
COD	21		10	mg/L		24-MAR-22	R5750062
Phenols (4AAP)	0.0013		0.0010	mg/L		25-MAR-22	R5750872
Volatile Organic Compounds				-			
Acetone	<20		20	ug/L		28-MAR-22	R5750995
Benzene	<0.50		0.50	ug/L		28-MAR-22	R5750995
Bromodichloromethane	<1.0		1.0	ug/L		28-MAR-22	R5750995
Bromoform	<1.0		1.0	ug/L		28-MAR-22	R5750995
Bromomethane	<0.50		0.50	ug/L		28-MAR-22	R5750995
Carbon tetrachloride	<0.50		0.50	ug/L		28-MAR-22	R5750995
Chlorobenzene	<0.50		0.50	ug/L		28-MAR-22	R5750995
Dibromochloromethane	<1.0		1.0	ug/L		28-MAR-22	R5750995
Chloroethane	<1.0		1.0	ug/L		28-MAR-22	R5750995
Chloroform	<1.0		1.0	ug/L		28-MAR-22	R5750995
1,2-Dibromoethane	<0.20		0.20	ug/L		28-MAR-22	R5750995
1,2-Dichlorobenzene	<0.50		0.50	ug/L		28-MAR-22	R5750995
1,3-Dichlorobenzene	<0.50		0.50	ug/L		28-MAR-22	R5750995
1,4-Dichlorobenzene	<0.50		0.50	ug/L		28-MAR-22	R5750995
Dichlorodifluoromethane	<1.0		1.0	ug/L		28-MAR-22	R5750995
1,1-Dichloroethane	<0.50		0.50	ug/L		28-MAR-22	R5750995
1,2-Dichloroethane	<0.50		0.50	ug/L		28-MAR-22	R5750995
1,1-Dichloroethylene	<0.50		0.50	ug/L		28-MAR-22	R5750995
cis-1,2-Dichloroethylene	<0.50		0.50	ug/L		28-MAR-22	R5750995
trans-1,2-Dichloroethylene	<0.50		0.50	ug/L		28-MAR-22	R5750995
Dichloromethane	<2.0		2.0	ug/L		28-MAR-22	R5750995
1,2-Dichloropropane	<0.50		0.50	ug/L		28-MAR-22	R5750995
cis-1,3-Dichloropropene	<0.50		0.50	ug/L		28-MAR-22	R5750995
trans-1,3-Dichloropropene	<0.50		0.50	ug/L		28-MAR-22	R5750995
Ethylbenzene	<0.50		0.50	ug/L		28-MAR-22	R5750995
n-Hexane	<0.50		0.50	ug/L		28-MAR-22	R5750995
Methyl Ethyl Ketone	<20		20	ug/L		28-MAR-22	R5750995
Methyl Isobutyl Ketone	<20		20	ug/L		28-MAR-22	R5750995
МТВЕ	<0.50		0.50	ug/L		28-MAR-22	R5750995
Styrene	<0.50		0.50	ug/L		28-MAR-22	R5750995
1,1,1,2-Tetrachloroethane	<0.50		0.50	ug/L		28-MAR-22	R5750995
1,1,2,2-Tetrachloroethane	<0.50		0.50	ug/L		28-MAR-22	R5750995
Tetrachloroethylene	<0.50		0.50	ug/L		28-MAR-22	R5750995
Toluene	<0.50		0.50	ug/L		28-MAR-22	R5750995
1,1,1-Trichloroethane	<0.50		0.50	ug/L		28-MAR-22	R5750995

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2694108-2 POND D WEST POND Sampled By: CLIENT on 22-MAR-22 @ 11:00							
Matrix: WATER							
Volatile Organic Compounds							
1,1,2-Trichloroethane	<0.50		0.50	ug/L		28-MAR-22	R5750995
Trichloroethylene	<0.50		0.50	ug/L		28-MAR-22	R5750995
Trichlorofluoromethane	<1.0		1.0	ug/L		28-MAR-22	R5750995
Vinyl chloride	<0.50		0.50	ug/L		28-MAR-22	R5750995
o-Xylene	<0.50		0.50	ug/L		28-MAR-22	R5750995
m+p-Xylenes	<1.0		1.0	ug/L		28-MAR-22	R5750995
Xylenes (Total)	<1.1		1.1	ug/L		28-MAR-22	
Surrogate: 4-Bromofluorobenzene	97.9		70-130	%		28-MAR-22	R5750995
Surrogate: 1,4-Difluorobenzene	101.3		70-130	%		28-MAR-22	R5750995
Trihalomethanes							
Total THMs	<2.0		2.0	ug/L		28-MAR-22	
Acid Extractables							
2,3,6-Trichlorophenol	<1.0	DLIS	1.0	ug/L	29-MAR-22	30-MAR-22	R5751680
Surrogate: 2,4,6-Tribromophenol Semi-Volatile Organics	122.3		40-150	%	29-MAR-22	30-MAR-22	R5751680
Acenaphthene	<0.40	DLIS	0.40	ug/L	29-MAR-22	30-MAR-22	R5751579
Acenaphthylene	<0.40	DLIS	0.40	ug/L	29-MAR-22	30-MAR-22	R5751579
Anthracene	<0.40	DLIS	0.40	ug/L	29-MAR-22	30-MAR-22	R5751579
Benzo(a)anthracene	<0.40	DLIS	0.40	ug/L	29-MAR-22	30-MAR-22	R5751579
Benzo(a)pyrene	<0.10	DLIS	0.10	ug/L	29-MAR-22	30-MAR-22	R5751579
Benzo(b)fluoranthene	<0.40	DLIS	0.40	ug/L	29-MAR-22	30-MAR-22	R5751579
Benzo(ghi)perylene	<0.40	DLIS	0.40	ug/L	29-MAR-22	30-MAR-22	R5751579
Benzo(k)fluoranthene	<0.40	DLIS	0.40	ug/L	29-MAR-22	30-MAR-22	R5751579
4-Chloroaniline	<0.80	DLIS	0.80	ug/L	29-MAR-22	30-MAR-22	R5751579
Bis(2-chloroethyl)ether	<0.80	DLIS	0.80	ug/L	29-MAR-22	30-MAR-22	R5751579
2-Chlorophenol	<0.60	DLIS	0.60	ug/L	29-MAR-22	30-MAR-22	R5751579
Chrysene	<0.40	DLIS	0.40	ug/L	29-MAR-22	30-MAR-22	R5751579
Dibenz(a,h)anthracene	<0.40	DLIS	0.40	ug/L	29-MAR-22	30-MAR-22	R5751579
1,2-Dichlorobenzene	<0.80	DLIS	0.80	ug/L	29-MAR-22	30-MAR-22	R5751579
1,3-Dichlorobenzene	<0.80	DLIS	0.80	ug/L	29-MAR-22	30-MAR-22	R5751579
1,4-Dichlorobenzene	<0.80	DLIS	0.80	ug/L	29-MAR-22	30-MAR-22	R5751579
3,3-Dichlorobenzidine	<0.80	DLIS	0.80	ug/L	29-MAR-22	30-MAR-22	R5751579
2,4-Dichlorophenol	<0.60	DLIS	0.60	ug/L	29-MAR-22	30-MAR-22	R5751579
Diethylphthalate	<0.40	DLIS	0.40	ug/L	29-MAR-22	30-MAR-22	R5751579
Dimethylphthalate	<0.40	DLIS	0.40	ug/L	29-MAR-22	30-MAR-22	R5751579
2,4-Dimethylphenol	<1.0	DLIS	1.0	ug/L	29-MAR-22	30-MAR-22	R5751579
2,4-Dinitrophenol	<2.0	DLIS	2.0	ug/L	29-MAR-22	30-MAR-22	R5751579
2,4-Dinitrotoluene	<0.80	DLIS	0.80	ug/L	29-MAR-22	30-MAR-22	R5751579
2,6-Dinitrotoluene	<0.80	DLIS	0.80	ug/L	29-MAR-22	30-MAR-22	R5751579
Bis(2-ethylhexyl)phthalate	<2.0	DLIS	2.0	ug/L	29-MAR-22	30-MAR-22	R5751579
Fluoranthene	<0.40	DLIS	0.40	ug/L	29-MAR-22	30-MAR-22	R5751579
Fluorene	<0.40	DLIS	0.40	ug/L	29-MAR-22	30-MAR-22	R5751579

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2694108-2 POND D WEST POND Sampled By: CLIENT on 22-MAR-22 @ 11:00 Matrix: WATER							
Semi-Volatile Organics							
Hexachlorobenzene	<0.080	DLIS	0.080	ug/L	29-MAR-22	30-MAR-22	R5751579
Hexachlorobutadiene	<0.40	DLIS	0.40	ug/L	29-MAR-22	30-MAR-22	R5751579
Indeno(1,2,3-cd)pyrene	<0.40	DLIS	0.40	ug/L	29-MAR-22	30-MAR-22	R5751579
1-Methylnaphthalene	<0.80	DLIS	0.80	ug/L	29-MAR-22	30-MAR-22	R5751579
2-Methylnaphthalene	<0.80	DLIS	0.80	ug/L	29-MAR-22	30-MAR-22	R5751579
Naphthalene	<0.40	DLIS	0.40	ug/L	29-MAR-22	30-MAR-22	R5751579
Pentachlorophenol	<1.0	DLIS	1.0	ug/L	29-MAR-22	30-MAR-22	R5751579
Perylene	<0.40	DLIS	0.40	ug/L	29-MAR-22	30-MAR-22	R5751579
Phenanthrene	<0.40	DLIS	0.40	ug/L	29-MAR-22	30-MAR-22	R5751579
Pyrene	<0.40	DLIS	0.40	ug/L	29-MAR-22	30-MAR-22	R5751579
2,3,4,5-Tetrachlorophenol	<1.0	DLIS	1.0	ug/L	29-MAR-22	30-MAR-22	R5751579
2,3,4,6-Tetrachlorophenol	<1.0	DLIS	1.0	ug/L	29-MAR-22	30-MAR-22	R5751579
1,2,4-Trichlorobenzene	<0.80	DLIS	0.80	ug/L	29-MAR-22	30-MAR-22	R5751579
2,4,5-Trichlorophenol	<1.0	DLIS	1.0	ug/L	29-MAR-22	30-MAR-22	R5751579
2,4,6-Trichlorophenol	<1.0	DLIS	1.0	ug/L	29-MAR-22	30-MAR-22	R5751579
Surrogate: 2-Fluorobiphenyl	83.7		40-130	%	29-MAR-22	30-MAR-22	R5751579
Surrogate: Nitrobenzene d5	87.0		40-130	%	29-MAR-22	30-MAR-22	R5751579
Surrogate: d14-Terphenyl	82.5		40-130	%	29-MAR-22	30-MAR-22	R5751579
L2694108-3 POND A EAST POND Sampled By: CLIENT on 22-MAR-22 @ 12:30 Matrix: WATER							
Field Tests							
pH, Client Supplied	8.10		0.10	рН		24-MAR-22	R5749751
Temperature, Client	10.0		-50	Deg. C		24-MAR-22	R5749751
Physical Tests							
Conductivity	722		1.0	umhos/cm		24-MAR-22	R5750260
рН	8.18		0.10	pH units		24-MAR-22	R5750260
Total Suspended Solids	7.1		3.0	mg/L	25-MAR-22	26-MAR-22	R5750898
Total Dissolved Solids	431	DLDS	20	mg/L		25-MAR-22	R5750678
Allelinity Total (as CaCO3)	07.2		1.0	mall		24 MAD 22	BE7E0260
	97.2		0.0014	mg/L		24-MAR-22	K3730200
Ammonia Total (as N)	1 /3	DLHC	0.0014	mg/L		25-MAR-22	P5750741
Bromide (Br)	1.43	22110	0.000	mg/L		24-MAR-22	R5750162
Chloride (Cl)	1.43 49 9		0.10	mg/L		24-MAR-22	R5750162
Fluoride (E)	1 12		0.00	mg/L		24-MAR-22	R5750162
Nitrate (as N)	0.241		0.020	ma/l		24-MAR-22	R5750162
Nitrite (as N)	<0.010		0.020	ma/l		24-MAR-22	R5750162
Total Kieldahl Nitrogen	2 11		0.050	ma/l	28-MAR-22	28-MAR-22	R5750843
Phosphorus. Total	0.0238		0.0030	ma/l	29-MAR-22	30-MAR-22	R5751788
Sulfate (SO4)	197		0.30	ma/L		24-MAR-22	R5750162
Cyanides							

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2694108-3 POND A EAST POND Sampled By: CLIENT on 22-MAR-22 @ 12:30 Matrix: WATER							
Cyanides							
Cyanide, Total	<0.0020		0.0020	mg/L		24-MAR-22	R5750210
Organic / Inorganic Carbon							
Dissolved Carbon Filtration Location	LAB					24-MAR-22	R5749698
Dissolved Organic Carbon	4.46		0.50	mg/L	24-MAR-22	24-MAR-22	R5750251
Total Metals							
Aluminum (Al)-Total	0.678		0.010	mg/L	23-MAR-22	24-MAR-22	R5749909
Antimony (Sb)-Total	0.00050		0.00010	mg/L	23-MAR-22	24-MAR-22	R5749909
Arsenic (As)-Total	0.00126		0.00010	mg/L	23-MAR-22	24-MAR-22	R5749909
Barium (Ba)-Total	0.0351		0.00020	mg/L	23-MAR-22	24-MAR-22	R5749909
Beryllium (Be)-Total	<0.00010		0.00010	mg/L	23-MAR-22	24-MAR-22	R5749909
Bismuth (Bi)-Total	<0.000050		0.000050	mg/L	23-MAR-22	24-MAR-22	R5749909
Boron (B)-Total	0.107		0.010	mg/L	23-MAR-22	24-MAR-22	R5749909
Cadmium (Cd)-Total	<0.00020	DLM	0.00020	mg/L	23-MAR-22	24-MAR-22	R5749909
Calcium (Ca)-Total	69.6		0.50	mg/L	23-MAR-22	24-MAR-22	R5749909
Cobalt (Co)-Total	0.00069		0.00010	mg/L	23-MAR-22	24-MAR-22	R5749909
Copper (Cu)-Total	0.0033		0.0010	mg/L	23-MAR-22	24-MAR-22	R5749909
Iron (Fe)-Total	0.702		0.050	mg/L	23-MAR-22	24-MAR-22	R5749909
Lead (Pb)-Total	0.00088		0.00010	mg/L	23-MAR-22	24-MAR-22	R5749909
Magnesium (Mg)-Total	22.6		0.050	mg/L	23-MAR-22	24-MAR-22	R5749909
Manganese (Mn)-Total	0.0611		0.00050	mg/L	23-MAR-22	24-MAR-22	R5749909
Mercury (Hg)-Total	0.0000059		0.0000050	mg/L		24-MAR-22	R5750023
Molybdenum (Mo)-Total	0.0513		0.000050	mg/L	23-MAR-22	24-MAR-22	R5749909
Nickel (Ni)-Total	0.00473		0.00050	mg/L	23-MAR-22	24-MAR-22	R5749909
Potassium (K)-Total	6.60		0.050	mg/L	23-MAR-22	24-MAR-22	R5749909
Selenium (Se)-Total	0.00295		0.000050	mg/L	23-MAR-22	24-MAR-22	R5749909
Silicon (Si)-Total	2.93		0.10	mg/L	23-MAR-22	24-MAR-22	R5749909
Silver (Ag)-Total	<0.000050		0.000050	mg/L	23-MAR-22	24-MAR-22	R5749909
Sodium (Na)-Total	36.3		0.50	mg/L	23-MAR-22	24-MAR-22	R5749909
Strontium (Sr)-Total	0.555		0.0010	mg/L	23-MAR-22	24-MAR-22	R5749909
Thallium (TI)-Total	0.000043		0.000010	mg/L	23-MAR-22	24-MAR-22	R5749909
Tin (Sn)-Total	<0.00010		0.00010	mg/L	23-MAR-22	24-MAR-22	R5749909
Vanadium (V)-Total	0.00159		0.00050	mg/L	23-MAR-22	24-MAR-22	R5749909
Zinc (Zn)-Total	0.0114		0.0030	mg/L	23-MAR-22	24-MAR-22	R5749909
Speciated Metals							
Chromium, Hexavalent	0.00118		0.00050	mg/L		24-MAR-22	R5750232
Aggregate Organics							
	19		10	mg/L		24-MAR-22	R5750062
Phenois (4AAP)	0.0014		0.0010	mg/L		25-MAR-22	R5750872
	-20		20	uc/I		28 MAD 22	DETENDO
Ponzono	<20		20	ug/L		20-IVIAR-22	R3/30993
Bromodichloromethane	<0.50		0.50	ug/L			R575000F
	<1.0		1.0	ug/L		20-IVIAR-22	12120332

Sample Details	/Parameters	Result	Qualifier* D.L.		Units	Extracted	Analyzed	Batch
L2694108-3 Sampled By: Matrix:	POND A EAST POND CLIENT on 22-MAR-22 @ 12:30							
Volatile Org	anic Compounds							
Bromoform		<1.0		1.0	ua/L		28-MAR-22	R5750995
Bromomethane		<0.50		0.50	ua/L		28-MAR-22	R5750995
Carbon tetra	achloride	<0.50		0.50	ug/L		28-MAR-22	R5750995
Chlorobenze	ene	<0.50		0.50	ua/L		28-MAR-22	R5750995
Dibromochlo	promethane	<1.0		1.0	ug/L		28-MAR-22	R5750995
Chloroethan	ie	<1.0		1.0	ug/L		28-MAR-22	R5750995
Chloroform		<1.0		1.0	ug/L		28-MAR-22	R5750995
1,2-Dibromo	pethane	<0.20		0.20	ug/L		28-MAR-22	R5750995
1,2-Dichloro	benzene	<0.50		0.50	ug/L		28-MAR-22	R5750995
1,3-Dichloro	benzene	<0.50		0.50	ug/L		28-MAR-22	R5750995
1,4-Dichloro	benzene	<0.50		0.50	ug/L		28-MAR-22	R5750995
Dichlorodiflu	loromethane	<1.0		1.0	ug/L		28-MAR-22	R5750995
1,1-Dichloro	ethane	<0.50		0.50	ug/L		28-MAR-22	R5750995
1,2-Dichloro	ethane	<0.50		0.50	ug/L		28-MAR-22	R5750995
1,1-Dichloro	ethylene	<0.50		0.50	ug/L		28-MAR-22	R5750995
cis-1,2-Dich	loroethylene	<0.50		0.50	ug/L		28-MAR-22	R5750995
trans-1,2-Die	chloroethylene	<0.50		0.50	ug/L		28-MAR-22	R5750995
Dichloromet	hane	<2.0		2.0	ug/L		28-MAR-22	R5750995
1,2-Dichloro	propane	<0.50		0.50	ug/L		28-MAR-22	R5750995
cis-1,3-Dich	loropropene	<0.50		0.50	ug/L		28-MAR-22	R5750995
trans-1,3-Die	chloropropene	<0.50		0.50	ug/L		28-MAR-22	R5750995
Ethylbenzen	ne	<0.50		0.50	ug/L		28-MAR-22	R5750995
n-Hexane		<0.50		0.50	ug/L		28-MAR-22	R5750995
Methyl Ethyl	l Ketone	<20		20	ug/L		28-MAR-22	R5750995
Methyl Isobu	utyl Ketone	<20		20	ug/L		28-MAR-22	R5750995
MTBE		<0.50		0.50	ug/L		28-MAR-22	R5750995
Styrene		<0.50		0.50	ug/L		28-MAR-22	R5750995
1,1,1,2-Tetra	achloroethane	<0.50		0.50	ug/L		28-MAR-22	R5750995
1,1,2,2-Tetra	achloroethane	<0.50		0.50	ug/L		28-MAR-22	R5750995
Tetrachloroe	ethylene	<0.50		0.50	ug/L		28-MAR-22	R5750995
Toluene		<0.50		0.50	ug/L		28-MAR-22	R5750995
1,1,1-Trichlo	proethane	<0.50		0.50	ug/L		28-MAR-22	R5750995
1,1,2-Trichlo	proethane	<0.50		0.50	ug/L		28-MAR-22	R5750995
Trichloroeth	ylene	<0.50		0.50	ug/L		28-MAR-22	R5750995
Trichlorofluc	promethane	<1.0		1.0	ug/L		28-MAR-22	R5750995
Vinyl chlorid	le	<0.50		0.50	ug/L		28-MAR-22	R5750995
o-Xylene		<0.50		0.50	ug/L		28-MAR-22	R5750995
m+p-Xylene	s	<1.0		1.0	ug/L		28-MAR-22	R5750995
Xylenes (To	tal)	<1.1		1.1	ug/L		28-MAR-22	
Surrogate: 4	I-Bromofluorobenzene	98.4		70-130	%		28-MAR-22	R5750995
Surrogate: 1	,4-Difluorobenzene	101.5		70-130	%		28-MAR-22	R5750995

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2694108-3 POND A EAST POND Sampled By: CLIENT on 22-MAR-22 @ 12:30 Matrix: WATER							
Volatile Organic Compounds							
Total THMs	-2.0		2.0	ua/l		28-MAR-22	
Acid Extractables	<2.0		2.0	ug/L		20-101411-22	
2,3,6-Trichlorophenol	<1.0	DLIS	1.0	ug/L	29-MAR-22	30-MAR-22	R5751680
Surrogate: 2,4,6-Tribromophenol	138.8		40-150	%	29-MAR-22	30-MAR-22	R5751680
Semi-Volatile Organics							
Acenaphthene	<0.40	DLIS	0.40	ug/L	29-MAR-22	30-MAR-22	R5751579
Acenaphthylene	<0.40	DLIS	0.40	ug/L	29-MAR-22	30-MAR-22	R5751579
Anthracene	<0.40	DLIS	0.40	ug/L	29-MAR-22	30-MAR-22	R5751579
Benzo(a)anthracene	<0.40	DLIS	0.40	ug/L	29-MAR-22	30-MAR-22	R5751579
Benzo(a)pyrene	<0.10	DLIS	0.10	ug/L	29-MAR-22	30-MAR-22	R5751579
Benzo(b)fluoranthene	<0.40	DLIS	0.40	ug/L	29-MAR-22	30-MAR-22	R5751579
Benzo(ghi)perylene	<0.40	DLIS	0.40	ug/L	29-MAR-22	30-MAR-22	R5751579
Benzo(k)fluoranthene	<0.40	DLIS	0.40	ug/L	29-MAR-22	30-MAR-22	R5751579
4-Chloroaniline	<0.80	DLIS	0.80	ug/L	29-MAR-22	30-MAR-22	R5751579
Bis(2-chloroethyl)ether	<0.80	DLIS	0.80	ug/L	29-MAR-22	30-MAR-22	R5751579
2-Chlorophenol	<0.60	DLIS	0.60	ug/L	29-MAR-22	30-MAR-22	R5751579
Chrysene	<0.40	DLIS	0.40	ug/L	29-MAR-22	30-MAR-22	R5751579
Dibenz(a,h)anthracene	<0.40	DLIS	0.40	ug/L	29-MAR-22	30-MAR-22	R5751579
1,2-Dichlorobenzene	<0.80	DLIS	0.80	ug/L	29-MAR-22	30-MAR-22	R5751579
1,3-Dichlorobenzene	<0.80	DLIS	0.80	ug/L	29-MAR-22	30-MAR-22	R5751579
1,4-Dichlorobenzene	<0.80	DLIS	0.80	ug/L	29-MAR-22	30-MAR-22	R5751579
3,3-Dichlorobenzidine	<0.80	DLIS	0.80	ug/L	29-MAR-22	30-MAR-22	R5751579
2,4-Dichlorophenol	<0.60	DLIS	0.60	ug/L	29-MAR-22	30-MAR-22	R5751579
Diethylphthalate	<0.40	DLIS	0.40	ug/L	29-MAR-22	30-MAR-22	R5751579
Dimethylphthalate	<0.40	DLIS	0.40	ug/L	29-MAR-22	30-MAR-22	R5751579
2,4-Dimethylphenol	<1.0	DLIS	1.0	ug/L	29-MAR-22	30-MAR-22	R5751579
2,4-Dinitrophenol	<2.0	DLIS	2.0	ug/L	29-MAR-22	30-MAR-22	R5751579
2,4-Dinitrotoluene	<0.80	DLIS	0.80	ug/L	29-MAR-22	30-MAR-22	R5751579
2,6-Dinitrotoluene	<0.80	DLIS	0.80	ug/L	29-MAR-22	30-MAR-22	R5751579
Bis(2-ethylhexyl)phthalate	<2.0	DLIS	2.0	ug/L	29-MAR-22	30-MAR-22	R5751579
Fluoranthene	<0.40	DLIS	0.40	ug/L	29-MAR-22	30-MAR-22	R5751579
Fluorene	<0.40	DLIS	0.40	ug/L	29-MAR-22	30-MAR-22	R5751579
Hexachlorobenzene	<0.080	DLIS	0.080	ug/L	29-MAR-22	30-MAR-22	R5751579
Hexachlorobutadiene	<0.40	DLIS	0.40	ug/L	29-MAR-22	30-MAR-22	R5751579
Indeno(1,2,3-cd)pyrene	<0.40	DLIS	0.40	ug/L	29-MAR-22	30-MAR-22	R5751579
1-Methylnaphthalene	<0.80	DLIS	0.80	ug/L	29-MAR-22	30-MAR-22	R5751579
2-Methylnaphthalene	<0.80	DLIS	0.80	ug/L	29-MAR-22	30-MAR-22	R5751579
Naphthalene	<0.40	DLIS	0.40	ug/L	29-MAR-22	30-MAR-22	R5751579
Pentachlorophenol	<1.0	DLIS	1.0	ug/L	29-MAR-22	30-MAR-22	R5751579
Perylene	<0.40	DLIS	0.40	ug/L	29-MAR-22	30-MAR-22	R5751579
Phenanthrene	<0.40	DLIS	0.40	ug/L	29-MAR-22	30-MAR-22	R5751579
				•			•

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L2694108-3 POND A EAST POND Sampled By: CLIENT on 22-MAR-22 @ 12:30 Matrix: WATER							
Semi-Volatile Organics							
Pyrene	<0.40	DLIS	0.40	ug/L	29-MAR-22	30-MAR-22	R5751579
2,3,4,5-Tetrachlorophenol	<1.0	DLIS	1.0	ug/L	29-MAR-22	30-MAR-22	R5751579
2,3,4,6-Tetrachlorophenol	<1.0	DLIS	1.0	ug/L	29-MAR-22	30-MAR-22	R5751579
1,2,4-Trichlorobenzene	<0.80	DLIS	0.80	ug/L	29-MAR-22	30-MAR-22	R5751579
2,4,5-Trichlorophenol	<1.0	DLIS	1.0	ug/L	29-MAR-22	30-MAR-22	R5751579
2,4,6-Trichlorophenol	<1.0	DLIS	1.0	ug/L	29-MAR-22	30-MAR-22	R5751579
Surrogate: 2-Fluorobiphenyl	94.7		40-130	%	29-MAR-22	30-MAR-22	R5751579
Surrogate: Nitrobenzene d5	100.7		40-130	%	29-MAR-22	30-MAR-22	R5751579
Surrogate: d14-Terphenyl	101.7		40-130	%	29-MAR-22	30-MAR-22	R5751579

Reference Information

QC Samples with Qualifiers & Comments:

QC Type Description	I	Parameter	Qualifier	Applies to Sample Number(s)	
Laboratory Control Sa	mple	Pentachlorophenol	LCS-H	L2694108-1, -2, -3	
Matrix Spike		Dichlorodifluoromethane	MES	L2694108-1, -2, -3	
Matrix Spike		Bromide (Br)	MS-B	L2694108-1, -2, -3	
Matrix Spike		Fluoride (F)	MS-B	L2694108-1, -2, -3	
Matrix Spike		Aluminum (Al)-Total	MS-B	L2694108-1, -2, -3	
Matrix Spike		Barium (Ba)-Total	MS-B	L2694108-1, -2, -3	
Matrix Spike		Calcium (Ca)-Total	MS-B	L2694108-1, -2, -3	
Matrix Spike		Iron (Fe)-Total	MS-B	L2694108-1, -2, -3	
Matrix Spike		Magnesium (Mg)-Total	MS-B	L2694108-1, -2, -3	
Matrix Spike		Manganese (Mn)-Total	MS-B	L2694108-1, -2, -3	
Matrix Spike		Silicon (Si)-Total	MS-B	L2694108-1, -2, -3	
Matrix Spike		Sodium (Na)-Total	MS-B	L2694108-1, -2, -3	
Matrix Spike		Strontium (Sr)-Total	MS-B	L2694108-1, -2, -3	
Matrix Spike		Zinc (Zn)-Total	MS-B	L2694108-1, -2, -3	
Matrix Spike		Sulfate (SO4)	MS-B	L2694108-1, -2, -3	
Method Blank		Phosphorus, Total	RRQC	L2694108-1, -2, -3	
Comments:	Comments: RRQC:RRQC: Reported Total Phosphorus samples are not affected by observed Method Blank background				

Sample Parameter Qualifier key listed:

Qualifier	Description
DLDS	Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical Conductivity.
DLHC	Detection Limit Raised: Dilution required due to high concentration of test analyte(s).
DLIS	Detection Limit Adjusted: Insufficient Sample
DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity).
LCS-H	Lab Control Sample recovery was above ALS DQO. Non-detected sample results are considered reliable. Other results, if reported, have been qualified.
MES	Data Quality Objective was marginally exceeded (by < 10% absolute) for < 10% of analytes in a Multi-Element Scan / Multi-Parameter Scan (considered acceptable as per OMOE & CCME).
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
RRQC	Refer to report remarks for information regarding this QC result.

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**				
625-ACID-EXTRA-WT	Water	EPA 8270 Acid Extractables	SW846 8270				
Aqueous samples are e	Aqueous samples are extracted and extracts are analyzed on GC/MSD.						
625-WT	Water	EPA 8270 Extractables	SW846 8270				
Aqueous samples are extracted and extracts are analyzed on GC/MSD. Depending on the analytical GC/MS column used benzo(i)fluoranthene may							

chromatographically co-elute with benzo(b)fluoranthene or benzo(k)fluoranthene.

N-nitrosodiphenylamine is reported as diphenylamine. N-nitrosodiphenylamine decomposes in the gas chromatographic inlet and cannot be separated from diphenylamine. (EPA 8270D)

APHA 2320B

ALK-WT

Qualifiar

This analysis is carried out using procedures adapted from APHA Method 2320 "Alkalinity". Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint.

BR-IC-N-WT	Water	Bromide in Water by IC	EPA 300.1 (mod)
Inorganic anions are	e analyzed by lo	n Chromatography with conductiv	ity and/or UV detection.

Alkalinity, Total (as CaCO3)

CL-IC-N-WT Water Chloride by IC EPA 300.1 (mod)

Water

Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).

Reference Information

Total cyanide is determ T, the cyanogen chloric	nined by the o de then reacts	combination of UV digestion and distillations with a combination of barbituric acid and	on. Cyanide is converted to cyanogen chloride by reacting with chloramine- d isonicotinic acid to form a highly colored complex.
When using this metho detectable cyanide ana	d, high levels	s of thiocyanate in samples can cause fal method, ALS recommends analysis for t	se positives at ~1-2% of the thiocyanate concentration. For samples with hiocyanate to check for this potential interference
COD-T-WT	Water	Chemical Oxygen Demand	APHA 5220 D
This analysis is carried determined using the c	out using pro	ocedures adapted from APHA Method 52 colourimetric method.	20 "Chemical Oxygen Demand (COD)". Chemical oxygen demand is
CR-CR6-IC-WT	Water	Chromium +6	EPA 7199
This analysis is carried States Environmental F sulphuric acid solution.	out using pro Protection Ag Chromium (ocedures adapted from "Test Methods for ency (EPA). The procedure involves anal (III) is calculated as the difference betwee	r Evaluating Solid Waste" SW-846, Method 7199, published by the United lysis for chromium (VI) by ion chromatography using diphenylcarbazide in a on the total chromium and the chromium (VI) results.
Analysis conducted in a Protection Act (July 1, 2	accordance v 2011).	vith the Protocol for Analytical Methods U	sed in the Assessment of Properties under Part XV.1 of the Environmental
DOC-WT	Water	Dissolved Organic Carbon	APHA 5310B
Sample is filtered throu vaporized and the orga infrared detector.	igh a 0.45um nic carbon is	filter, then injected into a heated reaction oxidized to carbon dioxide. The carbon d	n chamber which is packed with an oxidative catalyst. The water is lioxide is transported in a carrier gas and is measured by a non-dispersive
EC-SCREEN-WT	Water	Conductivity Screen (Internal Use Only)	APHA 2510
Qualitative analysis of	conductivity v	where required during preparation of othe	r tests - e.g. TDS, metals, etc.
EC-WT	Water	Conductivity	APHA 2510 B
Water samples can be	measured di	rectly by immersing the conductivity cell i	nto the sample.
ETL-NH3-UNION-CLI-W	T Water	Un-ionized ammonia	CALCULATION
F-IC-N-WT	Water	Fluoride in Water by IC	EPA 300.1 (mod)
Inorganic anions are ar	nalyzed by lo	n Chromatography with conductivity and/	or UV detection.
HG-T-CVAA-WT	Water	Total Mercury in Water by CVAAS	EPA 1631E (mod)
Water samples underg	o a cold-oxid	ation using bromine monochloride prior to	p reduction with stannous chloride, and analyzed by CVAAS.
MET-T-CCMS-WT	Water	Total Metals in Water by CRC ICPMS	EPA 200.2/6020A (mod)
Water samples are dig	ested with nit	ric and hydrochloric acids, and analyzed	by CRC ICPMS.
Method Limitation (re: S	Sulfur): Sulfic	le and volatile sulfur species may not be	recovered by this method.
Analysis conducted in a Protection Act (July 1, 2	accordance v 2011).	vith the Protocol for Analytical Methods U	sed in the Assessment of Properties under Part XV.1 of the Environmental
NH3-F-WT	Water	Ammonia in Water by Fluorescence	J. ENVIRON. MONIT., 2005, 7, 37-42, RSC
This analysis is carried of Chemistry, "Flow-inje al.	out, on sulfu ection analys	ric acid preserved samples, using procect is with fluorescence detection for the det	lures modified from J. Environ. Monit., 2005, 7, 37 - 42, The Royal Society ermination of trace levels of ammonium in seawater", Roslyn J. Waston et
NO2-IC-WT	Water	Nitrite in Water by IC	EPA 300.1 (mod)
Inorganic anions are ar	nalyzed by lo	n Chromatography with conductivity and/	or UV detection.
NO3-IC-WT	Water	Nitrate in Water by IC	EPA 300.1 (mod)
Inorganic anions are ar	nalyzed by lo	n Chromatography with conductivity and/	or UV detection.
P-T-COL-WT	Water	Total P in Water by Colour	APHA 4500-P PHOSPHORUS
This analysis is carried after persulphate diges	out using pro	ocedures adapted from APHA Method 45 mple.	00-P "Phosphorus". Total Phosphorus is deteremined colourimetrically

Reference Information

PH-WT	Water	рН	APHA 4500 H-Electrode						
Water samples are anal	yzed directly b	y a calibrated pH meter.							
Analysis conducted in a Protection Act (July 1, 2	ccordance with 011). Holdtime	n the Protocol for Analytical Methods Us of or samples under this regulation is 28	sed in the Assessment of Properties under Part XV.1 of the Environmental days						
PHENOLS-4AAP-WT	Water	Phenol (4AAP)	EPA 9066						
An automated method is red complex which is me	An automated method is used to distill the sample. The distillate is then buffered to pH 9.4 which reacts with 4AAP and potassium ferricyanide to form a red complex which is measured colorimetrically.								
SO4-IC-N-WT	Water	Sulfate in Water by IC	EPA 300.1 (mod)						
Inorganic anions are and	alyzed by Ion (Chromatography with conductivity and/c	or UV detection.						
SOLIDS-TDS-WT	Water	Total Dissolved Solids	APHA 2540C						
This analysis is carried of (TDS) are determined by	This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, TDS is determined by evaporating the filtrate to dryness at 180 degrees celsius.								
SOLIDS-TSS-WT	Water	Suspended solids	APHA 2540 D-Gravimetric						
A well-mixed sample is f four hours or until a const	A well-mixed sample is filtered through a weighed standard glass fibre filter and the residue retained is dried in an oven at 104–1°C for a minimum of four hours or until a constant weight is achieved.								
THM-SUM-PPB-CALC-W	T Water	Total Trihalomethanes (THMs)	CALCULATION						
Total Trihalomethanes (calculation, results less	THMs) represe than the detec	ents the sum of bromodichloromethane, tion limit (DL) are treated as zero.	, bromoform, chlorodibromomethane and chloroform. For the purpose of						
TKN-F-WT	Water	TKN in Water by Fluorescence	J. ENVIRON. MONIT., 2005,7,37-42,RSC						
Total Kjeldahl Nitrogen i	s determined u	using block digestion followed by Flow-i	njection analysis with fluorescence detection						
VOC-ROU-HS-WT	Water	Volatile Organic Compounds	SW846 8260						
Aqueous samples are a	nalyzed by hea	adspace-GC/MS.							
XYLENES-SUM-CALC- WT	Water	Sum of Xylene Isomer Concentrations	CALCULATION						
Total xylenes represents	Total xylenes represents the sum of o-xylene and m&p-xylene.								
** ALS test methods may ir	ncorporate mo	difications from specified reference met	thods to improve performance.						

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
WT	ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA

Chain of Custody Numbers:

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid weight of sample

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

		Workorder	Workorder: L2694108			Report Date: 30-MAR-22			Page 1 of 18	
Client: Contact:	GHD Limited (Wate 455 PHILLIP STRE WATERLOO ON I Kory Ozgun	erloo) ET N2L 3X2								
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed		
625-ACID-EX	TRA-WT Water									
Batch WG37109 2,3,6-Tric	R5751680 71-2 LCS hlorophenol		95.4		%		50-130	30-MAR-22		
WG37109 2,3,6-Tric	71-1 MB hlorophenol		<0.20		ug/L		0.2	30-MAR-22		
Surrogate	: 2,4,6-Tribromophenol		95.3		%		40-150	30-MAR-22		
625-WT	Water									
Batch	R5751579									
WG371097 1-Methyln	71-2 LCS		78 9		%		50-140	30-MAR-22		
1.2-Dichlo	probenzene		73.0		%		40-130	30-MAR-22		
1.2.4-Tric	hlorobenzene		67.2		%		50-130	30-MAR-22		
1,3-Dichlo	probenzene		64.2		%		50-140	30-MAR-22		
1,4-Dichlo	probenzene		67.9		%		40-130	30-MAR-22		
2-Chlorop	henol		99.9		%		65-130	30-MAR-22		
2-Methyln	aphthalene		85.2		%		50-140	30-MAR-22		
2,3,4,5-Te	etrachlorophenol		125.2		%		50-130	30-MAR-22		
2,3,4,6-Te	etrachlorophenol		129.3		%		65-130	30-MAR-22		
2,4-Dichlo	prophenol		114.0		%		65-130	30-MAR-22		
2,4-Dimet	hylphenol		118.4		%		30-130	30-MAR-22		
2,4-Dinitro	ophenol		111.0		%		40-140	30-MAR-22		
2,4-Dinitro	otoluene		111.5		%		50-140	30-MAR-22		
2,4,5-Tric	hlorophenol		124.2		%		65-130	30-MAR-22		
2,4,6-Tric	hlorophenol		126.3		%		65-130	30-MAR-22		
2,6-Dinitro	otoluene		107.9		%		50-140	30-MAR-22		
3,3-Dichlo	probenzidine		77.3		%		50-140	30-MAR-22		
4-Chloroa	niline		59.6		%		30-140	30-MAR-22		
Acenapht	hene		91.1		%		50-140	30-MAR-22		
Acenapht	hylene		87.4		%		50-140	30-MAR-22		
Anthracer	ne		96.5		%		50-140	30-MAR-22		
Benzo(a)a	anthracene		105.4		%		50-140	30-MAR-22		
Benzo(a)p	byrene		88.5		%		60-130	30-MAR-22		
Benzo(b)f	luoranthene		83.1		%		50-140	30-MAR-22		
Benzo(gh	i)perylene		100.1		%		50-140	30-MAR-22		
Benzo(k)f	luoranthene		107.8		%		50-140	30-MAR-22		
Bis(2-chlo	proethyl)ether		94.9		%		50-140	30-MAR-22		

Client:

Contact:

Test

Quality Control Report

Workorder:L2694108Report Date:30-MAR-22Page2of18GHD Limited (Waterloo)
455 PHILLIP STREET
WATERLOO ON N2L 3X2
Kory OzgunSSS<t

625-WT Water					
Batch R5751579					
WG3710971-2 LCS	114 6		0/	50.440	
Dis(2-eurymexy)primalate	114.0		70 0/	50-140	30-MAR-22
	106.2		70	50-140	30-MAR-22
Dibenz(a,n)anthracene	96.3		%	50-140	30-MAR-22
Dietnyiphthalate	96.9		%	50-140	30-MAR-22
	95.0		%	50-140	30-MAR-22
Fluoranthene	101.3		%	50-140	30-MAR-22
Fluorene	96.3		%	50-140	30-MAR-22
Hexachlorobenzene	92.2		%	40-130	30-MAR-22
Hexachlorobutadiene	52.3		%	40-130	30-MAR-22
Indeno(1,2,3-cd)pyrene	92.2		%	50-140	30-MAR-22
Naphthalene	86.4		%	50-140	30-MAR-22
Pentachlorophenol	146.5	LCS-H	%	60-130	30-MAR-22
Perylene	94.2		%	50-140	30-MAR-22
Phenanthrene	95.2		%	50-140	30-MAR-22
Pyrene	99.6		%	50-140	30-MAR-22
WG3710971-1 MB					
1-Methylnaphthalene	<0.40		ug/L	0.4	30-MAR-22
1,2-Dichlorobenzene	<0.40		ug/L	0.4	30-MAR-22
1,2,4-Trichlorobenzene	<0.40		ug/L	0.4	30-MAR-22
1,3-Dichlorobenzene	<0.40		ug/L	0.4	30-MAR-22
1,4-Dichlorobenzene	<0.40		ug/L	0.4	30-MAR-22
2-Chlorophenol	<0.30		ug/L	0.3	30-MAR-22
2-Methylnaphthalene	<0.40		ug/L	0.4	30-MAR-22
2,3,4,5-Tetrachlorophenol	<0.50		ug/L	0.5	30-MAR-22
2,3,4,6-Tetrachlorophenol	<0.50		ug/L	0.5	30-MAR-22
2,4-Dichlorophenol	<0.30		ug/L	0.3	30-MAR-22
2,4-Dimethylphenol	<0.50		ug/L	0.5	30-MAR-22
2,4-Dinitrophenol	<1.0		ug/L	1	30-MAR-22
2,4-Dinitrotoluene	<0.40		ug/L	0.4	30-MAR-22
2,4,5-Trichlorophenol	<0.50		ug/L	0.5	30-MAR-22
2,4,6-Trichlorophenol	<0.50		ug/L	0.5	30-MAR-22
2,6-Dinitrotoluene	<0.40		ug/L	0.4	30-MAR-22
3,3-Dichlorobenzidine	<0.40		ug/L	0.4	30-MAR-22
4-Chloroaniline	<0.40		ug/L	0.4	30-MAR-22

Report Date: 30-MAR-22

Page 3 of 18

Workorder: L2694108

Client:	GHD Limited (Waterloo)						
	455 PHILLIP STREET	3¥2						
Contact:	Kory Ozgun							
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
625-WT	Water							
Batch	R5751579							
WG3710971-	1 MB		-0.00		ua/I		0.2	
Acenaphthe			<0.20		ug/L		0.2	30-MAR-22
Acenaphiny			<0.20		ug/L		0.2	30-MAR-22
Benzo(a)ant	bracene		<0.20		ug/L		0.2	30-MAR-22
Benzo(a)pyra			<0.20		ug/L		0.2	30-MAR-22
Benzo(b)fluo	ranthene		<0.000		ug/L		0.00	30-MAR-22
Benzo(gbi)ndo			<0.20		ug/L		0.2	30-MAR-22
Benzo(k)fluo	ranthene		<0.20		ug/L		0.2	30-MAR-22
Bis(2-chloroe	ethvl)ether		<0.20		ug/L		0.4	30-MAR-22
Bis(2-ethylbe	exvl)phthalate		<1.0		ug/L		1	30-MAR-22
Chrvsene			<0.20		ug/L		0.2	30-MAR-22
Dibenz(a.h)a	Inthracene		<0.20		ua/L		0.2	30-MAR-22
Diethylphtha	late		<0.20		ug/L		0.2	30-MAR-22
Dimethylphth	nalate		<0.20		ug/L		0.2	30-MAR-22
Fluoranthene	9		<0.20		ug/L		0.2	30-MAR-22
Fluorene			<0.20		ug/L		0.2	30-MAR-22
Hexachlorob	enzene		<0.040		ug/L		0.04	30-MAR-22
Hexachlorob	utadiene		<0.20		ug/L		0.2	30-MAR-22
Indeno(1,2,3	-cd)pyrene		<0.20		ug/L		0.2	30-MAR-22
Naphthalene			<0.20		ug/L		0.2	30-MAR-22
Pentachlorop	phenol		<0.50		ug/L		0.5	30-MAR-22
Perylene			<0.20		ug/L		0.2	30-MAR-22
Phenanthren	e		<0.20		ug/L		0.2	30-MAR-22
Pyrene			<0.20		ug/L		0.2	30-MAR-22
Surrogate: 2-	-Fluorobiphenyl		89.8		%		40-130	30-MAR-22
Surrogate: N	itrobenzene d5		92.7		%		40-130	30-MAR-22
Surrogate: d	14-Terphenyl		109.0		%		40-130	30-MAR-22
ALK-WT	Water							
Batch	R5750260							
WG3709560- Alkalinity, To	4 DUP tal (as CaCO3)	WG3709560-3 222	219		mg/L	1.2	20	24-MAR-22
WG3709560- Alkalinity, To	2 LCS tal (as CaCO3)		100.5		%		85-115	24-MAR-22
WG3709560-	1 MB							

					•	-			
			Workorder:	L269410	8	Report Date: 30	-MAR-22		Page 4 of 18
Client:	GHD Limit 455 PHILL WATERLO	ed (Waterloo) IP STREET DO ON N2L 3X:	2						
Contact:	Kory Ozgu	in	-						
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
ALK-WT		Water							
Batch F WG3709560-1 Alkalinity, Tota	R5750260 MB al (as CaC0	D3)		<2.0		mg/L		2	24-MAR-22
BR-IC-N-WT		Water							
Batch F	R5750162								
WG3709675-1 Bromide (Br)	9 DUP		L2694108-3 1.43	1.44		mg/L	0.5	20	24-MAR-22
WG3709675-1 Bromide (Br)	7 LCS			103.5		%		85-115	24-MAR-22
WG3709675-1 Bromide (Br)	6 MB			<0.10		mg/L		0.1	24-MAR-22
WG3709675-2 Bromide (Br)	0 MS		L2694108-3	N/A	MS-B	%		-	24-MAR-22
CL-IC-N-WT		Water							
Batch F	R5750162								
WG3709675-1 Chloride (Cl)	9 DUP		L2694108-3 49.9	49.9		mg/L	0.0	20	24-MAR-22
WG3709675-1 Chloride (Cl)	7 LCS			103.4		%		90-110	24-MAR-22
WG3709675-1 Chloride (Cl)	6 MB			<0.50		mg/L		0.5	24-MAR-22
WG3709675-2 Chloride (Cl)	0 MS		L2694108-3	103.2		%		75-125	24-MAR-22
CN-TOT-WT		Water							
Batch F	R5750210								
WG3709724-3 Cyanide, Tota	al DUP		WG3709724-5 <0.0020	<0.0020	RPD-NA	mg/L	N/A	20	24-MAR-22
WG3709724-2 Cyanide, Tota	e LCS			100.2		%		80-120	24-MAR-22
WG3709724-1 Cyanide, Tota	MB			<0.0020		mg/L		0.002	24-MAR-22
WG3709724-4 Cyanide, Tota	MS al		WG3709724-5	97.7		%		70-130	24-MAR-22
COD-T-WT		Water							

		Workorder:	L2694108	3	Report Date:	30-MAR-22		Page 5 of 18
Client: Contact:	GHD Limited (Waterloo) 455 PHILLIP STREET WATERLOO ON N2L 3X Kory Ozgun	2						
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
COD-T-WT	Water							
Batch WG3709727-7 COD	R5750062 7 DUP	L2694101-3 15	17		mg/L	12	20	24-MAR-22
WG3709727-6 COD	6 LCS		105.0		%		85-115	24-MAR-22
WG3709727-5 COD	5 MB		<10		mg/L		10	24-MAR-22
WG3709727-8 COD	3 MS	L2694101-3	107.8		%		75-125	24-MAR-22
CR-CR6-IC-WT	Water							
Batch	R5750232							
WG3709612- Chromium, H	4 DUP lexavalent	WG3709612-3 <0.00050	<0.00050	RPD-NA	mg/L	N/A	20	24-MAR-22
WG3709612-2 Chromium, H	2 LCS lexavalent		102.4		%		80-120	24-MAR-22
WG3709612- Chromium, H	I MB lexavalent		<0.00050		mg/L		0.0005	24-MAR-22
WG3709612-5 Chromium, H	5 MS lexavalent	WG3709612-3	102.2		%		70-130	24-MAR-22
DOC-WT	Water							
Batch	R5750251							
WG3709449-3 Dissolved Or	3 DUP ganic Carbon	L2694108-1 4.93	5.10		mg/L	3.5	20	24-MAR-22
WG3709449-2 Dissolved Or	2 LCS ganic Carbon		103.1		%		80-120	24-MAR-22
WG3709449- Dissolved Or	I MB ganic Carbon		<0.50		mg/L		0.5	24-MAR-22
WG3709449-4 Dissolved Or	4 MS ganic Carbon	L2694108-1	103.2		%		70-130	24-MAR-22
EC-WT	Water							
Batch	R5750260	W00700500 0						
Conductivity		WG3709560-3 643	646		umhos/cm	0.5	10	24-MAR-22
WG3709560-2 Conductivity	2 LCS		95.9		%		90-110	24-MAR-22
WG3709560-7 Conductivity	I MB		<1.0		umhos/cm		1	24-MAR-22
F-IC-N-WT	Water							

		Workorder:	L2694108		Report Date: 3	30-MAR-22		Page 6 of 18
Client: Contact:	GHD Limited (Waterle 455 PHILLIP STREE WATERLOO ON N2 Kory Ozgun	00) T 2L 3X2						
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
F-IC-N-WT	Water							
Batch I WG3709675-1 Fluoride (F)	R5750162 9 DUP	L2694108-3 1.12	1.12		mg/L	0.3	20	24-MAR-22
WG3709675-1 Fluoride (F)	7 LCS		106.6		%		90-110	24-MAR-22
WG3709675- 1 Fluoride (F)	6 MB		<0.020		mg/L		0.02	24-MAR-22
WG3709675-2 Fluoride (F)	20 MS	L2694108-3	N/A	MS-B	%		-	24-MAR-22
HG-T-CVAA-WT	Water							
Batch I WG3709561-3 Mercury (Hg)	R5750023 B DUP -Total	L2694108-1 <0.0000050	<0.0000050	RPD-NA	mg/L	N/A	20	24-MAR-22
WG3709561-2 Mercury (Hg)	LCS -Total		97.4		%		80-120	24-MAR-22
WG3709561-1 Mercury (Hg)	MB -Total		<0.0000050		mg/L		0.000005	24-MAR-22
WG3709561-4 Mercury (Hg)	l MS -Total	L2694108-2	91.0		%		70-130	24-MAR-22
MET-T-CCMS-W	T Water							
Batch I	R5749909							
WG3709388-4 Aluminum (Al	DUP)-Total	WG3709388-3 <0.0050	3 <0.0050	RPD-NA	mg/L	N/A	20	24-MAR-22
Antimony (Sb)-Total	<0.00010	<0.00010	RPD-NA	mg/L	N/A	20	24-MAR-22
Arsenic (As)-	Total	0.00015	0.00016		mg/L	4.5	20	24-MAR-22
Barium (Ba)-	Total	0.00045	0.00047		mg/L	3.4	20	24-MAR-22
Beryllium (Be)-Total	<0.00010	<0.00010	RPD-NA	mg/L	N/A	20	24-MAR-22
Bismuth (Bi)-	Total	<0.000050	<0.000050	RPD-NA	mg/L	N/A	20	24-MAR-22
Boron (B)-To	tal	0.025	0.026		mg/L	2.7	20	24-MAR-22
Cadmium (Co	d)-Total	<0.0000050	<0.0000050	RPD-NA	mg/L	N/A	20	24-MAR-22
Calcium (Ca)	-Total	0.341	0.336		mg/L	1.2	20	24-MAR-22
Cobalt (Co)-T	otal	<0.00010	<0.00010	RPD-NA	mg/L	N/A	20	24-MAR-22
Copper (Cu)-	Total	0.0242	0.0241		mg/L	0.4	20	24-MAR-22
Iron (Fe)-Tota	al	<0.010	<0.010	RPD-NA	mg/L	N/A	20	24-MAR-22
Lead (Pb)-To	tal	0.000365	0.000362		mg/L	0.6	20	24-MAR-22
Magnesium (Mg)-Total	0.115	0.116		mg/L	0.4	20	24-MAR-22
Manganese (Mn)-Total	<0.00050	<0.00050	RPD-NA	mg/L	N/A	20	24-MAR-22

Workorder: L2694108 Report Date: 30-MAR-22 Page 7 of 18 GHD Limited (Waterloo) Client: **455 PHILLIP STREET** WATERLOO ON N2L 3X2 Contact: Kory Ozgun Test Matrix Reference Result Qualifier Units RPD Limit Analyzed MET-T-CCMS-WT Water R5749909 Batch WG3709388-4 DUP WG3709388-3 Molybdenum (Mo)-Total 0.000238 0.000225 mg/L 5.8 20 24-MAR-22 Nickel (Ni)-Total < 0.00050 < 0.00050 **RPD-NA** mg/L N/A 20 24-MAR-22 0.109 0.110 Potassium (K)-Total mg/L 0.4 20 24-MAR-22 0.000429 0.000445 Selenium (Se)-Total mg/L 3.8 20 24-MAR-22 Silicon (Si)-Total 3.04 3.04 mg/L 0.0 20 24-MAR-22 Silver (Ag)-Total < 0.000050 < 0.000050 **RPD-NA** mg/L N/A 20 24-MAR-22 Sodium (Na)-Total 179 181 mg/L 1.4 20 24-MAR-22 Strontium (Sr)-Total 0.0022 0.0021 mg/L 5.5 20 24-MAR-22 Thallium (TI)-Total < 0.000010 < 0.000010 RPD-NA mg/L N/A 20 24-MAR-22 Tin (Sn)-Total 0.00014 0.00013 mg/L 6.6 20 24-MAR-22 Vanadium (V)-Total < 0.00050 < 0.00050 **RPD-NA** mg/L N/A 20 24-MAR-22 Zinc (Zn)-Total 0.0038 0.0039 mg/L 2.9 20 24-MAR-22 WG3709388-2 LCS Aluminum (Al)-Total 95.7 % 80-120 24-MAR-22 Antimony (Sb)-Total 98.2 % 80-120 24-MAR-22 Arsenic (As)-Total 96.5 % 24-MAR-22 80-120 Barium (Ba)-Total 97.3 % 80-120 24-MAR-22 Beryllium (Be)-Total 91.9 % 80-120 24-MAR-22 Bismuth (Bi)-Total 96.9 % 80-120 24-MAR-22 Boron (B)-Total 95.9 % 80-120 24-MAR-22 Cadmium (Cd)-Total 97.2 % 80-120 24-MAR-22 Calcium (Ca)-Total 97.6 % 80-120 24-MAR-22 Cobalt (Co)-Total 91.2 % 80-120 24-MAR-22 Copper (Cu)-Total 90.2 % 80-120 24-MAR-22 Iron (Fe)-Total 94.3 % 80-120 24-MAR-22 Lead (Pb)-Total 97.6 % 24-MAR-22 80-120 Magnesium (Mg)-Total 101.5 % 80-120 24-MAR-22 Manganese (Mn)-Total 93.7 % 80-120 24-MAR-22 Molybdenum (Mo)-Total 91.2 % 80-120 24-MAR-22 Nickel (Ni)-Total 91.5 % 80-120 24-MAR-22 Potassium (K)-Total 95.6 % 80-120 24-MAR-22 Selenium (Se)-Total 98.1 % 80-120 24-MAR-22 Silicon (Si)-Total 96.0 % 60-140 24-MAR-22

Client:

Contact:

Quality Control Report

Workorder: L2694108 Report Date: 30-MAR-22 Page 8 of 18 GHD Limited (Waterloo) 455 PHILLIP STREET WATERLOO ON N2L 3X2 Kory Ozgun Matrix Pofo Posult Qualifie Unite PPD Limit м ۸. alv

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-WT	Water							
Batch R5749909								
WG3709388-2 LCS			07.0		0/			
Silver (Ag)- I otal			87.6		%		80-120	24-MAR-22
Sodium (Na)-Total			98.0		%		80-120	24-MAR-22
Strontium (Sr)-Total			96.8		%		80-120	24-MAR-22
			99.1		%		80-120	24-MAR-22
Tin (Sn)-Total			96.8		%		80-120	24-MAR-22
Vanadium (V)-Total			95.9		%		80-120	24-MAR-22
Zinc (Zn)- i otai			95.6		%		80-120	24-MAR-22
WG3709388-1 MB Aluminum (Al)-Total			<0.0050		ma/L		0.005	24-MAR-22
Antimony (Sb)-Total			<0.00010		ma/L		0.0001	24-MAR-22
Arsenic (As)-Total			<0.00010		mg/L		0.0001	24-MAR-22
Barium (Ba)-Total			<0.00010		mg/L		0.0001	24-MAR-22
Beryllium (Be)-Total			<0.00010		mg/L		0.0001	24-MAR-22
Bismuth (Bi)-Total			<0.00005	0	mg/L		0.00005	24-MAR-22
Boron (B)-Total			<0.010		mg/L		0.01	24-MAR-22
Cadmium (Cd)-Total			<0.00000	50	mg/L		0.000005	24-MAR-22
Calcium (Ca)-Total			<0.050		mg/L		0.05	24-MAR-22
Cobalt (Co)-Total			<0.00010		mg/L		0.0001	24-MAR-22
Copper (Cu)-Total			<0.00050		mg/L		0.0005	24-MAR-22
Iron (Fe)-Total			<0.010		mg/L		0.01	24-MAR-22
Lead (Pb)-Total			<0.00005	0	mg/L		0.00005	24-MAR-22
Magnesium (Mg)-Total			<0.0050		mg/L		0.005	24-MAR-22
Manganese (Mn)-Total			<0.00050		mg/L		0.0005	24-MAR-22
Molybdenum (Mo)-Total			<0.00005	0	mg/L		0.00005	24-MAR-22
Nickel (Ni)-Total			<0.00050		mg/L		0.0005	24-MAR-22
Potassium (K)-Total			<0.050		mg/L		0.05	24-MAR-22
Selenium (Se)-Total			<0.00005	0	mg/L		0.00005	24-MAR-22
Silicon (Si)-Total			<0.10		mg/L		0.1	24-MAR-22
Silver (Ag)-Total			<0.00005	0	mg/L		0.00005	24-MAR-22
Sodium (Na)-Total			<0.050		mg/L		0.05	24-MAR-22
Strontium (Sr)-Total			<0.0010		mg/L		0.001	24-MAR-22
Thallium (TI)-Total			<0.00001	0	mg/L		0.00001	24-MAR-22
Tin (Sn)-Total			<0.00010		mg/L		0.0001	24-MAR-22
Vanadium (V)-Total			<0.00050		mg/L		0.0005	24-MAR-22

			Workorder:	L2694108	8	Report Date: 30	-MAR-22		Page 9 of 18
Client:	GHD Lim 455 PHIL WATERL	ited (Waterloo) LIP STREET -OO ON N2L 3X2	2						
Contact:	Kory Ozg	jun							
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS	-wт	Water							
Batch	R5749909								
WG370938 Zinc (Zn)-1	8 -1 MB Total			<0.0030		mg/L		0.003	24-MAR-22
WG370938	8-5 MS		WG3709388-6						
Aluminum	(AI)-Total			N/A	MS-B	%		-	24-MAR-22
Antimony ((Sb)-Total			101.6		%		70-130	24-MAR-22
Arsenic (A	s)-Total			97.5		%		70-130	24-MAR-22
Barium (Ba	a)-Total			N/A	MS-B	%		-	24-MAR-22
Beryllium (Be)-Total			90.7		%		70-130	24-MAR-22
Bismuth (E	3i)-Total			91.5		%		70-130	24-MAR-22
Boron (B)-	Total			91.9		%		70-130	24-MAR-22
Cadmium	(Cd)-Total			96.2		%		70-130	24-MAR-22
Calcium (C	Ca)-Total			N/A	MS-B	%		-	24-MAR-22
Cobalt (Co	o)-Total			92.1		%		70-130	24-MAR-22
Copper (C	u)-Total			89.0		%		70-130	24-MAR-22
Iron (Fe)-T	otal			N/A	MS-B	%		-	24-MAR-22
Lead (Pb)-	Total			94.0		%		70-130	24-MAR-22
Magnesiur	m (Mg)-Total			N/A	MS-B	%		-	24-MAR-22
Manganes	e (Mn)-Total			N/A	MS-B	%		-	24-MAR-22
Molybdenu	um (Mo)-Tota	I		94.4		%		70-130	24-MAR-22
Nickel (Ni)	-Total			90.8		%		70-130	24-MAR-22
Potassium	(K)-Total			94.4		%		70-130	24-MAR-22
Selenium ((Se)-Total			98.1		%		70-130	24-MAR-22
Silicon (Si))-Total			N/A	MS-B	%		-	24-MAR-22
Silver (Ag)	-Total			87.8		%		70-130	24-MAR-22
Sodium (N	la)-Total			N/A	MS-B	%		-	24-MAR-22
Strontium	(Sr)-Total			N/A	MS-B	%		-	24-MAR-22
Thallium (TI)-Total			97.5		%		70-130	24-MAR-22
Tin (Sn)-T	otal			97.6		%		70-130	24-MAR-22
Vanadium	(V)-Total			98.9		%		70-130	24-MAR-22
Zinc (Zn)-	Fotal			N/A	MS-B	%		-	24-MAR-22
NH3-F-WT		Water							
Batch	R5750741								
WG370953	4-3 DUP		WG3709534-5	0.004					
Ammonia,	i otal (as N)		0.031	0.031		mg/L	1.0	20	25-MAR-22
WG370953	4-2 LCS								

			Workorder:	L2694108	В	Report Date: 30	-MAR-22		Page 10 of 18
Client:	GHD Lim 455 PHIL WATERL Kory Ozg	ited (Waterloo) LIP STREET OO ON N2L 3X2 un	2						
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
NH3-F-WT		Water							-
Batch WG3709534- Ammonia, To	R5750741 2 LCS otal (as N)			104.8		%		85-115	25-MAR-22
WG3709534- Ammonia, To	1 MB otal (as N)			<0.010		mg/L		0.01	25-MAR-22
WG3709534- Ammonia, To	4 MS otal (as N)		WG3709534-5	101.8		%		75-125	25-MAR-22
NO2-IC-WT		Water							
Batch WG3709675- Nitrite (as N)	R5750162 19 DUP		L2694108-3 <0.010	<0.010	RPD-NA	mg/L	N/A	20	24-MAR-22
WG3709675- Nitrite (as N)	17 LCS			102.4		%		90-110	24-MAR-22
WG3709675- Nitrite (as N)	16 MB			<0.010		mg/L		0.01	24-MAR-22
WG3709675- Nitrite (as N)	20 MS		L2694108-3	103.5		%		75-125	24-MAR-22
NO3-IC-WT		Water							
Batch WG3709675- Nitrate (as N	R5750162 19 DUP)		L2694108-3 0.241	0.241		mg/L	0.1	20	24-MAR-22
WG3709675- Nitrate (as N	17 LCS)			102.3		%		90-110	24-MAR-22
WG3709675- Nitrate (as N	16 MB)			<0.020		mg/L		0.02	24-MAR-22
WG3709675- Nitrate (as N	20 MS)		L2694108-3	103.4		%		75-125	24-MAR-22
P-T-COL-WT		Water							
Batch WG3711031- Phosphorus.	R5751788 3 DUP Total		L2694590-3 0.0189	0.0182		ma/L	3.9	20	30-MAR-22
WG3711031- Phosphorus,	2 LCS Total			96.8		%		80-120	30-MAR-22
WG3711031- Phosphorus,	1 MB Total			0.0032	RRQC	mg/L		0.003	30-MAR-22
COMMEI WG3711031-	NTS: RRQ(4 MS	C:RRQC: Reported	d Total Phosphor L2694590-3	us samples	are not affect	ed by observed Metho	od Blank backo	ground	
Phosphorus,	Total			72.4		%		70-130	30-MAR-22

			Workorder:	L2694108	3	Report Date: 30-	MAR-22		Page 11 of 18
Client: Contact:	GHD Limi 455 PHILI WATERLO Kory Ozgo	ted (Waterloo) LIP STREET OO ON N2L 3X2 Jn	2						
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PH-WT		Water							
Batch F WG3709560-4 рН	R5750260 DUP		WG3709560-3 7.85	7.83	J	pH units	0.02	0.2	24-MAR-22
WG3709560-2 рН	LCS			7.05		pH units		6.9-7.1	24-MAR-22
PHENOLS-4AAP	-WT	Water							
Batch F	R5750872								
WG3710102-3 Phenols (4AA	DUP P)		L2694356-1 <0.0010	<0.0010	RPD-NA	mg/L	N/A	20	25-MAR-22
Phenols (4AA	P)			95.3		%		85-115	25-MAR-22
WG3710102-1 Phenols (4AA	MB P)			<0.0010		mg/L		0.001	25-MAR-22
WG3710102-4 Phenols (4AA	MS P)		L2694356-1	106.1		%		75-125	25-MAR-22
SO4-IC-N-WT		Water							
Batch F	R5750162								
WG3709675-1 Sulfate (SO4)	9 DUP		L2694108-3 197	197		mg/L	0.1	20	24-MAR-22
WG3709675-1 Sulfate (SO4)	7 LCS			104.9		%		90-110	24-MAR-22
WG3709675-1 Sulfate (SO4)	6 MB			<0.30		mg/L		0.3	24-MAR-22
WG3709675-2 Sulfate (SO4)	0 MS		L2694108-3	N/A	MS-B	%		-	24-MAR-22
SOLIDS-TDS-WT		Water							
Batch F	R5750678								
WG3710119-3 Total Dissolve	DUP ed Solids		L2694590-23 225	229		mg/L	1.8	20	25-MAR-22
WG3710119-2 Total Dissolve	LCS ed Solids			91.9		%		85-115	25-MAR-22
WG3710119-1 Total Dissolve	MB ed Solids			<10		mg/L		10	25-MAR-22
SOLIDS-TSS-WT		Water							
Batch F WG3710117-3	R5750898 DUP		L2694590-23	0.7					
i otal Suspend WG3710117-2	LCS		10.7	8.7	J	mg/∟	2.0	6	26-MAR-22

			Workorder:	L2694108	8	Report Date:	30-MAR-22		Page 12 of 18
Client: Contact:	GHD Limit 455 PHILL WATERLO Kory Ozgu	ted (Waterloo) LIP STREET OO ON N2L 3X2 un	:						
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
SOLIDS-TSS-	wт	Water							
Batch WG371011 Total Susp	R5750898 7-2 LCS			87.8		%		85-115	26-MAR-22
WG371011 Total Susp	7-1 MB bended Solids			<3.0		mg/L		3	26-MAR-22
TKN-F-WT		Water							
Batch	R5750843								
WG371040	2-3 DUP		L2694275-1						
Total Kjeld	ahl Nitrogen		0.362	0.383		mg/L	5.6	20	28-MAR-22
WG371040 Total Kjeld	2-2 LCS lahl Nitrogen			109.1		%		75-125	28-MAR-22
Total Kjeld	ahl Nitrogen			<0.050		mg/L		0.05	28-MAR-22
WG371040 Total Kjeld	2-4 MS lahl Nitrogen		L2694275-1	117.5		%		70-130	28-MAR-22
VOC-ROU-HS	-wt	Water							
Batch	R5750995								
WG371053	1-4 DUP		WG3710531-3						
1,1,1,2-Te	trachloroethan	1e	<0.50	<0.50	RPD-NA	ug/L	N/A	30	28-MAR-22
1,1,2,2-16	trachioroethan	16	<0.50	<0.50	RPD-NA	ug/L	N/A	30	28-MAR-22
1,1,1-1 rich	lloroethane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	28-MAR-22
1,1,2-1 ricr	lioroetnane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	28-MAR-22
1,2-Dibron	noethane		<0.20	<0.20	RPD-NA	ug/L	N/A	30	28-MAR-22
1,1-Dichloi	roethane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	28-MAR-22
1,1-Dichloi	roethylene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	28-MAR-22
1,2-Dichloi	robenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	28-MAR-22
1,2-Dichloi	roethane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	28-MAR-22
1,2-Dichloi	ropropane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	28-MAR-22
1,3-Dichloi	robenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	28-MAR-22
1,4-Dichlor	robenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	28-MAR-22
Acetone			65	65		ug/L	0.6	30	28-MAR-22
Benzene			<0.50	<0.50	RPD-NA	ug/L	N/A	30	28-MAR-22
Bromodich	loromethane		<1.0	<1.0	RPD-NA	ug/L	N/A	30	28-MAR-22
Bromoforn	า		<1.0	<1.0	RPD-NA	ug/L	N/A	30	28-MAR-22
Bromomet	hane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	28-MAR-22
Carbon tet	rachloride		<0.20	<0.20	RPD-NA	ug/L	N/A	30	28-MAR-22

Workorder: L2694108

Report Date: 30-MAR-22

Page 13 of 18

Client: GHD Limited (Waterloo) 455 PHILLIP STREET WATERLOO ON N2L 3X2

Contact: Kory Ozgun

Test	Matrix Reference Result Qualifier Units RPI		RPD	Limit	Analyzed			
VOC-ROU-HS-WT	Water							
Batch R5750995								
WG3710531-4 DUP		WG3710531-	3					
Chlorobenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	28-MAR-22
Chloroethane		<1.0	<1.0	RPD-NA	ug/L	N/A	30	28-MAR-22
Chloroform		<1.0	<1.0	RPD-NA	ug/L	N/A	30	28-MAR-22
cis-1,2-Dichloroethylene	9	<0.50	<0.50	RPD-NA	ug/L	N/A	30	28-MAR-22
cis-1,3-Dichloropropene	9	<0.30	<0.30	RPD-NA	ug/L	N/A	30	28-MAR-22
Dibromochloromethane		<1.0	<1.0	RPD-NA	ug/L	N/A	30	28-MAR-22
Dichlorodifluoromethan	e	<1.0	<1.0	RPD-NA	ug/L	N/A	30	28-MAR-22
Dichloromethane		<2.0	<2.0	RPD-NA	ug/L	N/A	30	28-MAR-22
Ethylbenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	28-MAR-22
m+p-Xylenes		<0.40	<0.40	RPD-NA	ug/L	N/A	30	28-MAR-22
Methyl Ethyl Ketone		<20	<20	RPD-NA	ug/L	N/A	30	28-MAR-22
Methyl Isobutyl Ketone		<20	<20	RPD-NA	ug/L	N/A	30	28-MAR-22
n-Hexane		<0.50	<0.50	RPD-NA	ug/L	N/A	30	28-MAR-22
MTBE		<0.50	<0.50	RPD-NA	ug/L	N/A	30	28-MAR-22
o-Xylene		<0.30	<0.30	RPD-NA	ug/L	N/A	30	28-MAR-22
Styrene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	28-MAR-22
Tetrachloroethylene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	28-MAR-22
Toluene		<0.40	<0.40	RPD-NA	ug/L	N/A	30	28-MAR-22
trans-1,2-Dichloroethyle	ene	<0.50	<0.50	RPD-NA	ug/L	N/A	30	28-MAR-22
trans-1,3-Dichloroprope	ne	<0.30	<0.30	RPD-NA	ug/L	N/A	30	28-MAR-22
Trichloroethylene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	28-MAR-22
Trichlorofluoromethane		<1.0	<1.0	RPD-NA	ug/L	N/A	30	28-MAR-22
Vinyl chloride		<0.50	<0.50	RPD-NA	ug/L	N/A	30	28-MAR-22
WG3710531-1 LCS								
1,1,1,2-Tetrachloroetha	ne		96.9		%		70-130	28-MAR-22
1,1,2,2-Tetrachloroetha	ne		99.7		%		70-130	28-MAR-22
1,1,1-Trichloroethane			91.5		%		70-130	28-MAR-22
1,1,2-Trichloroethane			97.8		%		70-130	28-MAR-22
1,2-Dibromoethane			95.1		%		70-130	28-MAR-22
1,1-Dichloroethane			89.6		%		70-130	28-MAR-22
1,1-Dichloroethylene			86.6		%		70-130	28-MAR-22
1,2-Dichlorobenzene			95.3		%		70-130	28-MAR-22
1,2-Dichloroethane			102.2		%		70-130	28-MAR-22

Workorder: L2694108 Report Date: 30-MAR-22 Page 14 of 18 GHD Limited (Waterloo)

455 PHILLIP STREET WATERLOO ON N2L 3X2 Kory Ozgun

Contact:

Client:

Test	Matrix	Reference	Result	Qualifier	Units	Units RPD Lin		Analyzed
VOC-ROU-HS-WT	Water							
Batch R5750995								
WG3710531-1 LCS			404.0		0/			
1,2-Dichloropropane			101.2		%		70-130	28-MAR-22
1,3-Dichlorobenzene			96.1		%		70-130	28-MAR-22
1,4-Dichlorobenzene			96.2		%		70-130	28-MAR-22
Acetone			102.8		%		60-140	28-MAR-22
Benzene			90.0		%		70-130	28-MAR-22
Bromodichloromethane			107.0		%		70-130	28-MAR-22
Bromoform			103.6		%		70-130	28-MAR-22
Bromomethane			79.2		%		60-140	28-MAR-22
Carbon tetrachloride			101.5		%		70-130	28-MAR-22
Chlorobenzene			93.0		%		70-130	28-MAR-22
Chloroethane			88.9		%		70-130	28-MAR-22
Chloroform			94.7		%		70-130	28-MAR-22
cis-1,2-Dichloroethylene			90.5		%		70-130	28-MAR-22
cis-1,3-Dichloropropene			92.6		%		70-130	28-MAR-22
Dibromochloromethane			100.2		%		70-130	28-MAR-22
Dichlorodifluoromethane	9		57.7		%		50-140	28-MAR-22
Dichloromethane			94.7		%		70-130	28-MAR-22
Ethylbenzene			87.5		%		70-130	28-MAR-22
m+p-Xylenes			90.8		%		70-130	28-MAR-22
Methyl Ethyl Ketone			95.8		%		60-140	28-MAR-22
Methyl Isobutyl Ketone			85.5		%		50-150	28-MAR-22
n-Hexane			82.2		%		70-130	28-MAR-22
MTBE			93.8		%		70-130	28-MAR-22
o-Xylene			87.2		%		70-130	28-MAR-22
Styrene			87.1		%		70-130	28-MAR-22
Tetrachloroethylene			95.2		%		70-130	28-MAR-22
Toluene			87.1		%		70-130	28-MAR-22
trans-1,2-Dichloroethyle	ne		93.0		%		70-130	28-MAR-22
trans-1,3-Dichloroproper	ne		87.7		%		70-130	28-MAR-22
Trichloroethylene			103.8		%		70-130	28-MAR-22
Trichlorofluoromethane			84.6		%		60-140	28-MAR-22
Vinyl chloride			72.7		%		60-140	28-MAR-22
WG3710531-2 MB								
1,1,1,2-Tetrachloroethar	ne		<0.50		ug/L		0.5	28-MAR-22

Client:

Contact:

Test

Quality Control Report

 Workorder:
 L2694108
 Report Date:
 30-MAR-22
 Page
 15
 of
 18

 GHD Limited (Waterloo)
 455 PHILLIP STREET
 VATERLOO ON N2L 3X2
 VATERLOO ON N2L 3X2
 VATERLOO ON N2L 3X2
 VATERLOO
 VATERLOO
 Analyzed

 Matrix
 Reference
 Result
 Qualifier
 Units
 RPD
 Limit
 Analyzed

VOC-ROU-HS-WT Water				
Batch R5750995				
WG3710531-2 MB				
1,1,2,2-Tetrachloroethane	<0.50	ug/L	0.5	28-MAR-22
1,1,1-Trichloroethane	<0.50	ug/L	0.5	28-MAR-22
1,1,2-Trichloroethane	<0.50	ug/L	0.5	28-MAR-22
1,2-Dibromoethane	<0.20	ug/L	0.2	28-MAR-22
1,1-Dichloroethane	<0.50	ug/L	0.5	28-MAR-22
1,1-Dichloroethylene	<0.50	ug/L	0.5	28-MAR-22
1,2-Dichlorobenzene	<0.50	ug/L	0.5	28-MAR-22
1,2-Dichloroethane	<0.50	ug/L	0.5	28-MAR-22
1,2-Dichloropropane	<0.50	ug/L	0.5	28-MAR-22
1,3-Dichlorobenzene	<0.50	ug/L	0.5	28-MAR-22
1,4-Dichlorobenzene	<0.50	ug/L	0.5	28-MAR-22
Acetone	<20	ug/L	20	28-MAR-22
Benzene	<0.50	ug/L	0.5	28-MAR-22
Bromodichloromethane	<1.0	ug/L	1	28-MAR-22
Bromoform	<1.0	ug/L	1	28-MAR-22
Bromomethane	<0.50	ug/L	0.5	28-MAR-22
Carbon tetrachloride	<0.20	ug/L	0.2	28-MAR-22
Chlorobenzene	<0.50	ug/L	0.5	28-MAR-22
Chloroethane	<1.0	ug/L	1	28-MAR-22
Chloroform	<1.0	ug/L	1	28-MAR-22
cis-1,2-Dichloroethylene	<0.50	ug/L	0.5	28-MAR-22
cis-1,3-Dichloropropene	<0.30	ug/L	0.3	28-MAR-22
Dibromochloromethane	<1.0	ug/L	1	28-MAR-22
Dichlorodifluoromethane	<1.0	ug/L	1	28-MAR-22
Dichloromethane	<2.0	ug/L	2	28-MAR-22
Ethylbenzene	<0.50	ug/L	0.5	28-MAR-22
m+p-Xylenes	<0.40	ug/L	0.4	28-MAR-22
Methyl Ethyl Ketone	<20	ug/L	20	28-MAR-22
Methyl Isobutyl Ketone	<20	ug/L	20	28-MAR-22
n-Hexane	<0.50	ug/L	0.5	28-MAR-22
МТВЕ	<0.50	ug/L	0.5	28-MAR-22
o-Xylene	<0.30	ug/L	0.3	28-MAR-22
Styrene	<0.50	ug/L	0.5	28-MAR-22
		-		

Workorder: L2694108 Report Date: 30-MAR-22 Page 16 of 18 GHD Limited (Waterloo) Client: **455 PHILLIP STREET** WATERLOO ON N2L 3X2 Contact: Kory Ozgun Test Matrix Reference Result Qualifier Units RPD Limit Analyzed VOC-ROU-HS-WT Water R5750995 Batch WG3710531-2 MB Tetrachloroethylene <0.50 0.5 ug/L 28-MAR-22 Toluene <0.40 ug/L 0.4 28-MAR-22 trans-1,2-Dichloroethylene <0.50 ug/L 0.5 28-MAR-22 trans-1,3-Dichloropropene < 0.30 0.3 ug/L 28-MAR-22 0.5 Trichloroethylene ug/L < 0.50 28-MAR-22 Trichlorofluoromethane <1.0 ug/L 1 28-MAR-22 Vinyl chloride 0.5 < 0.50 ug/L 28-MAR-22 Surrogate: 1,4-Difluorobenzene 101.6 70-130 % 28-MAR-22 Surrogate: 4-Bromofluorobenzene 98.9 % 70-130 28-MAR-22 WG3710531-5 MS WG3710531-3 1,1,1,2-Tetrachloroethane 93.8 % 50-150 28-MAR-22 1,1,2,2-Tetrachloroethane 100.3 % 28-MAR-22 50-150 1,1,1-Trichloroethane 86.2 % 50-150 28-MAR-22 1,1,2-Trichloroethane 97.3 % 50-150 28-MAR-22 1,2-Dibromoethane 95.2 % 28-MAR-22 50-150 1,1-Dichloroethane 85.6 % 50-150 28-MAR-22 1,1-Dichloroethylene 79.3 % 50-150 28-MAR-22 92.3 1,2-Dichlorobenzene % 50-150 28-MAR-22 1,2-Dichloroethane % 101.3 50-150 28-MAR-22 1,2-Dichloropropane 99.0 % 50-150 28-MAR-22 1,3-Dichlorobenzene 91.7 % 50-150 28-MAR-22 1,4-Dichlorobenzene 92.0 % 28-MAR-22 50-150 Acetone 97.5 % 50-150 28-MAR-22 Benzene 86.2 % 50-150 28-MAR-22 Bromodichloromethane 104.5 % 50-150 28-MAR-22 Bromoform 103.6 % 50-150 28-MAR-22 Bromomethane 73.9 % 50-150 28-MAR-22 Carbon tetrachloride 94.7 % 50-150 28-MAR-22 Chlorobenzene 89.7 % 50-150 28-MAR-22 Chloroethane 82.1 % 50-150 28-MAR-22 Chloroform % 91.3 28-MAR-22 50-150 cis-1,2-Dichloroethylene 103.9 % 50-150 28-MAR-22 cis-1,3-Dichloropropene 91.4 % 50-150 28-MAR-22 Dibromochloromethane 99.2 %

50-150

28-MAR-22

Test

Quality Control Report

Workorder: L2694108 Report Date: 30-MAR-22 Page 17 of 18 GHD Limited (Waterloo) Client: 455 PHILLIP STREET WATERLOO ON N2L 3X2 Contact: Kory Ozgun Matrix Reference Result Qualifier Units RPD Limit Analyzed VOC-ROU-HS-WT Water

Batch R5750995					
WG3710531-5 MS	WG3710531-3				
Dichlorodifluoromethane	48.4	MES	%	50-150	28-MAR-22
Dichloromethane	91.5		%	50-150	28-MAR-22
Ethylbenzene	82.7		%	50-150	28-MAR-22
m+p-Xylenes	85.9		%	50-150	28-MAR-22
Methyl Ethyl Ketone	95.8		%	50-150	28-MAR-22
Methyl Isobutyl Ketone	87.8		%	50-150	28-MAR-22
n-Hexane	74.0		%	50-150	28-MAR-22
МТВЕ	91.6		%	50-150	28-MAR-22
o-Xylene	83.4		%	50-150	28-MAR-22
Styrene	83.7		%	50-150	28-MAR-22
Tetrachloroethylene	87.9		%	50-150	28-MAR-22
Toluene	82.8		%	50-150	28-MAR-22
trans-1,2-Dichloroethylene	86.5		%	50-150	28-MAR-22
trans-1,3-Dichloropropene	87.2		%	50-150	28-MAR-22
Trichloroethylene	97.7		%	50-150	28-MAR-22
Trichlorofluoromethane	76.5		%	50-150	28-MAR-22
Vinyl chloride	65.0		%	50-150	28-MAR-22

Workorder: L2694108

Report Date: 30-MAR-22

Client: GHD Limited (Waterloo) 455 PHILLIP STREET WATERLOO ON N2L 3X2 Contact: Kory Ozgun

Jontact.

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
	ALS CONTOLEMIN (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
J	Duplicate results and limits are expressed in terms of absolute difference.
LCS-H	Lab Control Sample recovery was above ALS DQO. Non-detected sample results are considered reliable. Other results, if reported, have been qualified.
MES	Data Quality Objective was marginally exceeded (by < 10% absolute) for < 10% of analytes in a Multi-Element Scan / Multi-Parameter Scan (considered acceptable as per OMOE & CCME).
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.
RRQC	Refer to report remarks for information regarding this QC result.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

COC Number: 20 -

Page of

Report To	Contact and company name below	will appear on the final report							Ťu	imaro	und Tim	(TAT)	Reque	sted		, in the second s	Na si		anan j	A SA		<u> </u>	
Company:	GHD Ltd. (Acct 13791)		Select Report I	Select Report Format: PDF EXCEL EDD (DIGITAL)			Routine [R] if received by 3pm M-F - no surcharges apply								he and share are a period of								
Contact:	Stephanie Berton		Merge QC/QC	Merge QC/QCI Reports with COA 🗌 YES 🗍 NO 🗌 N/A			4 day [P4] if received by 3pm M-F - 20% rush surcharge minimum																
Phone:	519-884-0510		Compare Resi	Compare Results to Criteria on Report - provide details below if box checked			3 day [P3] if received by 3pm M-F - 25% rush surcharge minimum							n is	AFFIX ALS BARCODE LABEL HERE								
	Company address below will appear on	the final report	Select Distribut	lion: 🗹 Email		FAX	2 day [P2] if received by 3pm M-F - 50% rush surcharge minimum										144-0	Nad r	1111				
Street:	455 Phillip St.		Email 1 or Fax	stephanie.berton@)ghd.com	r.	Same day (E2) if received by 10am M-S - 200% rush surcharge. Additional								lie di Baria								
City/Province:	Waterloo, ON		Email 2	See SSOW/PO												strike)							
Postal Code:	N2L 3X2		Email 3				298	Date and	t Time	Requi	red for al	E&P T/	VT e: Nit	λ.		₫đ-i	ก่อาท	-yy h	h mm	ami,	,1 `	-	
Invoice To	Same as Report To	YES 🗌 NO		Invoice Re	ecipients					For test	s that can	not be pe	rformed	accordin	g to the "	TAT requ	ested, y	you will	l be con	stacted.			
<u> </u>	Copy of Invoice with Report	YES 🗹 NO	Select Invoice I	Distribution: 🔽 EM	IAIL 🗌 MAIL 🗌] FAX							Ar	alysis	Requ	est							
Company:	GHD Ltd. (Acct 13791)		Email 1 or Fax	Invoicing-Canada(@ghd.com		LSR SS		łr	ndicate	Filtered (), Prese	rved (P)	or Filter	ed and F	Preserve	ed (F/P) below	v ,			8	(;;
Contact:			Email 2				ΙΨ.											$ \rightarrow $				Ĕ	1 de
	Project Information		<u>Oj</u>	l and Gas Required	fields (client u	450)	I₹			~	3			5							0	ğ	99
ALS Account #	# / Quote #:		AFE/Cost Center:		PO#		15	c		1S	й К			Ę							키	2	\$
Job #:	44985-20-21		Major/Minor Code:		Routing Code:		1 <u></u>	5	Ê	ςΩ',	18 11	ž	.0	Cak			[ΞĮ	AGI A	AR
POTAFE:			Requisitioner:				12	385-1	N-SI	Η. Η	ਰ ਹਿ	5	LOE	less-		5	8	etals			Z	8 B	ΝZ
LSU:		and the last of the state of the	Location:		ł		12	4		Ϋ́Υ.	S S	3	Į	lard		Tota	2-4	12-M			s	ST	Δ.
ALS Lab Wo	rk Order # (lab use only): L	694108	ALS Contact:	Rick H	Sampler:		BER	(svoc	OC-R(anducti	(Br N2	ł	ionizec	etais, F	Total	/anide,	7-4495	T-4496	dw		Б	ZDED	ECTE
ALS Sample #	Sample Identifie	cation and/or Coordinates		Date	Time	Sample Type]§.	ပ္ရွိ	S S S	Ŭ	anse	ິ ເ	12	al W	โย	ы С	≤ ä	≤	d Te	효	ş	E	SP D
(lab use only)	(This description	t will appear on the report)		(dd-mmm-yy)	(hħ:mm)		Ī	Š	3	A L	<u> </u>	t 8	<u> </u>	Tot	Ϋ́	ž	E E	8	Ë,	Fie	δ	ã	3
	EQ Pond Discharge			22-03-22	1100	Water	11	R	R	R	R	R R	R	R	R	R	R	R	10	8.7			
	PONDD West	Pond		22-03-22	1100	Water	11	R	R	R	R	R R	R	R	R	R	R	R	10	7.8			
	PONDA East	Poud		22-03-22	1230	Water	11	R	R	R	R	R R	R	R	R	R	R	R	10	8.1			
																ŀ		1		Ī			
									İ					1			1	\neg					
						·																	
			·····											+			+		-+	-+			$\neg \uparrow$
MAL MARKET AND AND A STREET							+									-+	-	-+					
Active participation	······						+	$\left - \right $								-+					_	_	
						· · · ·	<u> </u>					_						+			-	-+	-
A STATE AND A STAT			· · ·	····				-				_	_				-+	\rightarrow		_	\rightarrow	-+	
																-+	-+						
elen sinteren anterga.						<u> </u>	NC MARCAN	Constantial Martin	Costriction (Sea angela.						1			ras la Conte Ca	Katarian (dealer 57 a		
Drinking	Water (DW) Samples ¹ (client use)	Notes / Specify L	imits for result e (E	valuation by selectin xcel COC only)	g from drop-dow	n below	Cooli	na Mei	hod-		NONE		RECE			S (Iab I		nly)	- -				4090000 409300
Are samples tak	en from a Regulated DW System?						Subr	nission	Com	ments	identifi	d on s		Recei	of Noti	fication	<u>л</u> н 1	<u>ొ</u> ≧∟ ⊡γ	_]			n eu :	n paga n Nggangan Nggangan
	es 🗹 No						Coole	er Cust	ody S	Seals I	ntact:	<u>_</u> _	ES 🗌	N/A	Samol	e Cust	odv S	eals	Intact	a de la composición de la comp	TYES	- - N	J/A
Are samples for	human consumption/ use?	Please provide field temp	o and field pH fo	r unionized calculati	ion.		100000	S S INII	TIAL C	COOLE	TEMPE	ATURE	Sec	λ.÷44:4≶-	6	-ist FIN	AL CO	OLER	TEMPI	ERATU	RES	331458	1912.99% 1912.99%
□ Y	ES 🗹 NO															πC)			936			
	SHIPMENT RELEASE (client use) INITIAL SHIPMENT RECEPTION (lab use only)			ି ରାହରେ	885 (SP	Ś	WBS7	\mathcal{V}_{\odot}	FINA	LSHI	MENT	REC	PTIO	N (lal) USO	only)							
Released by:	bater Mar	22/22 1500	Received by:	sandar i gostar Menos Menos di gibbo i br>Menos di gibbo i	Date		Time		fece		X -			Date	31	升	\mathcal{F}	$\overline{\lambda}$			ine:	P	P
REFER TO BACK	PAGE FOR ALS LOCATIONS AND SAM	IPLING INFORMATION		WHIT	E - LABORATOR	Y COPY YEL	LOW -	CLIEN	COP	Ϋ́					1	î					1 2-4	AUX) 2020	I FRONT

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy. 1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

CERTIFICATE OF ANALYSIS

Work Order	: WT2203263	Page	÷ 1 of 5
Client	Clean Harbors Environmental	Laboratory	: Waterloo - Environmental
	Services, Inc.		
Contact	: Rob Girard	Account Manager	: Rick Hawthorne
Address	: 4090 TELFER ROAD RR1 RR1	Address	: 60 Northland Road, Unit 1
	Corunna ON Canada N0N 1G0		Waterloo ON Canada N2V 2B8
Telephone	: 519 864 3815	Telephone	: +1 519 886 6910
Project	: 12572192-20.22	Date Samples Received	: 03-May-2022 10:15
PO	: 735-002833	Date Analysis	: 03-May-2022
		Commenced	
C-O-C number	:	Issue Date	: 10-May-2022 14:48
Sampler	: Client		
Site	: 4090 Telfer Road, RR#1, Corunna		
Quote number	12572192-20.22-SSOW-735-002833		
No. of samples received	: 2		
No. of samples analysed	: 2		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Greg Pokocky	Supervisor - Inorganic	Inorganics, Waterloo, Ontario
Greg Pokocky	Supervisor - Inorganic	Metals, Waterloo, Ontario
Jon Fisher	Department Manager - Inorganics	Inorganics, Waterloo, Ontario
Khairul Intiar	Login	Administration, Waterloo, Ontario

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance. Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key : CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances LOR: Limit of Reporting (detection limit).

Unit	Description
٥°	degrees Celsius
μS/cm	Microsiemens per centimetre
mg/L	milligrams per litre
pH units	pH units

>: greater than.

<: less than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

Qualifier	Description
DLDS	Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical Conductivity.
PEHT	Parameter exceeded recommended holding time prior to analysis.
SP	Sample was preserved at the laboratory.

Analytical Results

WT2203263-001										
Sub-Matrix: Water	Client sample ID: STN6 - STN6 Discharge									
(Matrix: Water)	Client sampling date / time: [03-May-2022]									
Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot		
Field Tests										
pH, field		8.10	0.01	pH units	EF001	-	04-May-2022	-		
temperature, field		8.00	0.01	°C	EF001	-	04-May-2022	-		
Physical Tests										
conductivity		810	2.0	µS/cm	E100	07-May-2022	07-May-2022	480132		
hardness (as CaCO3), from total Ca/Mg		364	0.50	mg/L	EC100A	-	04-May-2022	-		
pН		8.42 PE	^{нт,} 0.10	pH units	E108	07-May-2022	07-May-2022	480130		
solids, total dissolved [TDS]		450 ^{DL}	^{DS,} 20	mg/L	E162	-	04-May-2022	476771		
solids, total suspended [TSS]		7.6	3.0	mg/L	E160	-	04-May-2022	476784		
alkalinity, total (as CaCO3)		280	2.0	mg/L	E290	07-May-2022	07-May-2022	480131		
Anions and Nutrients										
ammonia, total (as N)	7664-41-7	0.0136	^{SP,} 0.0050	mg/L	E298	06-May-2022	06-May-2022	479030		
ammonia, un-ionized (as N), field	7664-41-7	0.0003	0	mg/L	EC298A	-	04-May-2022	-		
bromide	24959-67-9	<0.10	0.10	mg/L	E235.Br	07-May-2022	09-May-2022	480129		
chloride	16887-00-6	53.0	0.50	mg/L	E235.CI	07-May-2022	09-May-2022	480125		
fluoride	16984-48-8	0.317	0.020	mg/L	E235.F	07-May-2022	09-May-2022	480126		
Kjeldahl nitrogen, total [TKN]		0.662	^{SP,} 0.050	mg/L	E318	06-May-2022	06-May-2022	479031		
nitrate (as N)	14797-55-8	2.35	0.020	mg/L	E235.NO3	07-May-2022	09-May-2022	480127		
nitrite (as N)	14797-65-0	0.021	0.010	mg/L	E235.NO2	07-May-2022	09-May-2022	480128		
phosphorus, total	7723-14-0	0.0151	0.0020	mg/L	E372-U	06-May-2022	09-May-2022	479029		
sulfate (as SO4)	14808-79-8	92.4	0.30	mg/L	E235.SO4	07-May-2022	09-May-2022	480124		
Cyanides										
cyanide, strong acid dissociable (total)		<0.0020	0.0020	mg/L	E333	04-May-2022	04-May-2022	477421		
Organic / Inorganic Carbon										
carbon, dissolved organic [DOC]		7.65	0.50	mg/L	E358-L	04-May-2022	04-May-2022	476256		
Total Metals										
aluminum, total	7429-90-5	0.369	0.0030	mg/L	E420	03-May-2022	04-May-2022	476011		
antimony, total	7440-36-0	0.00017	0.00010	mg/L	E420	03-May-2022	04-May-2022	476011		
arsenic, total	7440-38-2	0.00091	0.00010	mg/L	E420	03-May-2022	04-May-2022	476011		
barium, total	7440-39-3	0.0322	0.00010	mg/L	E420	03-May-2022	04-May-2022	476011		
beryllium, total	7440-41-7	<0.000020	0.000020	mg/L	E420	03-May-2022	04-May-2022	476011		
bismuth, total	7440-69-9	<0.000050	0.000050	mg/L	E420	03-May-2022	04-May-2022	476011		
boron, total	7440-42-8	0.047	0.010	mg/L	E420	03-May-2022	04-May-2022	476011		
cadmium, total	7440-43-9	0.0000256	0.0000050	mg/L	E420	03-May-2022	04-May-2022	476011		
calcium, total	7440-70-2	81.6	0.050	mg/L	E420	03-May-2022	04-May-2022	476011		
cobalt, total	7440-48-4	0.00031	0.00010	mg/L	E420	03-May-2022	04-May-2022	476011		
copper, total	7440-50-8	0.00185	0.00050	mg/L	E420	03-May-2022	04-May-2022	476011		
iron, total	7439-89-6	0.397	0.010	mg/L	E420	03-May-2022	04-May-2022	476011		
lead, total	7439-92-1	0.000216	0.000050	mg/L	E420	03-May-2022	04-May-2022	476011		
magnesium, total	7439-95-4	38.9	0.0050	mg/L	E420	03-May-2022	04-May-2022	476011		
manganese, total	7439-96-5	0.0301	0.00010	mg/L	E420	03-May-2022	04-May-2022	476011		
mercury, total	7439-97-6	<0.000050	0.0000050	mg/L	E508	04-May-2022	04-May-2022	476234		
molybdenum, total	7439-98-7	0.00875	0.000050	mg/L	E420	03-May-2022	04-May-2022	476011		
nickel, total	7440-02-0	0.00181	0.00050	mg/L	E420	03-May-2022	04-May-2022	476011		
potassium, total	7440-09-7	2.55	0.050	mg/L	E420	03-May-2022	04-May-2022	476011		
selenium, total	7782-49-2	0.000898	0.000050	mg/L	E420	03-May-2022	04-May-2022	476011		
silicon, total	7440-21-3	1.36	0.10	mg/L	E420	03-May-2022	04-May-2022	476011		
silver, total	7440-22-4	<0.000010	0.000010	mg/L	E420	03-May-2022	04-May-2022	476011		
sodium, total	7440-23-5	28.3	0.050	mg/L	E420	03-May-2022	04-May-2022	476011		

Analytical Results

WT2203263-001											
Sub-Matrix: Water	Client sample ID: STN6 - STN6 Discharge										
(Matrix: Water)	Client sampling date / time: [03-May-2022]										
Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot			
Total Metals											
strontium, total	7440-24-6	0.433	0.00020	mg/L	E420	03-May-2022	04-May-2022	476011			
thallium, total	7440-28-0	0.000016	0.000010	mg/L	E420	03-May-2022	04-May-2022	476011			
tin, total	7440-31-5	<0.00010	0.00010	mg/L	E420	03-May-2022	04-May-2022	476011			
vanadium, total	7440-62-2	0.00149	0.00050	mg/L	E420	03-May-2022	04-May-2022	476011			
zinc, total	7440-66-6	<0.0030	0.0030	mg/L	E420	03-May-2022	04-May-2022	476011			
Speciated Metals											
chromium, hexavalent [Cr VI], total	18540-29-9	<0.00050	0.00050	mg/L	E532	-	04-May-2022	476554			
Aggregate Organics											
chemical oxygen demand [COD]		21	^{SP,} 10	mg/L	E559-L	-	05-May-2022	478083			
phenols, total (4AAP)		<0.0010	^{SP.} 0.0010	mg/L	E562	06-May-2022	06-May-2022	479032			
	1				-						

Please refer to the General Comments section for an explanation of any qualifiers detected.

Analytical Results

WT2203263-002

Sub-Matrix:Water

(Matrix: Water)

Client sample ID: STN6A - STN6A Discharge Client sampling date / time: [03-May-2022]

Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot
Field Tests								
pH, field		8.10	0.01	pH units	EF001	-	04-May-2022	-
temperature, field		8.00	0.01	°C	EF001	-	04-May-2022	-
Physical Tests								
conductivity		788	2.0	μS/cm	E100	07-May-2022	07-May-2022	480132
hardness (as CaCO3), from total Ca/Mg		364	0.50	mg/L	EC100A	-	04-May-2022	-
рН		8.38 PEHT,	0.10	pH units	E108	07-May-2022	07-May-2022	480130
solids, total dissolved [TDS]		433 DLDS,	20	mg/L	E162	-	04-May-2022	476771
solids, total suspended [TSS]		6.2	3.0	mg/L	E160	-	04-May-2022	476784
alkalinity, total (as CaCO3)		283	2.0	mg/L	E290	07-May-2022	07-May-2022	480131
Anions and Nutrients								
ammonia, total (as N)	7664-41-7	0.0121 ^{SP,}	0.0050	mg/L	E298	06-May-2022	06-May-2022	479030
ammonia, un-ionized (as N), field	7664-41-7	0.0002	0	mg/L	EC298A	-	04-May-2022	-
bromide	24959-67-9	<0.10	0.10	mg/L	E235.Br	07-May-2022	09-May-2022	480129
chloride	16887-00-6	54.7	0.50	mg/L	E235.Cl	07-May-2022	09-May-2022	480125
fluoride	16984-48-8	0.204	0.020	mg/L	E235.F	07-May-2022	09-May-2022	480126
Kjeldahl nitrogen, total [TKN]		0.857 ^{SP,}	0.050	mg/L	E318	06-May-2022	06-May-2022	479031
nitrate (as N)	14797-55-8	2.91	0.020	mg/L	E235.NO3	07-May-2022	09-May-2022	480127
nitrite (as N)	14797-65-0	0.021	0.010	mg/L	E235.NO2	07-May-2022	09-May-2022	480128
phosphorus, total	7723-14-0	0.0256	0.0020	mg/L	E372-U	06-May-2022	09-May-2022	479029
sulfate (as SO4)	14808-79-8	63.2	0.30	mg/L	E235.SO4	07-May-2022	09-May-2022	480124
Cyanides								
cyanide, strong acid dissociable (total)		<0.0020	0.0020	mg/L	E333	04-May-2022	04-May-2022	477421
Organic / Inorganic Carbon								
carbon, dissolved organic [DOC]		9.15	0.50	mg/L	E358-L	04-May-2022	04-May-2022	476256
Total Metals								
aluminum, total	7429-90-5	0.351	0.0030	mg/L	E420	03-May-2022	04-May-2022	476011
antimony, total	7440-36-0	0.00012	0.00010	mg/L	E420	03-May-2022	04-May-2022	476011

Analytical Results

WT2203263-002 Sub-Matrix Water		Client s	ample ID: STN6	A - STN6A Di	scharge					
(Matrix: Water)	Client sampling date / time: [03-May-2022]									
Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot		
Total Metals										
arsenic, total	7440-38-2	0.00086	0.00010	mg/L	E420	03-May-2022	04-May-2022	476011		
barium, total	7440-39-3	0.0276	0.00010	mg/L	E420	03-May-2022	04-May-2022	476011		
beryllium, total	7440-41-7	<0.000020	0.000020	mg/L	E420	03-May-2022	04-May-2022	476011		
bismuth, total	7440-69-9	<0.000050	0.000050	mg/L	E420	03-May-2022	04-May-2022	476011		
boron, total	7440-42-8	0.037	0.010	mg/L	E420	03-May-2022	04-May-2022	476011		
cadmium, total	7440-43-9	0.0000207	0.0000050	mg/L	E420	03-May-2022	04-May-2022	476011		
calcium, total	7440-70-2	84.2	0.050	mg/L	E420	03-May-2022	04-May-2022	476011		
cobalt, total	7440-48-4	0.00027	0.00010	mg/L	E420	03-May-2022	04-May-2022	476011		
copper, total	7440-50-8	0.00173	0.00050	mg/L	E420	03-May-2022	04-May-2022	476011		
iron, total	7439-89-6	0.367	0.010	mg/L	E420	03-May-2022	04-May-2022	476011		
lead, total	7439-92-1	0.000176	0.000050	mg/L	E420	03-May-2022	04-May-2022	476011		
magnesium, total	7439-95-4	37.3	0.0050	mg/L	E420	03-May-2022	04-May-2022	476011		
manganese, total	7439-96-5	0.0309	0.00010	mg/L	E420	03-May-2022	04-May-2022	476011		
mercury, total	7439-97-6	<0.000050	0.0000050	mg/L	E508	04-May-2022	04-May-2022	476234		
molybdenum, total	7439-98-7	0.00355	0.000050	mg/L	E420	03-May-2022	04-May-2022	476011		
nickel, total	7440-02-0	0.00152	0.00050	mg/L	E420	03-May-2022	04-May-2022	476011		
potassium, total	7440-09-7	2.03	0.050	mg/L	E420	03-May-2022	04-May-2022	476011		
selenium, total	7782-49-2	0.000900	0.000050	mg/L	E420	03-May-2022	04-May-2022	476011		
silicon, total	7440-21-3	1.54	0.10	mg/L	E420	03-May-2022	04-May-2022	476011		
silver, total	7440-22-4	<0.000010	0.000010	mg/L	E420	03-May-2022	04-May-2022	476011		
sodium, total	7440-23-5	27.8	0.050	mg/L	E420	03-May-2022	04-May-2022	476011		
strontium, total	7440-24-6	0.402	0.00020	mg/L	E420	03-May-2022	04-May-2022	476011		
thallium, total	7440-28-0	<0.000010	0.000010	mg/L	E420	03-May-2022	04-May-2022	476011		
tin, total	7440-31-5	<0.00010	0.00010	mg/L	E420	03-May-2022	04-May-2022	476011		
vanadium, total	7440-62-2	0.00143	0.00050	mg/L	E420	03-May-2022	04-May-2022	476011		
zinc, total	7440-66-6	<0.0030	0.0030	mg/L	E420	03-May-2022	04-May-2022	476011		
Speciated Metals										
chromium, hexavalent [Cr VI], total	18540-29-9	<0.00050	0.00050	mg/L	E532	-	04-May-2022	476554		
Aggregate Organics										
chemical oxygen demand [COD]		23	^{sp,} 10	mg/L	E559-L	-	05-May-2022	478083		
phenols, total (4AAP)		<0.0010	^{SP,} 0.0010	mg/L	E562	06-May-2022	06-May-2022	479032		

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order	: WT2203263	Page	: 1 of 14
Client	: Clean Harbors Environmental Services, Inc.	Laboratory	: Waterloo - Environmental
Contact	Rob Girard	Account Manager	: Rick Hawthorne
Address	: 4090 TELFER ROAD RR1	Address	: 60 Northland Road, Unit 1
	Corunna ON Canada N0N 1G0		Waterloo, Ontario Canada N2V 2B8
Telephone	519 864 3815	Telephone	: +1 519 886 6910
Project	: 12572192-20.22	Date Samples Received	: 03-May-2022 10:15
PO	: 735-002833	Issue Date	: 10-May-2022 14:49
C-O-C number	:		
Sampler	: Client		
Site	: 4090 Telfer Road, RR#1, Corunna		
Quote number	: 12572192-20.22-SSOW-735-002833		
No. of samples received	:2		
No. of samples analysed	:2		

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summarizes.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "----" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers

Outliers : Quality Control Samples

- No Method Blank value outliers occur.
- <u>No</u> Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• No Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• <u>No</u> Quality Control Sample Frequency Outliers occur.

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and /or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					Ev	aluation: × =	Holding time exce	edance ; 🗸	<pre>< = Within</pre>	Holding Time
Analyte Group	Method	Sampling Date	Exti	raction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Aggregate Organics : Chemical Oxygen Demand by Colourimetry (Low Level)										
Amber glass total (sulfuric acid)										
STN6A - STN6A Discharge	E559-L	03-May-2022					05-May-2022	28 days	3 days	✓
Aggregate Organics : Chemical Oxygen Demand by Colourimetry (Low Level)										
Amber glass total (sulfuric acid)										
STN6 - STN6 Discharge	E559-L	03-May-2022					05-May-2022	28 days	3 days	✓
Aggregate Organics : Phenols (4AAP) in Water by Colorimetry										
Amber glass total (sulfuric acid)										
STN6A - STN6A Discharge	E562	03-May-2022					06-May-2022	28 days	4 days	1
Aggregate Organics : Phenols (4AAP) in Water by Colorimetry										
Amber glass total (sulfuric acid)										
STN6 - STN6 Discharge	E562	03-May-2022					06-May-2022	28 days	4 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										,
STN6A - STN6A Discharge	E298	03-May-2022	06-May-2022				06-May-2022	28 days	3 days	~
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
STN6 - STN6 Discharge	E298	03-May-2022	06-May-2022				06-May-2022	28 days	3 days	~
Anions and Nutrients : Bromide in Water by IC										
HDPE [ON MECP]	FOOF D	00.140000					00 14 00000	00.1	0.1	,
SIN6A - SIN6A Discharge	E235.Br	03-May-2022					09-May-2022	28 days	6 days	*

Matrix: Water					Ev	aluation: × =	Holding time exce	edance ; •	<pre>< = Within</pre>	Holding Time
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	, Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Bromide in Water by IC										
HDPE [ON MECP]										
STN6 - STN6 Discharge	E235.Br	03-May-2022					09-May-2022	28 days	6 days	~
Anions and Nutrients : Chloride in Water by IC										
HDPE [ON MECP]										
STN6A - STN6A Discharge	E235.Cl	03-May-2022					09-May-2022	28 days	6 days	✓
Anions and Nutrients : Chloride in Water by IC										
HDPE [ON MECP]										
STN6 - STN6 Discharge	E235.Cl	03-May-2022					09-May-2022	28 days	6 days	~
Anions and Nutrients : Fluoride in Water by IC										
HDPE [ON MECP]										
STN6A - STN6A Discharge	E235.F	03-May-2022					09-May-2022	28 days	6 days	~
Anions and Nutrients : Fluoride in Water by IC										
HDPE [ON MECP]										
STN6 - STN6 Discharge	E235.F	03-May-2022					09-May-2022	28 days	6 days	~
Anions and Nutrients : Nitrate in Water by IC										
HDPE [ON MECP]										
STN6A - STN6A Discharge	E235.NO3	03-May-2022					09-May-2022	7 days	6 days	~
Anions and Nutrients : Nitrate in Water by IC										
HDPE [ON MECP]										
STN6 - STN6 Discharge	E235.NO3	03-May-2022					09-May-2022	7 days	6 days	~
Anions and Nutrients : Nitrite in Water by IC										
HDPE [ON MECP]										
STN6A - STN6A Discharge	E235.NO2	03-May-2022					09-May-2022	7 days	6 days	~
Anions and Nutrients : Nitrite in Water by IC										
HDPE [ON MECP]										
STN6 - STN6 Discharge	E235.NO2	03-May-2022					09-May-2022	7 days	6 days	~

Matrix: Water					Ev	aluation: × =	Holding time exce	edance ; •	<pre>< = Within</pre>	Holding Time
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	, Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Sulfate in Water by IC										
HDPE [ON MECP]										
STN6A - STN6A Discharge	E235.SO4	03-May-2022					09-May-2022	28 days	6 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE [ON MECP]										
STN6 - STN6 Discharge	E235.SO4	03-May-2022					09-May-2022	28 days	6 days	1
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid)										
STN6A - STN6A Discharge	E318	03-May-2022	06-May-2022				06-May-2022	28 days	3 days	1
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid)										
STN6 - STN6 Discharge	E318	03-May-2022	06-May-2022				06-May-2022	28 days	3 days	1
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid)										
STN6A - STN6A Discharge	E372-U	03-May-2022	06-May-2022				09-May-2022	28 days	6 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid)										
STN6 - STN6 Discharge	E372-U	03-May-2022	06-May-2022				09-May-2022	28 days	6 days	×
Cyanides : Total Cyanide										
HDPE - total (sodium hydroxide)										
STN6A - STN6A Discharge	E333	03-May-2022					04-May-2022	14 days	2 days	✓
Cyanides : Total Cyanide										
HDPE - total (sodium hydroxide)										
STN6 - STN6 Discharge	E333	03-May-2022					04-May-2022	14 days	2 days	1
Field Tests : Field pH,EC,Salinity,Cl2,ClO2,ORP,DO, Turbidity,T,T-P,o-PO4,NH3,Ch	loramine									
Glass vial total (hydrochloric acid)										
STN6A - STN6A Discharge	EF001	03-May-2022					04-May-2022			

Matrix: Water					Ev	aluation: × =	Holding time exce	edance ; 🗸	<pre>< = Within</pre>	Holding Time
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation Date	Holding Rec	g Times Actual	Eval	Analysis Date	Holding Rec	Times Actual	Eval
, Field Tests : Field pH,EC,Salinity,Cl2,ClO2,ORP,DO, Turbidity,T,T-P,o-PO4,NH3,Ch	loramine									
Glass vial total (hydrochloric acid)										
STN6 - STN6 Discharge	EF001	03-May-2022					04-May-2022			
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Leve	l)									
Amber glass dissolved (lab preserved)										
STN6A - STN6A Discharge	E358-L	03-May-2022	04-May-2022	3 days	1 days	~	04-May-2022	28 days	0 days	1
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Leve	1)									
Amber glass dissolved (lab preserved)										
STN6 - STN6 Discharge	E358-L	03-May-2022	04-May-2022	3 days	1 days	1	04-May-2022	28 days	0 days	1
Physical Tests : Alkalinity Species by Titration										
HDPE [ON MECP]										
STN6A - STN6A Discharge	E290	03-May-2022					07-May-2022	14 days	5 days	✓
Physical Tests : Alkalinity Species by Titration										
HDPE [ON MECP]										
STN6 - STN6 Discharge	E290	03-May-2022					07-May-2022	14 days	5 days	✓
Physical Tests : Conductivity in Water										
HDPE [ON MECP]										
STN6A - STN6A Discharge	E100	03-May-2022					07-May-2022	28 days	5 days	1
Physical Tests : Conductivity in Water										
HDPE [ON MECP]										
STN6 - STN6 Discharge	E100	03-May-2022					07-May-2022	28 days	5 days	1
Physical Tests : pH by Meter										
HDPE [ON MECP]										
STN6A - STN6A Discharge	E108	03-May-2022					07-May-2022	4 days	5 days	1
Physical Tests : pH by Meter										
HDPE [ON MECP]										
STN6 - STN6 Discharge	E108	03-May-2022					07-May-2022	4 days	5 days	~

Matrix: Water					Ev	aluation: × =	Holding time exce	edance ; 🗸	= Within	Holding Time
Analyte Group	Method	Sampling Date	Ex	traction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation Date	Holding Rec	g Times Actual	Eval	Analysis Date	Holding Rec	Times Actual	Eval
Physical Tests : TDS by Gravimetry										
HDPE [ON MECP]										
STN6A - STN6A Discharge	E162	03-May-2022					04-May-2022	7 days	2 days	✓
Physical Tests : TDS by Gravimetry										
HDPE [ON MECP]										
STN6 - STN6 Discharge	E162	03-May-2022					04-May-2022	7 days	2 days	√
Physical Tests : TSS by Gravimetry										
HDPE [ON MECP]										
STN6A - STN6A Discharge	E160	03-May-2022					04-May-2022	7 days	2 days	1
Physical Tests : TSS by Gravimetry										
HDPE [ON MECP]										
STN6 - STN6 Discharge	E160	03-May-2022					04-May-2022	7 days	2 days	1
Speciated Metals : Total Hexavalent Chromium (Cr VI) by IC										
HDPE - total (sodium hydroxide)										
STN6A - STN6A Discharge	E532	03-May-2022					04-May-2022	28 days	2 days	√
Speciated Metals : Total Hexavalent Chromium (Cr VI) by IC										
HDPE - total (sodium hydroxide)										
STN6 - STN6 Discharge	E532	03-May-2022					04-May-2022	28 days	2 days	1
Total Metals : Total Mercury in Water by CVAAS										
Glass vial total (hydrochloric acid)										
STN6A - STN6A Discharge	E508	03-May-2022					04-May-2022	28 days	1 days	1
Total Metals : Total Mercury in Water by CVAAS					1			1 1	1	
Glass vial total (hydrochloric acid)										
STN6 - STN6 Discharge	E508	03-May-2022					04-May-2022	28 days	1 days	1
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid)										
STN6A - STN6A Discharge	E420	03-May-2022					04-May-2022	180 days	1 days	✓

Page	: 8 of 14
Work Order	: WT2203263
Client	: Clean Harbors Environmental Services, Inc.
Project	12572192-20.22

trix: Water Evaluation: × = Holding time exceedance ; ✓ = Within Holding Time										
Analyte Group	Method Sampling Date Extraction / Preparation Analysis				sis					
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid)										
STN6 - STN6 Discharge	E420	03-May-2022					04-May-2022	180	1 days	4
								days		

Legend & Qualifier Definitions

Rec. HT: ALS recommended hold time (see units).

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Water		ecification; ✓ = QC frequency within specification.					
Quality Control Sample Type			Co	unt		Frequency (%)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Alkalinity Species by Titration	E290	480131	1	5	20.0	5.0	\checkmark
Ammonia by Fluorescence	E298	479030	1	17	5.8	5.0	✓
Bromide in Water by IC	E235.Br	480129	1	2	50.0	5.0	✓
Chemical Oxygen Demand by Colourimetry (Low Level)	E559-L	478083	1	12	8.3	5.0	✓
Chloride in Water by IC	E235.Cl	480125	1	13	7.6	5.0	✓
Conductivity in Water	E100	480132	1	6	16.6	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	476256	1	20	5.0	5.0	✓
Fluoride in Water by IC	E235.F	480126	1	8	12.5	5.0	✓
Nitrate in Water by IC	E235.NO3	480127	1	12	8.3	5.0	✓
Nitrite in Water by IC	E235.NO2	480128	1	7	14.2	5.0	✓
pH by Meter	E108	480130	1	19	5.2	5.0	✓
Phenols (4AAP) in Water by Colorimetry	E562	479032	1	16	6.2	5.0	✓
Sulfate in Water by IC	E235.SO4	480124	1	9	11.1	5.0	✓
TDS by Gravimetry	E162	476771	1	6	16.6	5.0	✓
Total Cyanide	E333	477421	1	12	8.3	5.0	✓
Total Hexavalent Chromium (Cr VI) by IC	E532	476554	1	14	7.1	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	479031	1	16	6.2	5.0	✓
Total Mercury in Water by CVAAS	E508	476234	1	13	7.6	5.0	✓
Total Metals in Water by CRC ICPMS	E420	476011	1	13	7.6	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	479029	1	17	5.8	5.0	✓
TSS by Gravimetry	E160	476784	1	6	16.6	4.7	✓
Laboratory Control Samples (LCS)							
Alkalinity Species by Titration	E290	480131	1	5	20.0	5.0	✓
Ammonia by Fluorescence	E298	479030	1	17	5.8	5.0	✓
Bromide in Water by IC	E235.Br	480129	1	2	50.0	5.0	✓
Chemical Oxygen Demand by Colourimetry (Low Level)	E559-L	478083	1	12	8.3	5.0	✓
Chloride in Water by IC	E235.Cl	480125	1	13	7.6	5.0	✓
Conductivity in Water	E100	480132	1	6	16.6	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	476256	1	20	5.0	5.0	✓
Fluoride in Water by IC	E235.F	480126	1	8	12.5	5.0	✓
Nitrate in Water by IC	E235.NO3	480127	1	12	8.3	5.0	✓
Nitrite in Water by IC	E235.NO2	480128	1	7	14.2	5.0	✓
pH by Meter	E108	480130	1	19	5.2	5.0	1
Phenols (4AAP) in Water by Colorimetry	E562	479032	1	16	6.2	5.0	✓
Sulfate in Water by IC	E235.SO4	480124	1	9	11.1	5.0	✓
TDS by Gravimetry	E162	476771	1	6	16.6	5.0	✓
Total Cyanide	E333	477421	1	12	8.3	5.0	~

Matrix: Water		Evaluati	on: × = QC freque	ency outside spe	cification; ✓ = 0	QC frequency wit	hin specification.
Quality Control Sample Type			Co	unt		Frequency (%)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Control Samples (LCS) - Continued							
Total Hexavalent Chromium (Cr VI) by IC	E532	476554	1	14	7.1	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	479031	1	16	6.2	5.0	✓
Total Mercury in Water by CVAAS	E508	476234	1	13	7.6	5.0	✓
Total Metals in Water by CRC ICPMS	E420	476011	1	13	7.6	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	479029	1	17	5.8	5.0	✓
TSS by Gravimetry	E160	476784	1	6	16.6	4.7	✓
Method Blanks (MB)							
Alkalinity Species by Titration	E290	480131	1	5	20.0	5.0	✓
Ammonia by Fluorescence	E298	479030	1	17	5.8	5.0	✓
Bromide in Water by IC	E235.Br	480129	1	2	50.0	5.0	✓
Chemical Oxygen Demand by Colourimetry (Low Level)	E559-L	478083	1	12	8.3	5.0	✓
Chloride in Water by IC	E235.Cl	480125	1	13	7.6	5.0	✓
Conductivity in Water	E100	480132	1	6	16.6	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	476256	1	20	5.0	5.0	✓
Fluoride in Water by IC	E235.F	480126	1	8	12.5	5.0	✓
Nitrate in Water by IC	E235.NO3	480127	1	12	8.3	5.0	✓
Nitrite in Water by IC	E235.NO2	480128	1	7	14.2	5.0	✓
Phenols (4AAP) in Water by Colorimetry	E562	479032	1	16	6.2	5.0	✓
Sulfate in Water by IC	E235.SO4	480124	1	9	11.1	5.0	✓
TDS by Gravimetry	E162	476771	1	6	16.6	5.0	✓
Total Cyanide	E333	477421	1	12	8.3	5.0	✓
Total Hexavalent Chromium (Cr VI) by IC	E532	476554	1	14	7.1	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	479031	1	16	6.2	5.0	✓
Total Mercury in Water by CVAAS	E508	476234	1	13	7.6	5.0	✓
Total Metals in Water by CRC ICPMS	E420	476011	1	13	7.6	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	479029	1	17	5.8	5.0	✓
TSS by Gravimetry	E160	476784	1	6	16.6	4.7	✓
Matrix Spikes (MS)							
Ammonia by Fluorescence	E298	479030	1	17	5.8	5.0	✓
Bromide in Water by IC	E235.Br	480129	1	2	50.0	5.0	✓
Chemical Oxygen Demand by Colourimetry (Low Level)	E559-L	478083	1	12	8.3	5.0	✓
Chloride in Water by IC	E235.Cl	480125	1	13	7.6	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	476256	1	20	5.0	5.0	✓
Fluoride in Water by IC	E235.F	480126	1	8	12.5	5.0	✓
Nitrate in Water by IC	E235.NO3	480127	1	12	8.3	5.0	✓
Nitrite in Water by IC	E235.NO2	480128	1	7	14.2	5.0	✓
Phenols (4AAP) in Water by Colorimetry	E562	479032	1	16	6.2	5.0	✓
Sulfate in Water by IC	E235.SO4	480124	1	9	11.1	5.0	✓
Total Cyanide	E333	477421	1	12	8.3	5.0	✓
Total Hexavalent Chromium (Cr VI) by IC	E532	476554	1	14	7.1	5.0	✓

Page Work Order	: 11 of 14 · WT2203263
Client	: Clean Harbors Environmental Services, Inc
Project	12572192-20.22

Atrix: WaterEvaluation: × = QC frequency outside specification; ✓ = QC frequency within specification.										
Quality Control Sample Type		Co	unt	Frequency (%)						
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation			
Matrix Spikes (MS) - Continued										
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	479031	1	16	6.2	5.0	✓			
Total Mercury in Water by CVAAS	E508	476234	1	13	7.6	5.0	✓			
Total Metals in Water by CRC ICPMS	E420	476011	1	13	7.6	5.0	1			
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	479029	1	17	5.8	5.0	✓			

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Conductivity in Water	E100 Waterloo -	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is measured by immersion of a conductivity cell with platinum electrodes into a water sample. Conductivity measurements are temperature-compensated to 25°C.
	Environmental			
pH by Meter	E108	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally 20 ± 5°C). For high accuracy test results,
	Waterloo - Environmental			pH should be measured in the field within the recommended 15 minute hold time.
TSS by Gravimetry	E160	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, following by drying of the filter at $104 \pm 1^{\circ}$ C, with gravimetric measurement of the
	Waterloo -			filtered solids. Samples containing very high dissolved solid content (i.e. seawaters,
	Environmental			brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples.
TDS by Gravimetry	E162	Water	APHA 2540 C (mod)	Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, with evaporation of the filtrate at $180 \pm 2^{\circ}$ C for 16 hours or to constant weight,
	Waterloo -			with gravimetric measurement of the residue.
	Environmental			
Bromide in Water by IC	E235.Br	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	Waterloo -			
	Environmental			
Chloride in Water by IC	E235.CI	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	Waterloo -			
	Environmental			
Fluoride in Water by IC	E235.F	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	Waterloo -			
	Environmental			
Nitrite in Water by IC	E235.NO2	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	Waterloo -			
	Environmental			
Nitrate in Water by IC	E235.NO3	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	Waterloo -			
	Environmental			
Sulfate in Water by IC	E235.SO4	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	Waterloo -			
	Environmental			

Page: 13 of 14Work Order: WT2203263Client: Clean Harbors Environmental Services, Inc.Project: 12572192-20.22

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Alkalinity Species by Titration	E290	Water	APHA 2320 B (mod)	Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate,
				carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total
	Waterloo -			alkalinity values.
	Environmental			
Ammonia by Fluorescence	E298	Water	J. Environ. Monit.,	Ammonia in water is analyzed by flow-injection analysis with fluorescence detection
			2005, 7, 37-42 (mod)	after reaction with orthophthaldialdehyde (OPA).
	Waterioo -			
Total Kieldehl Nitrogen by Elueroseenee (Lew	Environmental	Water	ADUA 4500 Nora D	Total Kieldahl Nitragan is datermined using black digestion followed by flow injection
	E310	Water	(mod)	analysis with fluorescence detection
	Waterloo -		(mod)	
	Environmental			
Total Cyanide	E333	Water	ISO 14403 (mod)	Total or Strong Acid Dissociable (SAD) Cvanide is determined by Continuous Flow
				Analyzer (CFA) with in-line UV digestion followed by colourmetric analysis.
	Waterloo -			
	Environmental			Method Limitation: High levels of thiocyanate (SCN) may cause positive interference (up
				to 0.5% of SCN concentration).
Dissolved Organic Carbon by Combustion	E358-L	Water	APHA 5310 B (mod)	Dissolved Organic Carbon (Non-Purgeable), also known as NPOC (dissolved), is a
(Low Level)				direct measurement of DOC after a filtered (0.45 micron) sample has been acidified and
	Waterloo -			purged to remove inorganic carbon (IC). Analysis is by high temperature combustion
	Environmental			with infrared detection of CO2. NPOC does not include volatile organic species that are
				purged off with IC. For samples where the majority of DC (dissolved carbon) is
				comprised of IC (which is common), this method is more accurate and more reliable than
Tatal Dhaamhamia hu Calaurina atmi (0.000	E070 II	Water		the DOC by subtraction method (i.e. DC minus DiC).
mg/L)	E372-0	Water		notal Phosphorus is determined colourimetrically using a discrete analyzer after neated
ling/L)	Waterloo -			persuitate digestion of the sample.
	Environmental			
Total Metals in Water by CRC ICPMS	E420	Water	EPA 200.2/6020B	Water samples are digested with nitric and hydrochloric acids, and analyzed by
			(mod)	Collision/Reaction Cell ICPMS.
	Waterloo -			
	Environmental			Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered
				by this method.
Total Mercury in Water by CVAAS	E508	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction
				with stannous chloride, and analyzed by CVAAS
	Waterloo -			
	Environmental	NA/ - 4		
Total Hexavalent Chromium (Cr VI) by IC	E532	vvater	APHA 3500-Cr C (Ion	Hexavalent Chromium is measured by Ion chromatography-Post column reaction and UV
	Watarlaa		Chromatography)	detection.
	Fnvironmental			Peculte are based on an un filtered, field preserved cample
Chemical Oxygen Demand by Colourimetry	Environmental E550_I	Water	APHA 5220 D (mod)	Samples are pased on an unningred, neu-preserved samples.
(low level)	L009-L	, valor		
	Waterloo -			
	Environmental			

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Phenols (4AAP) in Water by Colorimetry	E562 Waterloo - Environmental	Water	EPA 9066	This automated method is based on the distillation of phenol and subsequent reaction of the distillate with alkaline ferricyanide (K3Fe(CN)6) and 4-amino-antipyrine (4-AAP) to form a red complex which is measured colorimetrically.
Hardness (Calculated) from Total Ca/Mg	EC100A Waterloo - Environmental	Water	APHA 2340B	"Hardness (as CaCO3), from total Ca/Mg" is calculated from the sum of total Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations. Hardness from total Ca/Mg is normally comparable to Dissolved Hardness in non-turbid waters.
Un-ionized and Ionized Ammonia (Calculation) (Field Temperature and pH)	EC298A Waterloo - Environmental	Water	CCME CWQG Ammonia	Un-ionized ammonia is calculated from test results for total ammonia, field temperature and pH, and is expressed in units of mg/L "as N".
Field pH,EC,Salinity,Cl2,ClO2,ORP,DO, Turbidity,T,T-P,o-PO4,NH3,Chloramine	EF001 Waterloo - Environmental	Water	Field Measurement (Client Supplied)	Field pH,EC,Salinity,Cl2,ClO2,ORP,DO, Turbidity,T,T-P,o-PO4,NH3 or Chloramine measurements provided by client and recorded on ALS report may affect the validity of results.
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298 Waterloo - Environmental	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
Digestion for TKN in water	EP318 Waterloo - Environmental	Water	APHA 4500-Norg D (mod)	Samples are digested using block digestion with Copper Sulfate Digestion Reagent.
Preparation for Dissolved Organic Carbon for Combustion	EP358 Waterloo - Environmental	Water	APHA 5310 B (mod)	Preparation for Dissolved Organic Carbon
Digestion for Total Phosphorus in water	EP372 Waterloo - Environmental	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.

QUALITY CONTROL REPORT

Work Order	WT2203263	Page	: 1 of 11
Client	: Clean Harbors Environmental Services, Inc.	Laboratory	: Waterloo - Environmental
Contact	: Rob Girard	Account Manager	: Rick Hawthorne
Address	455 Phillip Street	Address	≑60 Northland Road, Unit 1
Telephone	Waterloo ON Canada N2L 3X2 : 519 864 3815	Telephone	Waterloo, Ontario Canada N2V 2B8 : +1 519 886 6910
Project	: 12572192-20.22	Date Samples Received	:03-May-2022 10:15
PO	:735-002833	Date Analysis Commenced	:03-May-2022
C-O-C number	:	Issue Date	: 10-May-2022 14:48
Sampler	: Client		
Site	:4090 Telfer Road, RR#1, Corunna		
Quote number	: 12572192-20.22-SSOW-735-002833		
No. of samples received	:2		
No. of samples analysed	:2		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

• Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

- Matrix Spike (MS) Report; Recovery and Acceptance Limits
- Reference Material (RM) Report; Recovery and Acceptance Limits
- Method Blank (MB) Report; Recovery and Acceptance Limits
- Laboratory Control Sample (LCS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Greg Pokocky	Supervisor - Inorganic	Inorganics, Waterloo, Ontario
Greg Pokocky	Supervisor - Inorganic	Metals, Waterloo, Ontario
Jon Fisher	Department Manager - Inorganics	Inorganics, Waterloo, Ontario
Khairul Intiar	Login	Administration, Waterloo, Ontario

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key :

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percentage Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Page: 3 of 11Work Order: WT2203263Client: Clean Harbors Environmental Services, Inc.Project: 12572192-20.22

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test specific).

Sub-Matrix: Water							Labora	tory Duplicate (D	JP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Physical Tests (QC	Lot: 476771)										
WT2203261-003	Anonymous	solids, total dissolved [TDS]		E162	20	mg/L	484	491	1.44%	20%	
Physical Tests (QC	Lot: 476784)										
WT2203261-003	Anonymous	solids, total suspended [TSS]		E160	3.0	mg/L	5.6	6.8	1.2	Diff <2x LOR	
Physical Tests (QC	Lot: 480130)										
WT2203263-001	STN6 STN6 Discharge	рН		E108	0.10	pH units	8.42	8.41	0.01	Diff <2x LOR	
Physical Tests (QC	Lot: 480131)										
WT2203263-001	STN6 STN6 Discharge	alkalinity, total (as CaCO3)		E290	2.0	mg/L	280	277	1.27%	20%	
Physical Tests (QC	Lot: 480132)										
WT2203263-001	STN6 STN6 Discharge	conductivity		E100	2.0	μS/cm	810	820	1.23%	10%	
Anions and Nutrient	ts (QC Lot: 479029)										
WT2203193-003	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0107	0.0088	0.0019	Diff <2x LOR	
Anions and Nutrient	ts (QC Lot: 479030)										
WT2203193-005	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.0053	0.0079	0.0026	Diff <2x LOR	
Anions and Nutrient	ts (QC Lot: 479031)										
WT2203193-002	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	0.848	0.869	2.39%	20%	
Anions and Nutrient	ts (QC Lot: 480124)										
WT2203263-001	STN6 STN6 Discharge	sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	92.4	92.3	0.133%	20%	
Anions and Nutrient	ts (QC Lot: 480125)										
WT2203263-001	STN6 STN6 Discharge	chloride	16887-00-6	E235.Cl	0.50	mg/L	53.0	53.0	0.120%	20%	
Anions and Nutrient	ts (QC Lot: 480126)										
WT2203263-001	STN6 STN6 Discharge	fluoride	16984-48-8	E235.F	0.020	mg/L	0.317	0.306	3.36%	20%	
Anions and Nutrient	ts (QC Lot: 480127)										
WT2203263-001	STN6 STN6 Discharge	nitrate (as N)	14797-55-8	E235.NO3	0.020	mg/L	2.35	2.34	0.384%	20%	
Anions and Nutrient	ts (QC Lot: 480128)										
WT2203263-001	STN6 STN6 Discharge	nitrite (as N)	14797-65-0	E235.NO2	0.010	mg/L	0.021	0.020	0.0007	Diff <2x LOR	
Anions and Nutrient	ts (QC Lot: 480129)										
WT2203263-001	STN6 STN6 Discharge	bromide	24959-67-9	E235.Br	0.10	mg/L	<0.10	<0.10	0	Diff <2x LOR	
Cyanides (QC Lot: 4	477421)										
FC2200824-001	Anonymous	cyanide, strong acid dissociable (total)		E333	0.0020	mg/L	<0.0020	<0.0020	0	Diff <2x LOR	
Organic / Inorganic	Carbon (QC Lot: 476256	5)									
WT2203050-007	Anonymous	carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	15.5	16.6	7.05%	20%	

Page	: 4 of 11
Work Order	: WT2203263
Client	: Clean Harbors Environmental Services, Inc.
Project	: 12572192-20.22

Sub-Matrix: Water					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Total Metals (QC Lo	t: 476011)										
WT2203249-001	Anonymous	aluminum, total	7429-90-5	E420	0.0300	mg/L	0.0428	0.0581	0.0153	Diff <2x LOR	
		antimony, total	7440-36-0	E420	0.00100	mg/L	0.00168	0.00172	0.00004	Diff <2x LOR	
		arsenic, total	7440-38-2	E420	0.00100	mg/L	0.00135	0.00116	0.00019	Diff <2x LOR	
		barium, total	7440-39-3	E420	0.00100	mg/L	0.295	0.303	2.69%	20%	
		beryllium, total	7440-41-7	E420	0.000200	mg/L	<0.000200	<0.000200	0	Diff <2x LOR	
		bismuth, total	7440-69-9	E420	0.000500	mg/L	<0.000500	<0.000500	0	Diff <2x LOR	
		boron, total	7440-42-8	E420	0.100	mg/L	0.136	0.143	0.007	Diff <2x LOR	
		cadmium, total	7440-43-9	E420	0.0000500	mg/L	<0.0000500	<0.0000500	0	Diff <2x LOR	
		calcium, total	7440-70-2	E420	0.500	mg/L	156	161	3.48%	20%	
		cobalt, total	7440-48-4	E420	0.00100	mg/L	<0.00100	<0.00100	0	Diff <2x LOR	
		copper, total	7440-50-8	E420	0.00500	mg/L	0.0332	0.0338	0.00059	Diff <2x LOR	
		iron, total	7439-89-6	E420	0.100	mg/L	0.830	0.854	0.024	Diff <2x LOR	
		lead, total	7439-92-1	E420	0.000500	mg/L	0.00357	0.00355	0.000023	Diff <2x LOR	
		magnesium, total	7439-95-4	E420	0.0500	mg/L	37.4	38.7	3.33%	20%	
		manganese, total	7439-96-5	E420	0.00100	mg/L	0.233	0.239	2.84%	20%	
		molybdenum, total	7439-98-7	E420	0.000500	mg/L	0.0101	0.0105	3.81%	20%	
		nickel, total	7440-02-0	E420	0.00500	mg/L	<0.00500	<0.00500	0	Diff <2x LOR	
		potassium, total	7440-09-7	E420	0.500	mg/L	40.4	42.5	5.01%	20%	
		selenium, total	7782-49-2	E420	0.000500	mg/L	<0.000500	<0.000500	0	Diff <2x LOR	
		silicon, total	7440-21-3	E420	1.00	mg/L	8.06	8.32	0.26	Diff <2x LOR	
		silver, total	7440-22-4	E420	0.000100	mg/L	<0.000100	<0.000100	0	Diff <2x LOR	
		sodium, total	7440-23-5	E420	0.500	mg/L	330	334	1.18%	20%	
		strontium, total	7440-24-6	E420	0.00200	mg/L	7.29	7.57	3.73%	20%	
		thallium, total	7440-28-0	E420	0.000100	mg/L	<0.000100	<0.000100	0	Diff <2x LOR	
		tin, total	7440-31-5	E420	0.00100	mg/L	<0.00100	<0.00100	0	Diff <2x LOR	
		vanadium, total	7440-62-2	E420	0.00500	mg/L	<0.00500	<0.00500	0	Diff <2x LOR	
		zinc, total	7440-66-6	E420	0.0300	mg/L	0.377	0.386	2.25%	20%	
Total Metals (QC Lo	t: 476234)										
WT2203237-001	Anonymous	mercury, total	7439-97-6	E508	0.0000050	mg/L	0.0000078	0.0000057	0.0000021	Diff <2x LOR	
Speciated Metals (Q	C Lot: 476554)										
WT2203249-001	Anonymous	chromium, hexavalent [Cr VI], total	18540-29-9	E532	0.00050	mg/L	0.00140	0.00145	0.00005	Diff <2x LOR	
Aggregate Organics	(QC Lot: 478083)										
WT2203252-001	Anonymous	chemical oxygen demand [COD]		E559-L	10	mg/L	16	15	2	Diff <2x LOR	
Aggregate Organics	(QC Lot: 479032)										
WT2203193-004	Anonymous	phenols, total (4AAP)		E562	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Water						
Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 476771)						
solids, total dissolved [TDS]		E162	10	mg/L	<10	
Physical Tests (QCLot: 476784)						
solids, total suspended [TSS]		E160	3	mg/L	<3.0	
Physical Tests (QCLot: 480131)						
alkalinity, total (as CaCO3)		E290	1	mg/L	<1.0	
Physical Tests (QCLot: 480132)						
conductivity		E100	1	μS/cm	<1.0	
Anions and Nutrients (QCLot: 479029)						
phosphorus, total	7723-14-0	E372-U	0.002	mg/L	<0.0020	
Anions and Nutrients (QCLot: 479030)						
ammonia, total (as N)	7664-41-7	E298	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 479031)						
Kjeldahl nitrogen, total [TKN]		E318	0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 480124)						
sulfate (as SO4)	14808-79-8	E235.SO4	0.3	mg/L	<0.30	
Anions and Nutrients (QCLot: 480125)						
chloride	16887-00-6	E235.CI	0.5	mg/L	<0.50	
Anions and Nutrients (QCLot: 480126)						
fluoride	16984-48-8	E235.F	0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 480127)						
nitrate (as N)	14797-55-8	E235.NO3	0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 480128)						
nitrite (as N)	14797-65-0	E235.NO2	0.01	mg/L	<0.010	
Anions and Nutrients (QCLot: 480129)						
bromide	24959-67-9	E235.Br	0.1	mg/L	<0.10	
Cyanides (QCLot: 477421)						
cyanide, strong acid dissociable (total)		E333	0.002	mg/L	<0.0020	
Organic / Inorganic Carbon (QCLot: 476256)					
carbon, dissolved organic [DOC]		E358-L	0.5	mg/L	<0.50	
Total Metals (QCLot: 476011)						
aluminum, total	7429-90-5	E420	0.003	mg/L	<0.0030	
antimony, total	7440-36-0	E420	0.0001	mg/L	<0.00010	
arsenic, total	7440-38-2	E420	0.0001	mg/L	<0.00010	

Page	: 6 of 11
Work Order	: WT2203263
Client	: Clean Harbors Environmental Services, Inc.
Project	: 12572192-20.22

Sub-Matrix: Water

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Total Metals (QCLot: 476011) - continu	ied					
barium, total	7440-39-3	E420	0.0001	mg/L	<0.00010	
beryllium, total	7440-41-7	E420	0.00002	mg/L	<0.000020	
bismuth, total	7440-69-9	E420	0.00005	mg/L	<0.000050	
boron, total	7440-42-8	E420	0.01	mg/L	<0.010	
cadmium, total	7440-43-9	E420	0.000005	mg/L	<0.000050	
calcium, total	7440-70-2	E420	0.05	mg/L	<0.050	
cobalt, total	7440-48-4	E420	0.0001	mg/L	<0.00010	
copper, total	7440-50-8	E420	0.0005	mg/L	<0.00050	
iron, total	7439-89-6	E420	0.01	mg/L	<0.010	
lead, total	7439-92-1	E420	0.00005	mg/L	<0.000050	
magnesium, total	7439-95-4	E420	0.005	mg/L	<0.0050	
manganese, total	7439-96-5	E420	0.0001	mg/L	<0.00010	
molybdenum, total	7439-98-7	E420	0.00005	mg/L	<0.000050	
nickel, total	7440-02-0	E420	0.0005	mg/L	<0.00050	
potassium, total	7440-09-7	E420	0.05	mg/L	<0.050	
selenium, total	7782-49-2	E420	0.00005	mg/L	<0.000050	
silicon, total	7440-21-3	E420	0.1	mg/L	<0.10	
silver, total	7440-22-4	E420	0.00001	mg/L	<0.000010	
sodium, total	7440-23-5	E420	0.05	mg/L	<0.050	
strontium, total	7440-24-6	E420	0.0002	mg/L	<0.00020	
thallium, total	7440-28-0	E420	0.00001	mg/L	<0.000010	
tin, total	7440-31-5	E420	0.0001	mg/L	<0.00010	
vanadium, total	7440-62-2	E420	0.0005	mg/L	<0.00050	
zinc, total	7440-66-6	E420	0.003	mg/L	<0.0030	
Total Metals (QCLot: 476234)						
mercury, total	7439-97-6	E508	0.000005	mg/L	<0.000050	
Speciated Metals (QCLot: 476554)						
chromium, hexavalent [Cr VI], total	18540-29-9	E532	0.0005	mg/L	<0.00050	
Aggregate Organics (QCLot: 478083)						
chemical oxygen demand [COD]		E559-L	10	mg/L	<10	
Aggregate Organics (QCLot: 479032)						
phenols, total (4AAP)		E562	0.001	mg/L	<0.0010	

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water						Laboratory Control Sample (LCS) Report				
					Spike	Recovery (%)	Recovery	Limits (%)		
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier	
Physical Tests (QCLot: 476771)										
solids, total dissolved [TDS]		E162	10	mg/L	1000 mg/L	85.6	85.0	115		
Physical Tests (QCLot: 476784)										
solids, total suspended [TSS]		E160	3	mg/L	150 mg/L	94.0	85.0	115		
Physical Tests (QCLot: 480130)										
pH		E108		pH units	7 pH units	100	98.0	102		
Physical Tests (QCLot: 480131)										
alkalinity, total (as CaCO3)		E290	1	mg/L	150 mg/L	103	85.0	115		
Physical Tests (QCLot: 480132)										
conductivity		E100	1	μS/cm	1409 µS/cm	99.6	90.0	110		
Anions and Nutrients (QCLot: 479029)										
phosphorus, total	7723-14-0	E372-U	0.002	mg/L	0.431 mg/L	95.1	80.0	120		
Anions and Nutrients (QCLot: 479030)										
ammonia, total (as N)	7664-41-7	E298	0.005	mg/L	0.2 mg/L	100	85.0	115		
Anions and Nutrients (QCLot: 479031)										
Kjeldahl nitrogen, total [TKN]		E318	0.05	mg/L	4 mg/L	99.4	75.0	125		
Anions and Nutrients (QCLot: 480124)										
sulfate (as SO4)	14808-79-8	E235.SO4	0.3	mg/L	100 mg/L	106	90.0	110		
Anions and Nutrients (QCLot: 480125)										
chloride	16887-00-6	E235.CI	0.5	mg/L	100 mg/L	105	90.0	110		
Anions and Nutrients (QCLot: 480126)										
fluoride	16984-48-8	E235.F	0.02	mg/L	1 mg/L	102	90.0	110		
Anions and Nutrients (QCLot: 480127)										
nitrate (as N)	14797-55-8	E235.NO3	0.02	mg/L	2.5 mg/L	103	90.0	110		
Anions and Nutrients (QCLot: 480128)										
nitrite (as N)	14797-65-0	E235.NO2	0.01	mg/L	0.5 mg/L	104	90.0	110		
Anions and Nutrients (QCLot: 480129)										
bromide	24959-67-9	E235.Br	0.1	mg/L	0.5 mg/L	102	85.0	115		
Cyanides (QCLot: 477421)										
cyanide, strong acid dissociable (total)		E333	0.002	mg/L	0.25 mg/L	95.5	80.0	120		
Organic / Inorganic Carbon (QCLot: 476256)										
carbon, dissolved organic [DOC]		E358-L	0.5	mg/L	8.57 mg/L	102	80.0	120		

Page: 8 of 11Work Order: WT2203263Client: Clean Harbors Environmental Services, Inc.Project: 12572192-20.22

Spike Recovery (%)
AnalyteCAS NumerMethodLORUnitConcentrationLCSLowHighQualifierNotationInternational Colspan="4">International Colspan="4">International Colspan="4">International ConcentrationInternational Colspan="4">International Concentrational Concentration Concentrational Concentrational Concentrational Concentration Concentrati
Image: Constraint of the second sec
Total Metals (QCL of: 476011) aluminum, total 7429-90-5 E420 0.003 mg/L 0.1 mg/L 99.4 80.0 120 antimony, total 7440-36-0 E420 0.0001 mg/L 0.05 mg/L 106 80.0 120 arsenic, total 7440-38-2 E420 0.0001 mg/L 0.0125 mg/L 106 80.0 120 barium, total 7440-38-3 E420 0.0001 mg/L 0.0125 mg/L 102 80.0 120 beryllium, total 7440-43-3 E420 0.00002 mg/L 0.005 mg/L 95.4 80.0 120 simuth, total 7440-43-5 E420 0.00005 mg/L 0.055 mg/L 96.4 80.0 120 simuth, total 7440-43-5 E420 0.00005 mg/L 0.055 mg/L 90.4 80.0 120 simuth, total 7440-43-5 E420 0.015 mg/L 0.055 mg/L 102 80.0 120 sac
aluminum, total $7429-95$ 6420 0.003 mg/L $0.1 mg/L$ 99.4 80.0 120 $$ antimony, total $7440-36 6420$ 0.001 mg/L $0.05 mg/L$ 106 80.0 120 $$ arsenic, total $7440-38 6420$ 0.0001 mg/L $0.05 mg/L$ 107 80.0 120 $$ barium, total $7440-38 6420$ 0.0001 mg/L $0.05 mg/L$ 102 80.0 120 $$ beryllium, total $7440-43 6420$ 0.0002 mg/L $0.05 mg/L$ 95.3 80.0 120 $$ beryllium, total $7440-43 6420$ 0.0002 mg/L $0.05 mg/L$ 90.4 80.0 120 $$ coron, total $7440-43 6420$ 0.010 mg/L $0.05 mg/L$ 90.4 80.0 120 $$ cadmium, total $7440-43 6420$ 0.010 mg/L $0.05 mg/L$ 90.4 80.0 120 $$ cadmium, total $740-43 6420$ 0.0005 mg/L $0.05 mg/L$ 90.4 80.0 120 $$ cadmium, total $740-43 6420$ 0.0005 mg/L $0.005 mg/L$ 90.4 80.0 120 $$ cadmium, total $740-43 6420$ 0.0005 mg/L $0.0125 mg/L$ 94.4 80.0 120 $$ coron, total $740-43 6420$ 0.0005 mg/L $0.0125 mg/L$
antimony, total $7440-360$ 820 0.0001 mg/L $0.05 mg/L$ 106 80.0 120 $$ arsenic, total $7440-38 820$ 0.0001 mg/L $0.05 mg/L$ 107 80.0 120 $$ barium, total $7440-38 820$ 0.0001 mg/L $0.015 mg/L$ 102 80.0 120 $$ beryllium, total $7440-43 820$ 0.0002 mg/L $0.005 mg/L$ 95.4 80.0 120 $$ bismuth, total $7440-48 820$ 0.0002 mg/L $0.05 mg/L$ 95.4 80.0 120 $$ bismuth, total $7440-48 820$ 0.0005 mg/L $0.05 mg/L$ 95.4 80.0 120 $$ bismuth, total $7440-48 820$ 0.0005 mg/L $0.05 mg/L$ 95.3 80.0 120 $$ bismuth, total $740-42-8$ 820 0.0005 mg/L $0.05 mg/L$ 90.4 80.0 120 $$ cadmium, total $740-72$ 820 0.0005 mg/L $0.05 mg/L$ 90.4 80.0 120 $$ cadmium, total $740-72$ 820 0.0005 mg/L $0.015 mg/L$ 90.4 80.0 120 $$ cadmium, total $740-72$ 820 0.0005 mg/L $0.015 mg/L$ 99.4 80.0 120 $$ cadmium, total $740-74$ 820 0.0005 mg/L $0.0125 mg/L$ <td< td=""></td<>
arsenic, total $7440-38-2$ $E420$ 0.001 mg/L $0.05 mg/L$ 107 80.0 120 $$ barium, total $7440-39-3$ $E420$ 0.001 mg/L $0.0125 mg/L$ 102 80.0 120 $$ beryllium, total $7440-417$ $E420$ 0.0002 mg/L $0.05 mg/L$ 95.4 80.0 120 $$ bismuth, total $7440-417$ $E420$ 0.0005 mg/L $0.05 mg/L$ 95.4 80.0 120 $$ boron, total $7440-42-8$ $E420$ 0.010 mg/L $0.05 mg/L$ 90.4 80.0 120 $$ cadmium, total $7440-42-8$ $E420$ 0.010 mg/L $0.05 mg/L$ 90.4 80.0 120 $$ cadmium, total $7440-42-8$ $E420$ 0.0005 mg/L $0.05 mg/L$ 90.4 80.0 120 $$ cadmium, total $740-72-8$ $E420$ 0.001 mg/L $0.055 mg/L$ 90.4 80.0 120 $$ cobalt, total $740-72-8$ $E420$ 0.005 mg/L $0.0125 mg/L$ 99.4 80.0 120 $$ cobalt, total $740-72-8$ $E420$ 0.005 mg/L $0.0125 mg/L$ 99.4 80.0 120 $$ cobalt, total $740-72-8$ $E420$ 0.005 mg/L $0.025 mg/L$ 99.4 80.0 120 $$ cobalt, total $743-99-6$ $E420$ 0.005 mg/L $0.025 $
barium, total 740-393 E420 0.0001 mg/L 0.0125 mg/L 102 80.0 120 beryllium, total 740-41-7 E420 0.0002 mg/L 0.005 mg/L 95.4 80.0 120 bismuth, total 740-699 E420 0.0005 mg/L 0.05 mg/L 95.3 80.0 120 boron, total 740-428 E420 0.01 mg/L 0.05 mg/L 90.4 80.0 120 cadmium, total 740-428 E420 0.01 mg/L 0.05 mg/L 90.4 80.0 120 cadmium, total 740-702 E420 0.0005 mg/L 0.005 mg/L 102 80.0 120 cobalt, total 740-484 E420 0.001 mg/L 0.0125 mg/L 99.4 80.0 120 cobalt, total 740-684 E420 0.005 mg/L 0.0125 mg/L 100 80.0 120
beryllium, total 7440-417 E420 0.00002 mg/L 0.005 mg/L 95.4 80.0 120
bismuth, total 7440-699 E420 0.00005 mg/L 0.05 mg/L 95.3 80.0 120 boron, total 7440-429 E420 0.01 mg/L 0.05 mg/L 90.4 80.0 120 cadmium, total 7440-439 E420 0.00005 mg/L 0.005 mg/L 102 80.0 120 calcium, total 7440-702 E420 0.05 mg/L 2.5 mg/L 94.4 80.0 120 cobalt, total 7440-70-2 E420 0.001 mg/L 0.0125 mg/L 99.4 80.0 120 cobalt, total 7440-70-2 E420 0.005 mg/L 0.0125 mg/L 99.4 80.0 120 cobalt, total 7440-70-2 E420 0.005 mg/L 0.0125 mg/L 99.4 80.0 120 copper, total 7439-86-6 E420 0.005 mg/L 0.055 mg/L 100 80.0 120 ead, total 7439-86-6 E420 0.005 mg/L </td
boron, total 7440-42-8 E420 0.01 mg/L 0.05 mg/L 90.4 80.0 120 cadmium, total 7440-43-9 E420 0.00005 mg/L 0.005 mg/L 102 80.0 120 cadium, total 7440-70-2 E420 0.05 mg/L 2.5 mg/L 94.4 80.0 120 cobalt, total 7440-84 E420 0.0005 mg/L 0.0125 mg/L 99.4 80.0 120 cobalt, total 7440-84 E420 0.0005 mg/L 0.0125 mg/L 99.4 80.0 120 copper, total 7440-84 E420 0.0005 mg/L 0.0125 mg/L 99.3 80.0 120 ron, total 6420 0.01 mg/L 0.055 mg/L 100 80.0 120 ead, total 7439-84 E420 0.0055 mg/L 0.025 mg/L 101 80.0 120 nagnesium, total 7439-84 E420 0.0055 mg/L 2.5 mg/L
cadmium, total 7440-43-9 E420 0.00005 mg/L 0.005 mg/L 102 80.0 120 calcium, total 7440-70-2 E420 0.05 mg/L 2.5 mg/L 94.4 80.0 120 cobalt, total 7440-484 E420 0.0001 mg/L 0.0125 mg/L 99.4 80.0 120 cobalt, total 7440-684 E420 0.0005 mg/L 0.0125 mg/L 99.4 80.0 120 coper, total 7440-508 E420 0.0005 mg/L 0.0125 mg/L 99.3 80.0 120 ron, total 7439-89-6 E420 0.01 mg/L 0.055 mg/L 100 80.0 120 ead, total 7439-89-1 E420 0.0005 mg/L 0.025 mg/L 101 80.0 120 nagnesium, total 7439-89-4 E420 0.005 mg/L 2.5 mg/L 101 80.0 120 nagneses, total 7439-89-5 E420 0.005 mg/L
calcium, total 7440-70-2 E420 0.05 mg/L 2.5 mg/L 94.4 80.0 120 cobalt, total 7440-48-4 E420 0.0001 mg/L 0.0125 mg/L 99.4 80.0 120 copper, total 7440-68-8 E420 0.0005 mg/L 0.0125 mg/L 99.3 80.0 120 ron, total 7439-89-6 E420 0.01 mg/L 0.05 mg/L 100 80.0 120 ead, total 7439-89-6 E420 0.0005 mg/L 0.025 mg/L 101 80.0 120 nagnesium, total 7439-89-6 E420 0.0005 mg/L 0.025 mg/L 101 80.0 120 nagnesium, total 7439-89-6 E420 0.005 mg/L 2.5 mg/L 102 80.0 120 nagnesium, total 7439-89-6 E420 0.005 mg/L 0.0125 mg/L 99.2 80.0 120 nagneses total 0.001 mg/L 0.0125 mg/L 99.2<
cobalt, total 7440-48-4 E420 0.0001 mg/L 0.0125 mg/L 99.4 80.0 120 copper, total 7440-50-8 E420 0.0005 mg/L 0.0125 mg/L 99.3 80.0 120 ron, total 7439-89-6 E420 0.01 mg/L 0.055 mg/L 100 80.0 120 ead, total 7439-89-1 E420 0.0005 mg/L 0.025 mg/L 101 80.0 120 nagnesium, total 7439-89-4 E420 0.005 mg/L 0.025 mg/L 101 80.0 120 nagnesium, total 7439-89-5 E420 0.005 mg/L 2.5 mg/L 102 80.0 120 nagneses total 7439-89-5 E420 0.001 mg/L 0.0125 mg/L 99.2 80.0 120
copper, total 7440-50-8 E420 0.0005 mg/L 0.0125 mg/L 99.3 80.0 120 iron, total 7439-89-6 E420 0.01 mg/L 0.05 mg/L 100 80.0 120 ead, total 7439-89-4 E420 0.0005 mg/L 0.025 mg/L 101 80.0 120 nagnesium, total 7439-89-4 E420 0.005 mg/L 2.5 mg/L 102 80.0 120 nagneses, total 7439-89-5 E420 0.001 mg/L 0.0125 mg/L 99.2 80.0 120
iron, total 7439-89-6 E420 0.01 mg/L 0.05 mg/L 100 80.0 120 read, total 7439-92-1 E420 0.0005 mg/L 0.025 mg/L 101 80.0 120 nagnesium, total 7439-95-4 E420 0.005 mg/L 2.5 mg/L 102 80.0 120 nagneset total 7439-96-5 E420 0.0001 mg/L 0.0125 mg/L 90.2 80.0 120
iead, total 7439-92-1 E420 0.0005 mg/L 0.025 mg/L 101 80.0 120 nagnesium, total 7439-95-4 E420 0.005 mg/L 2.5 mg/L 102 80.0 120 nagneses total 7439-96-5 E420 0.001 mg/L 0.0125 mg/L 90.2 80.0 120
magnesium, total 7439-95-4 E420 0.005 mg/L 2.5 mg/L 102 80.0 120 nanganese total 7439-96-5 E420 0.0001 mg/L 0.0125 mg/L 90.2 80.0 120
nanganese total 7439-96-5 E420 0.0001 mg/l 0.0125 mg/l 0.0.2 80.0 120
molybdenum, total 7439-98-7 E420 0.0005 mg/L 0.0125 mg/L 100 80.0 120
nickel, total 7440-02-0 E420 0.0005 mg/L 0.025 mg/L 99.5 80.0 120
potassium, total 7440-09-7 E420 0.05 mg/L 2.5 mg/L 101 80.0 120
selenium, total 7782-49-2 E420 0.0005 mg/L 0.05 mg/L 108 80.0 120
silicon, total 7440-21-3 E420 0.1 mg/L 0.5 mg/L 98.3 60.0 140
silver, total 7440-22-4 E420 0.0001 mg/L 0.005 mg/L 95.9 80.0 120
sodium, total 7440-23-5 E420 0.05 mg/L 2.5 mg/L 102 80.0 120
strontium, total 7440-24-6 E420 0.0002 mg/L 0.0125 mg/L 104 80.0 120
hallium, total 7440-28-0 E420 0.0001 mg/L 0.05 mg/L 98.1 80.0 120
in, total 7440-31-5 E420 0.0001 mg/L 0.025 mg/L 101 80.0 120
vanadium, total 7440-62-2 E420 0.0005 mg/L 0.025 mg/L 102 80.0 120
zinc, total 7440-66-6 E420 0.003 mg/L 0.025 mg/L 109 80.0 120
Total Metals (QCL ot: 476234)
mercury, total 7439-97-6 E508 0.000005 mg/L 0.0001 mg/L 97.3 80.0 120
Speciated Metals (QCLot: 476554)
chromium, hexavalent [Cr VI], total 18540-29-9 E532 0.0005 mg/L 0.025 mg/L 99.3 80.0 120
Aggregate Organics (OCLot: 478083)
chemical oxygen demand [COD] E559-L 10 mg/L 100 mg/L 99.7 85.0 115
Aggregate Organics (OCI of: 479032)
phenols, total (4AAP) E562 0.001 mg/L 0.02 mg/L 103 85.0 115

Page	: 9 of 11
Work Order	: WT2203263
Client	: Clean Harbors Environmental Services, Inc.
Project	: 12572192-20.22

Sub-Matrix: Water						Laboratory Co	ontrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water							Matrix Spik	e (MS) Report		
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Anions and Nutri	ents (QCLot: 479029)									
WT2203193-003	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0874 mg/L	0.1 mg/L	87.4	70.0	130	
Anions and Nutri	ents (QCLot: 479030)									
WT2203193-005	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.105 mg/L	0.1 mg/L	105	75.0	125	
Anions and Nutri	ents (QCLot: 479031)									
WT2203193-002	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	2.37 mg/L	2.5 mg/L	94.9	70.0	130	
Anions and Nutri	ents (QCLot: 480124)									
WT2203263-001	STN6 STN6 Discharge	sulfate (as SO4)	14808-79-8	E235.SO4	108 mg/L	100 mg/L	108	75.0	125	
Anions and Nutri	ents (QCLot: 480125)									
WT2203263-001	STN6 STN6 Discharge	chloride	16887-00-6	E235.CI	107 mg/L	100 mg/L	107	75.0	125	
Anions and Nutri	ents (QCLot: 480126)									
WT2203263-001	STN6 STN6 Discharge	fluoride	16984-48-8	E235.F	1.01 mg/L	1 mg/L	101	75.0	125	
Anions and Nutri	ents (QCLot: 480127)									
WT2203263-001	STN6 STN6 Discharge	nitrate (as N)	14797-55-8	E235.NO3	2.64 mg/L	2.5 mg/L	106	75.0	125	
Anions and Nutri	ents (QCLot: 480128)									
WT2203263-001	STN6 STN6 Discharge	nitrite (as N)	14797-65-0	E235.NO2	0.529 mg/L	0.5 mg/L	106	75.0	125	
Anions and Nutri	ents (QCLot: 480129)									
WT2203263-001	STN6 STN6 Discharge	bromide	24959-67-9	E235.Br	0.50 mg/L	0.5 mg/L	101	75.0	125	
Cyanides (QCLo	t: 477421)									
FC2200824-001	Anonymous	cyanide, strong acid dissociable (total)		E333	0.231 mg/L	0.25 mg/L	92.5	70.0	130	
Organic / Inorgar	ic Carbon (QCLot: 4762	256)								
WT2203050-007	Anonymous	carbon, dissolved organic [DOC]		E358-L	ND mg/L	5 mg/L	ND	70.0	130	
Total Metals (QC	Lot: 476011)									
WT2203250-001	Anonymous	aluminum, total	7429-90-5	E420	ND mg/L	0.1 mg/L	ND	70.0	130	
		antimony, total	7440-36-0	E420	0.0551 mg/L	0.05 mg/L	110	70.0	130	
		arsenic, total	7440-38-2	E420	0.0560 mg/L	0.05 mg/L	112	70.0	130	
		barium, total	7440-39-3	E420	ND mg/L	0.0125 mg/L	ND	70.0	130	
		beryllium, total	7440-41-7	E420	0.00499 mg/L	0.005 mg/L	99.8	70.0	130	
-		bismuth, total	7440-69-9	E420	0.0507 mg/L	0.05 mg/L	101	70.0	130	

Page: 11 of 11Work Order: WT2203263Client: Clean Harbors Environmental Services, Inc.Project: 12572192-20.22

Sub-Matrix: Water							Matrix Spik	e (MS) Report		
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Total Metals (QC	Lot: 476011) - continue	d								
WT2203250-001	Anonymous	boron, total	7440-42-8	E420	ND mg/L	0.05 mg/L	ND	70.0	130	
		cadmium, total	7440-43-9	E420	0.00543 mg/L	0.005 mg/L	109	70.0	130	
		calcium, total	7440-70-2	E420	ND mg/L	2.5 mg/L	ND	70.0	130	
		cobalt, total	7440-48-4	E420	0.0128 mg/L	0.0125 mg/L	102	70.0	130	
		copper, total	7440-50-8	E420	ND mg/L	0.0125 mg/L	ND	70.0	130	
		iron, total	7439-89-6	E420	ND mg/L	0.05 mg/L	ND	70.0	130	
		lead, total	7439-92-1	E420	0.0242 mg/L	0.025 mg/L	96.7	70.0	130	
		magnesium, total	7439-95-4	E420	ND mg/L	2.5 mg/L	ND	70.0	130	
		manganese, total	7439-96-5	E420	ND mg/L	0.0125 mg/L	ND	70.0	130	
		molybdenum, total	7439-98-7	E420	0.0130 mg/L	0.0125 mg/L	104	70.0	130	
		nickel, total	7440-02-0	E420	0.0252 mg/L	0.025 mg/L	101	70.0	130	
		potassium, total	7440-09-7	E420	ND mg/L	2.5 mg/L	ND	70.0	130	
		selenium, total	7782-49-2	E420	0.0566 mg/L	0.05 mg/L	113	70.0	130	
		silicon, total	7440-21-3	E420	ND mg/L	0.5 mg/L	ND	70.0	130	
		silver, total	7440-22-4	E420	0.00488 mg/L	0.005 mg/L	97.7	70.0	130	
		sodium, total	7440-23-5	E420	ND mg/L	2.5 mg/L	ND	70.0	130	
		strontium, total	7440-24-6	E420	ND mg/L	0.0125 mg/L	ND	70.0	130	
		thallium, total	7440-28-0	E420	0.0495 mg/L	0.05 mg/L	99.1	70.0	130	
		tin, total	7440-31-5	E420	0.0256 mg/L	0.025 mg/L	102	70.0	130	
		vanadium, total	7440-62-2	E420	0.0259 mg/L	0.025 mg/L	103	70.0	130	
		zinc, total	7440-66-6	E420	ND mg/L	0.025 mg/L	ND	70.0	130	
Total Metals (QC	Lot: 476234)									
WT2203249-001	Anonymous	mercury, total	7439-97-6	E508	0.000102 mg/L	0.0001 mg/L	102	70.0	130	
Speciated Metals	(QCLot: 476554)									
WT2203249-001	Anonymous	chromium, hexavalent [Cr VI], total	18540-29-9	E532	0.0396 mg/L	0.04 mg/L	98.9	70.0	130	
Aggregate Organ	ics (QCLot: 478083)									
WT2203252-001	Anonymous	chemical oxygen demand [COD]		E559-L	103 mg/L	100 mg/L	103	75.0	125	
Aggregate Organ	ics (QCLot: 479032)									
WT2203193-004	Anonymous	phenols, total (4AAP)		E562	0.0196 mg/L	0.02 mg/L	98.1	75.0	125	

Chain of Custody (COC) / Analytical Request Form

www.alsglobal.com

Canada Toll Free: 1 800 668 9878

COC Number: 2(

Page

Environmental Division Waterloo Work Order Reference WT2203263

EFER TO BACK	released by:			re samples for h	vre samples take	Drinking				the state of the	and the second						(lab use only)	ALS Lab Wor	LSD:	PO / AFE:	Job #:	ALS Account #		Contact:	Company:		Invoice To	Postal Code:	City/Province:	Street		Phone:	Contact:	Company:
PAGEFOR ALS LOCATIONS AND SAMPLIN	In P Date:	SHIPMENT RELEASE (client us	I NO	iuman consumption/ use?	n from a Regulated DW System?	Water (DW) Samples ¹ (client use)									STN6A	STN6	Cample Identification (This description with the second se	k Order # (lab use only):			44985-20-21	t/ Quote #:	Project Information		GHD Ltd. (Acct 13791)	Copy of Invoice with Report	Same as Report To VES	N2L 3X2	Waterloo, ON	455 Phillip St.	Company address below will appear on the	519-884-0510	Stephanie Berton	GHD Ltd (Acct 13791)
IG INFORMATION	Time	e)	and the second se	Please provide field te		Notes / Specifi											I appear on the report)	1291221								S NO	ON D				final report			sppear on the tinal report
0	Received by:	INI		mp and field pH for u		y Limits for result eval (Exce												ALS Contact:	Location:	Requisitioner:	Major/Minor Code:	AFE/Cost Center:	Oil a	Email 2	Email 1 or Fax II	Select Invoice Dis		Email 3	Email 2	Email 1 or Fax S	Select Distribution	Compare Results	Merge QC/QCI F	Colort Doport Eo
WHIT	11月1日 11日	TIAL SHIPMENT		nionized calculation		luation by selectine I COC only)											Date (dd-mmm-yy)	Rick H					nd Gas Required		nvoicing-Canada(stribution: 🗹 EM/	Invoice Re		See SSOW/PO	stephanie.berton@	n: S EMAIL	to Criteria on Report -	Reports with COA	Reports / R
E - LABORATORY	Date:	RECEPTION (lat		3		g from drop-down											Time (hh:mm)	Sampler:			Routing Code:	PO#	I Fields (client u:		@ghd.com	AIL MAIL D	cipients			ghd.com	MAIL D FA	provide details below		Recipients
COPY YELLO		b use only)				below								water	· · · ·	Water	Sample Type						se)			FAX					×.	/ if box checked		
W - CLIE	ime:			Cooler Cu	ubmissi	Cooling N		-	-		-		-	6	1	5	NUN	IBER	0	= C	0	NT.		NE	R			Date	routine t	Same da	2 day [aday [Routine	
NT COPY	Received	THE REAL		istody Seals	on Comment	Aethod:								7		D A	ALK, C	onductiv	ty, p	н, т	DS,	TSS			Indicat		For te	and Time Requ	r apply to rush n ests	y [E2] if received by	P2] if received b	P3] if received b	[R] if received b	Turnar
	by:		and a second sec	Intact:	s identif	S								7	2	D A	Anions	6 (Br,N21	N3, (CL, F	, BR	R, SC	04)		e Filtered		sts that ca	lired for a	esuests or	d by 10a	y 3pm M	y 3pm M	y 3pm M	ound Tir
>		FINA						+	-			-		7	2		Phenol	s-4AAP,	COE), TK	Ν, T	TP	+	_	(F), Pres		n not be p	III E&P T	weeken	- 100%	F- 50%	F - 25%	F - 10 S	ne (TAT
1	2	LSHIF	0		mole	RECE					-	-			1		NH3-U	nionized	Amn	nonia	3		+	-	erved (P	Þ	erformed	ATs:	ds, statut	rush sun 200% ru	rush sur	rush sur	urcharge) Reque
U	Date:	MENT		N/A	Deneir	IPT DE								7	7	0 T	otal N	letals, Ha	rdne	ess-C	Calc-	-T-W	π	-	or Filter	nalysis	accordin		ory holid	charge m sh surch	charge n	charge n	s apply	ested
3		RECE	1	Sample		TAILS			-		_	_		ת	7	D N	Aercur	y Total							ed and F	Requ	g to the T	Ĺ	~		÷	¥ 8	2	I
F		PTION	FINA	Custo	TROZEN	(lab us	-	+	-		_	-		על	7	T	otal C	yanide, T	otal	Cr6			1		reserve	est	AT reque		Tele					
		(lab us	- COOLE	dy Sea		se only	+	-	+		-	+		7	T	R	EP: W	/T-44985	Met	als		-	+		I IEIDI H		sted, you		phone :					
q)	e only	RIEME	YES										9	8	F	ield Te	emp		010.85			+	-	alow		will be c		+1 510	ŝ				
	-	1	ERATU		OLING I									8.(1.8	Fi	ield Ph	1					1				ontacteo.	50 000	800 00					
Ó	ime: .	-	RES °C	YES [NITIATE		-	+			-	-				S	AM	PLES	0	NF	10	LD						10		Re	2	1		
P	١] N/A			-	+			-	+-	+	-	-	E	XTE	NDED S	HA	RA	GE	RE	QU	IRE					H					2
	1				100		_									10	USPI	ECIED	HA	ZAF	KD	(see	e no	otes	5	1	T	1	_					

Failure to complete all portions of this form may delay analysis. Please fill in this form LECIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy.
1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

CERTIFICATE OF ANALYSIS

Work Order	: WT2203261	Page	÷ 1 of 13
Amendment	: 1		
Client	Clean Harbors Environmental	Laboratory	: Waterloo - Environmental
	Services, Inc.		
Contact	Rob Girard	Account Manager	: Rick Hawthorne
Address	: 4090 TELFER ROAD RR1	Address	: 60 Northland Road, Unit 1
	Corunna ON Canada N0N 1G0		Waterloo ON Canada N2V 2B8
Telephone	: 519 864 3815	Telephone	: +1 519 886 6910
Project	: 12572192-20.22	Date Samples Received	: 03-May-2022 10:15
PO	: 735-002833	Date Analysis	: 03-May-2022
		Commenced	
C-O-C number	:	Issue Date	: 16-May-2022 08:31
Sampler	: Client		
Site	: 4090 Telfer Road, RR#1, Corunna		
Quote number	12572192-20.22-SSOW-735-002833		
No. of samples received	: 3		
No. of samples analysed	: 3		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Greg Pokocky	Supervisor - Inorganic	Inorganics, Waterloo, Ontario
Greg Pokocky	Supervisor - Inorganic	Metals, Waterloo, Ontario
Jocelyn Kennedy	Department Manager - Semi-Volatile Organics	Organics, Waterloo, Ontario
Jon Fisher	Department Manager - Inorganics	Inorganics, Waterloo, Ontario
Khairul Intiar	Login	Administration, Waterloo, Ontario
Sarah Birch	Team Leader - Volatiles	Organics, Waterloo, Ontario

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance. Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key : CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances LOR: Limit of Reporting (detection limit).

Unit	Description
٦°	degrees Celsius
µg/L	micrograms per litre
μS/cm	Microsiemens per centimetre
mg/L	milligrams per litre
pH units	pH units

>: greater than.

<: less than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Workorder Comments

With dinitrophenol-2,4

Qualifiers

Qualifier	Description
DLDS	Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical Conductivity.
DLIS	Detection Limit Adjusted due to insufficient sample.
DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity).
SP	Sample was preserved at the laboratory.
SUR-ND	Surrogate recovery marginally exceeded ALS DQO. Reported non-detect results for associated samples were deemed to be unaffected.
VOCHS	VOC analysis was conducted for a water sample that contained > 5% headspace. Results may be biased low.

WT2203261-001 Sub-Matrix:Water (Matrix: Water)

Client sample ID: EQ Pond - EQ Pond Discharge Client sampling date / time: 02-May-2022 09:00

Analyte CAS N	lumber	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot
Field Tests							Date	
pH, field		8.30	0.01	pH units	EF001	-	04-May-2022	-
temperature, field		8.00	0.01	°C	EF001	-	04-May-2022	-
Physical Tests								
conductivity		805	2.0	μS/cm	E100	04-May-2022	04-May-2022	476311
hardness (as CaCO3), from total Ca/Mg		285	0.50	mg/L	EC100A	-	04-May-2022	-
рН		8.15	0.10	pH units	E108	04-May-2022	04-May-2022	476310
solids, total dissolved [TDS]		485 DLDS,	20	mg/L	E162	-	04-May-2022	476771
solids, total suspended [TSS]		4.4	3.0	mg/L	E160	-	04-May-2022	476784
alkalinity, total (as CaCO3)		112	2.0	mg/L	E290	04-May-2022	04-May-2022	476309
Anions and Nutrients								
ammonia, total (as N) 766	64-41-7	0.163	0.0050	mg/L	E298	06-May-2022	09-May-2022	479030
ammonia, un-ionized (as N), field 766	64-41-7	0.0050	0	mg/L	EC298A	-	04-May-2022	-
bromide 2495	59-67-9	1.39	0.10	mg/L	E235.Br	04-May-2022	04-May-2022	476315
chloride 1688	37-00-6	54.5	0.50	mg/L	E235.CI	04-May-2022	04-May-2022	476317
fluoride 1698	34-48-8	1.09	0.020	mg/L	E235.F	04-May-2022	04-May-2022	476316
Kjeldahl nitrogen, total [TKN]		0.741	0.050	mg/L	E318	06-May-2022	06-May-2022	479031
nitrate (as N) 1479	97-55-8	0.356	0.020	mg/L	E235.NO3	04-May-2022	04-May-2022	476312
nitrite (as N) 1479	97-65-0	Not Detected	0.010	mg/L	E235.NO2	04-May-2022	04-May-2022	476313
phosphorus, total 772	23-14-0	0.0121	0.0020	mg/L	E372-U	06-May-2022	09-May-2022	479029
sulfate (as SO4) 1480	08-79-8	206	0.30	mg/L	E235.SO4	04-May-2022	04-May-2022	476314
Cyanides								
			0.0000	m a /l	F222	04 May 2022	04 May 2022	477421
cyanide, strong acid dissociable (total)		Not Detected	0.0020	mg/L	ESSS	04-11/1ay-2022	04-1viay-2022	4//42/
cyanide, strong acid dissociable (total) Organic / Inorganic Carbon		Not Detected	0.0020	mg/∟	E333	04-101ay-2022	04-111ay-2022	477421
cyanide, strong acid dissociable (total) Organic / Inorganic Carbon carbon, dissolved organic [DOC]		Not Detected 4.24	0.0020	mg/L	E358-L	04-May-2022	04-May-2022	476256
cyanide, strong acid dissociable (total) Organic / Inorganic Carbon carbon, dissolved organic [DOC] Total Metals		Not Detected 4.24	0.0020	mg/L	E358-L	04-May-2022	04-May-2022	476256
cyanide, strong acid dissociable (total) Organic / Inorganic Carbon carbon, dissolved organic [DOC] Total Metals aluminum, total 742	 29-90-5	Not Detected 4.24 0.290	0.0020	mg/L mg/L	E358-L E420	04-May-2022 04-May-2022 03-May-2022	04-May-2022 04-May-2022 04-May-2022	476256
cyanide, strong acid dissociable (total) Organic / Inorganic Carbon carbon, dissolved organic [DOC] Total Metals aluminum, total 742 antimony, total 744	 29-90-5 40-36-0	Not Detected 4.24 0.290 0.00047	0.0020	mg/L mg/L mg/L mg/L	E358-L E420 E420	04-May-2022 04-May-2022 03-May-2022 03-May-2022	04-May-2022 04-May-2022 04-May-2022 04-May-2022	476256 476011 476011
cyanide, strong acid dissociable (total) Organic / Inorganic Carbon carbon, dissolved organic [DOC] Total Metals aluminum, total 742 antimony, total 744 arsenic, total 744	 29-90-5 40-36-0 40-38-2	Not Detected 4.24 0.290 0.00047 0.00122	0.0020 0.50 0.0030 0.00010 0.00010	mg/L mg/L mg/L mg/L	E358-L E420 E420 E420 E420	04-May-2022 04-May-2022 03-May-2022 03-May-2022	04-May-2022 04-May-2022 04-May-2022 04-May-2022	476256 476011 476011 476011
cyanide, strong acid dissociable (total) Organic / Inorganic Carbon carbon, dissolved organic [DOC] Total Metals aluminum, total 742 antimony, total 744 barium, total 744	 29-90-5 40-36-0 40-38-2 40-39-3	Not Detected 4.24 0.290 0.00047 0.00122 0.0411	0.0020 0.50 0.0030 0.00010 0.00010 0.00010	mg/L mg/L mg/L mg/L mg/L mg/L	E358-L E420 E420 E420 E420 E420	04-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022	04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022	476256 476011 476011 476011 476011
cyanide, strong acid dissociable (total) Organic / Inorganic Carbon carbon, dissolved organic [DOC] Total Metals aluminum, total 742 antimony, total 744 arsenic, total 744 barium, total 744	 29-90-5 40-36-0 40-38-2 40-39-3 40-41-7	Not Detected 4.24 0.290 0.00047 0.00122 0.0411 Not Detected	0.0020 0.50 0.0030 0.00010 0.00010 0.00010 0.00010	mg/L mg/L mg/L mg/L mg/L mg/L	E358-L E420 E420 E420 E420 E420 E420 E420	04-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022	04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022	476256 476011 476011 476011 476011 476011
cyanide, strong acid dissociable (total) Organic / Inorganic Carbon carbon, dissolved organic [DOC] Total Metals aluminum, total 742 antimony, total 744 arsenic, total 744 barium, total 744 bismuth, total 744	 29-90-5 40-36-0 40-38-2 40-39-3 40-41-7 40-69-9	Not Detected 4.24 0.290 0.00047 0.00122 0.0411 Not Detected Not Detected	0.0020 0.50 0.0030 0.00010 0.00010 0.00010 0.000020 0.000050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	E358-L E420 E420 E420 E420 E420 E420 E420 E420	04-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022	04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022	476256 476011 476011 476011 476011 476011 476011
cyanide, strong acid dissociable (total) Organic / Inorganic Carbon carbon, dissolved organic [DOC] Total Metals aluminum, total 742 antimony, total 744 barium, total 744 beryllium, total 744 bismuth, total 744 boron, total 744	 29-90-5 40-36-0 40-38-2 40-39-3 40-41-7 40-69-9 40-42-8	Not Detected 4.24 0.290 0.00047 0.00122 0.0411 Not Detected Not Detected 0.112	0.0020 0.50 0.0030 0.00010 0.00010 0.00010 0.000020 0.000050 0.010	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	E333 E358-L E420 E420 E420 E420 E420 E420 E420 E420	04-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022	04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022	476256 476011 476011 476011 476011 476011 476011 476011
cyanide, strong acid dissociable (total)Organic / Inorganic Carboncarbon, dissolved organic [DOC]Total Metalsaluminum, total742antimony, total744arsenic, total744barium, total744bismuth, total744bismuth, total744boron, total744cadmium, total744	 29-90-5 40-36-0 40-38-2 40-39-3 40-41-7 40-69-9 40-42-8 40-43-9	Not Detected 4.24 0.290 0.00047 0.00122 0.0411 Not Detected Not Detected 0.112 Not Detected	0.0020 0.50 0.0030 0.00010 0.00010 0.00010 0.000020 0.000050 0.010 0.000100	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	E333 E358-L E420 E420 E420 E420 E420 E420 E420 E420	04-May-2022 04-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022	04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022	476256 476011 476011 476011 476011 476011 476011 476011 476011 476011
cyanide, strong acid dissociable (total) Organic / Inorganic Carbon carbon, dissolved organic [DOC] Total Metals aluminum, total 742 antimony, total 744 barsenic, total 744 barium, total 744 bismuth, total 744 bismuth, total 744 cadmium, total 744 cadmium, total 744	 29-90-5 40-36-0 40-38-2 40-39-3 40-41-7 40-69-9 40-42-8 40-42-8 40-42-9 40-70-2	Not Detected 4.24 0.290 0.00047 0.00122 0.0411 Not Detected 0.112 Not Detected 73.8	0.0020 0.50 0.0030 0.00010 0.00010 0.00010 0.000020 0.00050 0.010 0.000100 0.050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	E333 E358-L E420 E420 E420 E420 E420 E420 E420 E420	04-May-2022 04-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022	04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022	476011 476011 476011 476011 476011 476011 476011 476011 476011 476011
cyanide, strong acid dissociable (total) Organic / Inorganic Carbon carbon, dissolved organic [DOC] Total Metals aluminum, total 742 antimony, total 744 arsenic, total 744 barium, total 744 beryllium, total 744 bismuth, total 744 cadmium, total 744 cobalt, total 744	 29-90-5 40-36-0 40-38-2 40-39-3 40-41-7 40-69-9 40-42-8 40-43-9 40-42-8 40-43-9 40-43-9	Not Detected 4.24 0.290 0.00047 0.00122 0.0411 Not Detected 0.112 Not Detected 73.8 0.00030	0.0020 0.50 0.0030 0.00010 0.00010 0.00010 0.000020 0.000050 0.010 0.000100 0.050 0.00010	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	E333 E358-L E420 E420 E420 E420 E420 E420 E420 E420	04-May-2022 04-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022	04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022	476256 476011 476011 476011 476011 476011 476011 476011 476011 476011 476011
cyanide, strong acid dissociable (total) Organic / Inorganic Carbon carbon, dissolved organic [DOC] Total Metals aluminum, total 742 antimony, total 744 arsenic, total 744 barium, total 744 beryllium, total 744 bismuth, total 744 cadmium, total 744 cobalt, total 744 copper, total 744	 29-90-5 40-36-0 40-38-2 40-39-3 40-41-7 40-69-9 40-42-8 40-43-9 40-42-8 40-43-9 40-42-8 40-43-9 40-43-9	Not Detected 4.24 0.290 0.00047 0.00122 0.0411 Not Detected 0.112 Not Detected 73.8 0.00030 0.00213	0.0020 0.50 0.0030 0.00010 0.00010 0.00010 0.000020 0.000050 0.010 0.000100 0.050 0.00010 0.00010 0.00010	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	E333 E358-L E420 E420 E420 E420 E420 E420 E420 E420	04-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022	04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022	476256 476011 476011 476011 476011 476011 476011 476011 476011 476011 476011 476011
cyanide, strong acid dissociable (total)Organic / Inorganic Carboncarbon, dissolved organic [DOC]Total Metalsaluminum, total742antimony, total744arsenic, total744barium, total744bismuth, total744bismuth, total744codmium, total744codmium, total744codmium, total744codmium, total744cobalt, total744iron, total744iron, total744iron, total744iron, total744iron, total743	 29-90-5 40-36-0 40-38-2 40-39-3 40-41-7 40-69-9 40-42-8 40-43-9 40-42-8 40-43-9 40-70-2 40-48-4 40-50-8 39-89-6	Not Detected 4.24 0.290 0.00047 0.00122 0.0411 Not Detected 0.112 Not Detected 73.8 0.00030 0.00213 0.272	0.0020 0.50 0.00010 0.00010 0.00010 0.00020 0.000050 0.010 0.00010 0.050 0.00010 0.00050 0.010	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	E333 E358-L E420 E420 E420 E420 E420 E420 E420 E420	04-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022	04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022	476256 476011 476011 476011 476011 476011 476011 476011 476011 476011 476011 476011
cyanide, strong acid dissociable (total)Organic / Inorganic Carboncarbon, dissolved organic [DOC]Total Metalsaluminum, total742antimony, total744arsenic, total744barium, total744beryllium, total744bismuth, total744codmium, total744codmium, total744codmium, total744cobalt, total744iron, total744iron, total744iron, total744iron, total744iron, total743lead, total743	 29-90-5 40-36-0 40-38-2 40-39-3 40-41-7 40-69-9 40-42-8 40-43-9 40-70-2 40-48-4 40-50-8 39-89-6 39-92-1	Not Detected 4.24 0.290 0.00047 0.00122 0.0411 Not Detected 0.112 Not Detected 0.112 Not Detected 73.8 0.00030 0.00213 0.272 0.000206	0.0020 0.50 0.00010 0.00010 0.00010 0.00010 0.000050 0.010 0.00010 0.00010 0.00050 0.010 0.00050 0.010 0.00050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	E333 E358-L E420 E420 E420 E420 E420 E420 E420 E420	04-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022	04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022	476256 476011 476011 476011 476011 476011 476011 476011 476011 476011 476011 476011 476011 476011 476011
cyanide, strong acid dissociable (total)Organic / Inorganic Carboncarbon, dissolved organic [DOC]Total Metalsaluminum, total742antimony, total744arsenic, total744barium, total744beryllium, total744bismuth, total744cadmium, total744cadmium, total744corp, total744cobalt, total744copper, total744iron, total744antimony, total744cobalt, total744copper, total743iron, total743lead, total743magnesium, total743	 29-90-5 40-36-0 40-38-2 40-39-3 40-41-7 40-69-9 40-42-8 40-43-9 40-70-2 40-48-4 40-50-8 39-89-6 39-92-1 39-95-4	Not Detected 4.24 0.290 0.00047 0.00122 0.0411 Not Detected 0.112 Not Detected 0.112 Not Detected 73.8 0.00030 0.00213 0.272 0.000206 24.5	0.0020 0.50 0.00010 0.00010 0.00010 0.00010 0.000020 0.00050 0.010 0.00010 0.00010 0.00050 0.010 0.00050 0.010 0.00050 0.010	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	E333 E358-L E420 E420 E420 E420 E420 E420 E420 E420	04-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022	04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022	476256 476011 476011 476011 476011 476011 476011 476011 476011 476011 476011 476011 476011 476011 476011
cyanide, strong acid dissociable (total)Organic / Inorganic Carboncarbon, dissolved organic [DOC]Total Metalsaluminum, total742antimony, total744arsenic, total744barium, total744beryllium, total744bismuth, total744cadmium, total744cadmium, total744cadmium, total744cadmium, total744cadmium, total744calcium, total744cobalt, total744copper, total743iron, total743magnesium, total743manganese, total743	 29-90-5 40-36-0 40-38-2 40-39-3 40-41-7 40-69-9 40-42-8 40-43-9 40-70-2 40-48-4 40-50-8 39-89-6 39-92-1 39-95-4 39-96-5	Not Detected 4.24 0.290 0.00047 0.00122 0.0411 Not Detected 0.112 Not Detected 73.8 0.00030 0.00213 0.272 0.000206 24.5 0.0148	0.0020 0.50 0.0030 0.00010 0.00010 0.00010 0.000020 0.000050 0.010 0.00010 0.00050 0.010 0.00050 0.010 0.00050 0.0050 0.0050 0.0050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	E333 E358-L E420 E420 E420 E420 E420 E420 E420 E420	04-May-2022 04-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022 03-May-2022	04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022	476256 476011 476011 476011 476011 476011 476011 476011 476011 476011 476011 476011 476011 476011 476011 476011 476011
cyanide, strong acid dissociable (total)Organic / Inorganic Carboncarbon, dissolved organic [DOC]Total Metalsaluminum, total742antimony, total744arsenic, total744barium, total744beryllium, total744bismuth, total744boron, total744cadmium, total744cadmium, total744boron, total744cadmium, total744cobalt, total744copper, total743iron, total743magnesium, total743manganese, total743mercury, total743	 29-90-5 40-36-0 40-38-2 40-39-3 40-41-7 40-69-9 40-42-8 40-42-8 40-42-8 40-42-8 40-42-8 40-42-8 40-42-8 40-50-8 39-92-1 39-95-4 39-95-5 39-97-6	Not Detected 4.24 0.290 0.00047 0.00122 0.0411 Not Detected 0.112 Not Detected 73.8 0.00030 0.00213 0.272 0.000206 24.5 0.0148 Not Detected	0.0020 0.50 0.0030 0.00010 0.00010 0.00010 0.000020 0.010 0.000100 0.050 0.0010 0.00050 0.010 0.00050 0.00050 0.00050 0.00010 0.00050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	E333 E358-L E420 E420 E420 E420 E420 E420 E420 E420	04-May-2022 04-May-2022 03-May-2022	04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022	476256 476011 476011 476011 476011 476011 476011 476011 476011 476011 476011 476011 476011 476011 476011 476011 476011 476011 476011
cyanide, strong acid dissociable (total)Organic / Inorganic Carboncarbon, dissolved organic [DOC]Total Metalsaluminum, total742antimony, total744arsenic, total744barium, total744beryllium, total744bismuth, total744boron, total744cadmium, total744cadmium, total744cadmium, total744cadmium, total744cadmium, total744cadnium, total744cobalt, total744copper, total743iron, total743magnesium, total743manganese, total743molybdenum, total743	 29-90-5 40-36-0 40-38-2 40-39-3 40-41-7 40-69-9 40-42-8 40-43-9 40-42-8 40-43-9 40-42-8 40-43-9 40-42-8 40-43-9 40-40-40-40-40-40-40-40-40-40-40-40-40-4	Not Detected 4.24 0.290 0.00047 0.00122 0.0411 Not Detected 0.112 Not Detected 73.8 0.00030 0.00213 0.272 0.000206 24.5 0.0148 Not Detected 0.0555	0.0020 0.50 0.0030 0.00010 0.00010 0.00010 0.000020 0.000050 0.010 0.00010 0.00050 0.010 0.00050 0.010 0.00050 0.00050 0.00010 0.000050 0.00010 0.000050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	E333 E358-L E420 E420 E420 E420 E420 E420 E420 E420	04-May-2022 04-May-2022 03-May-2022	04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022	476256 476011 476011 476011 476011 476011 476011 476011 476011 476011 476011 476011 476011 476011 476011 476011 476234 476011
cyanide, strong acid dissociable (total)Organic / Inorganic Carboncarbon, dissolved organic [DOC]Total Metalsaluminum, total742antimony, total744arsenic, total744barium, total744barium, total744bismuth, total744boron, total744cadmium, total744cadmium, total744cadmium, total744cadmium, total744cadmium, total744cobalt, total744copper, total744iron, total743magnesium, total743manganese, total743molybdenum, total743nickel, total744	 29-90-5 40-36-0 40-38-2 40-39-3 40-41-7 40-69-9 40-42-8 40-43-9 40-42-8 40-43-9 40-42-8 40-43-9 40-40-40-40-40-40-40-40-40-40-40-40-40-4	Not Detected 4.24 0.290 0.00047 0.00122 0.0411 Not Detected 0.112 Not Detected 73.8 0.00030 0.00213 0.272 0.000206 24.5 0.0148 Not Detected 0.0555 0.00387	0.0020 0.50 0.0030 0.00010 0.00010 0.00010 0.000020 0.000050 0.010 0.00010 0.00050 0.010 0.00050 0.00050 0.00010 0.000050 0.000050 0.000050 0.000050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	E333 E358-L E420 E420 E420 E420 E420 E420 E420 E420	04-May-2022 04-May-2022 03-May-2022	04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022 04-May-2022	476256 476011 476011 476011 476011 476011 476011 476011 476011 476011 476011 476011 476011 476011 476011 476011 476234 476011 476011
cyanide, strong acid dissociable (total)Organic / Inorganic Carboncarbon, dissolved organic [DOC]Total Metalsaluminum, total742antimony, total744arsenic, total744barium, total744barium, total744beryllium, total744boron, total744cadmium, total744cobalt, total744cobalt, total744copper, total744iron, total743magnesium, total743manganese, total743molybdenum, total743nickel, total744potassium, total744744744745745746746747746748746744747744744744744744744744744744744744744745744746744747744748744744744744744744744744744744744745744746744747744748744749744744744744744744744744744744744745744 <tr< th=""><th> 29-90-5 40-36-0 40-38-2 40-39-3 40-41-7 40-69-9 40-42-8 40-43-9 40-42-8 40-43-9 40-70-2 40-48-4 40-50-8 39-92-1 39-95-4 39-95-4 39-95-5 39-97-6 39-97-6 39-98-7 40-02-0 40-02-0</th><th>Not Detected 4.24 0.290 0.00047 0.00122 0.0411 Not Detected 0.112 Not Detected 0.112 Not Detected 73.8 0.00030 0.00213 0.272 0.000206 24.5 0.0148 Not Detected 0.0555 0.00387 7.17</th><th>0.0020 0.50 0.0030 0.00010 0.00010 0.00010 0.000020 0.000050 0.010 0.00050 0.010 0.00050 0.010 0.00050 0.00050 0.00050 0.00050 0.00050 0.00050 0.00050 0.00050</th><th>mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L</th><th>E333 E358-L E420 E420 E420 E420 E420 E420 E420 E420</th><th>04-May-2022 04-May-2022 03-May-2022</th><th>04-May-2022 04-May-2022</th><th>476256 476011 476011 476011 476011 476011 476011 476011 476011 476011 476011 476011 476011 476011 476011 476011 476234 476011 476011 476011 476011</th></tr<>	 29-90-5 40-36-0 40-38-2 40-39-3 40-41-7 40-69-9 40-42-8 40-43-9 40-42-8 40-43-9 40-70-2 40-48-4 40-50-8 39-92-1 39-95-4 39-95-4 39-95-5 39-97-6 39-97-6 39-98-7 40-02-0 40-02-0	Not Detected 4.24 0.290 0.00047 0.00122 0.0411 Not Detected 0.112 Not Detected 0.112 Not Detected 73.8 0.00030 0.00213 0.272 0.000206 24.5 0.0148 Not Detected 0.0555 0.00387 7.17	0.0020 0.50 0.0030 0.00010 0.00010 0.00010 0.000020 0.000050 0.010 0.00050 0.010 0.00050 0.010 0.00050 0.00050 0.00050 0.00050 0.00050 0.00050 0.00050 0.00050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	E333 E358-L E420 E420 E420 E420 E420 E420 E420 E420	04-May-2022 04-May-2022 03-May-2022	04-May-2022 04-May-2022	476256 476011 476011 476011 476011 476011 476011 476011 476011 476011 476011 476011 476011 476011 476011 476011 476234 476011 476011 476011 476011
cyanide, strong acid dissociable (total)Organic / Inorganic Carboncarbon, dissolved organic [DOC]Total Metalsaluminum, total742antimony, total744arsenic, total744barium, total744beryllium, total744boron, total744cadmium, total744cadmium, total744corp, total744cobalt, total744cobalt, total744cobalt, total744iron, total744iron, total743magnesium, total743manganese, total743molybdenum, total743nickel, total744selenium, total744selenium, total745rotasium, total	 29-90-5 40-36-0 40-38-2 40-39-3 40-41-7 40-69-9 40-42-8 40-43-9 40-42-8 40-43-9 40-70-2 40-48-4 40-50-8 39-92-1 39-92-1 39-95-4 39-95-5 39-97-6 39-98-7 40-02-0 40-09-7 32-49-2	Not Detected 4.24 0.290 0.00047 0.00122 0.0411 Not Detected 0.112 Not Detected 0.112 Not Detected 73.8 0.00030 0.00213 0.272 0.000206 24.5 0.0148 Not Detected 0.0555 0.00387 7.17 0.00262	0.0020 0.50 0.00010 0.00010 0.00010 0.00010 0.00020 0.00050 0.010 0.00050 0.010 0.00050 0.00050 0.00050 0.00050 0.00050 0.00050 0.00050 0.00050 0.00050 0.00050 0.00050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.00050 0.050 0.00050 0.050 0.00050 00	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	E333 E358-L E420 E420 E420 E420 E420 E420 E420 E420	04-May-2022 04-May-2022 03-May-2022	04-May-2022 04-May-2022	476256 476011
cyanide, strong acid dissociable (total)Organic / Inorganic Carboncarbon, dissolved organic [DOC]Total Metalsaluminum, total742antimony, total744arsenic, total744barium, total744beryllium, total744bismuth, total744boron, total744cadmium, total744cooper, total744cobalt, total744cobalt, total744cobalt, total744cobalt, total744cobalt, total744cobalt, total743magnesium, total743manganese, total743molybdenum, total744potassium, total744selenium, total744selenium, total744silicon, total744silicon, total744cotal744cotal744cotal745cotal746cotal747cotal747cotal748cotal744cotal745cotal746cotal747cotal747cotal748cotal748cotal748cotal748cotal748cotal748cotal748cotal748cotal748cotal748cotal	 29-90-5 40-36-0 40-38-2 40-39-3 40-41-7 40-69-9 40-42-8 40-43-9 40-42-8 40-43-9 40-70-2 40-48-4 40-50-8 39-92-1 39-92-1 39-95-4 39-95-5 39-97-6 39-98-7 40-02-0 40-09-7 32-49-2 40-21-3	Not Detected 4.24 0.290 0.00047 0.00122 0.0411 Not Detected 0.112 Not Detected 0.112 Not Detected 73.8 0.00030 0.00213 0.272 0.000206 24.5 0.00148 Not Detected 0.0555 0.00387 7.17 0.00262 2.26	0.0020 0.50 0.00010 0.00010 0.00010 0.00010 0.00020 0.00050 0.010 0.00050 0.010 0.00050 0.010 0.00050 0.00	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	E3333 E358-L E420 E420 E420 E420 E420 E420 E420 E420	04-May-2022 04-May-2022 03-May-2022	04-May-2022 04-May-2022	476256 476011
cyanide, strong acid dissociable (total)Organic / Inorganic Carboncarbon, dissolved organic [DOC]Total Metalsaluminum, total742antimony, total744arsenic, total744barium, total744beryllium, total744bismuth, total744boron, total744cadmium, total744colour, total744colour, total744colour, total744colour, total744colour, total744colour, total744colour, total744colour, total744colour, total743magnesium, total743manganese, total743molybdenum, total744potassium, total744selenium, total744silicon, total744silicon, total744silicon, total744siliver, total744	 29-90-5 40-36-0 40-38-2 40-39-3 40-41-7 40-69-9 40-42-8 40-42-8 40-42-8 40-42-8 40-43-9 40-70-2 40-43-9 40-70-2 39-92-1 39-95-4 39-95-4 39-95-5 39-97-6 39-95-7 40-02-0 40-09-7 32-49-2 40-21-3 40-22-4	Not Detected 4.24 0.290 0.00047 0.00122 0.0411 Not Detected 0.112 Not Detected 0.112 Not Detected 73.8 0.00030 0.00213 0.272 0.000206 24.5 0.00148 Not Detected 0.0555 0.00387 7.17 0.00262 2.26 Not Detected	0.0020 0.50 0.00010 0.00010 0.00010 0.00010 0.00000 0.00050 0.010 0.00050 0.010 0.00050 0.010 0.00050 0.00	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	E3333 E358-L E420 E420 E420 E420 E420 E420 E420 E420	04-May-2022 04-May-2022 03-May-2022	04-May-2022 04-May-2022	476256 476011

,								
WT2203261-001								
Sub-Matrix:Water		Client san	nple ID: EQ P	ond - EQ Pone	d Discharge			
(Matrix: Water)		Client san	npling date / ti	ime: 02-May-2	022 09:00			
Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis	QCLot
Total Metals							Date	
strontium, total	7440-24-6	0.646	0.00020	ma/L	E420	03-May-2022	04-May-2022	476011
thallium, total	7440-28-0	0.000045	0.000010	ma/L	E420	03-May-2022	04-May-2022	476011
tin. total	7440-31-5	Not Detected	0.00010	ma/L	E420	03-May-2022	04-May-2022	476011
vanadium, total	7440-62-2	0.00090	0.00050	mg/l	E420	03-May-2022	04-May-2022	476011
zinc. total	7440-66-6	0.0031	0.0030	ma/L	E420	03-May-2022	04-May-2022	476011
Speciated Metals	1440-00-0					,	04 May 2022	470011
chromium, hexavalent [Cr VI], total	18540-29-9	0.00062	0.00050	ma/L	E532	-	04-May-2022	476554
Aggregate Organics	100 10 20 0			5				110001
chemical oxygen demand [COD]		11 ^{SP}	10	ma/L	E559-L	-	05-May-2022	478083
phenols, total (4AAP)		0.0024	0.0010	mg/L	E562	06-May-2022	06-May-2022	479032
Volatile Organic Compounds				U		,	00 may 2022	
acetone	67-64-1	Not Detected	20	µg/L	E611D	05-May-2022	05-May-2022	478095
benzene	71-43-2	Not Detected	0.50	µg/L	E611D	05-May-2022	05-May-2022	478095
bromodichloromethane	75-27-4	Not Detected	0.50	µg/L	E611D	05-May-2022	05-May-2022	478095
bromoform	75-25-2	Not Detected	0.50	µg/L	E611D	05-May-2022	05-May-2022	478095
bromomethane	74-83-9	Not Detected	0.50	µg/L	E611D	05-May-2022	05-May-2022	478095
carbon disulfide	75-15-0	Not Detected	1.0	ua/L	E611D	05-May-2022	05-May-2022	478095
carbon tetrachloride	56-23-5	Not Detected	0.20	µg/L	E611D	05-May-2022	05-May-2022	478095
chlorobenzene	108-90-7	Not Detected	0.50	ua/L	E611D	05-May-2022	05-May-2022	478095
chloroethane	75-00-3	Not Detected	0.50	ua/L	E611D	05-May-2022	05-May-2022	478095
chloroform	67-66-3	Not Detected	0.50	ua/L	E611D	05-May-2022	05-May-2022	478095
chloromethane	74-87-3	Not Detected	20	ua/l	F611D	05-May-2022	05-May-2022	478095
dibromochloromethane	124-48-1	Not Detected	0.50	ua/L	E611D	05-May-2022	05-May-2022	478095
dibromoethane. 1.2-	106-93-4	Not Detected	0.20	ua/L	E611D	05-May-2022	05-May-2022	478095
dichlorobenzene. 1.2-	95-50-1	Not Detected	0.50	ua/L	E611D	05-May-2022	05-May-2022	478095
dichlorobenzene, 1.3-	541-73-1	Not Detected	0.50	ua/L	E611D	05-May-2022	05-May-2022	478095
dichlorobenzene, 1.4-	106-46-7	Not Detected	0.50	ua/L	E611D	05-May-2022	05-May-2022	478095
dichlorodifluoromethane	75-71-8	Not Detected	0.50	ua/L	E611D	05-May-2022	05-May-2022	478095
dichloroethane. 1.1-	75-34-3	Not Detected	0.50	ua/L	E611D	05-May-2022	05-May-2022	478095
dichloroethane. 1.2-	107-06-2	Not Detected	0.50	ua/L	E611D	05-May-2022	05-May-2022	478095
dichloroethylene. 1.1-	75-35-4	Not Detected	0.50	ua/L	E611D	05-May-2022	05-May-2022	478095
dichloroethylene, cis-1.2-	156-59-2	Not Detected	0.50	ua/L	E611D	05-May-2022	05-May-2022	478095
dichloroethylene, trans-1.2-	156-60-5	Not Detected	0.50	ua/L	E611D	05-May-2022	05-May-2022	478095
dichloromethane	75-09-2	Not Detected	1.0	ua/L	E611D	05-May-2022	05-May-2022	478095
dichloropropane. 1.2-	78-87-5	Not Detected	0.50	µg/L	E611D	05-May-2022	05-May-2022	478095
dichloropropylene, cis+trans-1.3-	542-75-6	Not Detected	0.5	ua/L	E611D	05-May-2022	05-May-2022	478095
dichloropropylene, cis-1,3-	10061-01-5	Not Detected	0.30	µg/L	E611D	05-May-2022	05-May-2022	478095
dichloropropylene, trans-1.3-	10061-02-6	Not Detected	0.30	µg/L	E611D	05-May-2022	05-May-2022	478095
ethylbenzene	100-41-4	Not Detected	0.50	ua/L	E611D	05-May-2022	05-May-2022	478095
hexane. n-	110-54-3	Not Detected	0.50	ua/L	E611D	05-May-2022	05-May-2022	478095
hexanone. 2-	591-78-6	Not Detected	20	µa/L	E611D	05-Mav-2022	05-May-2022	478095
methyl ethyl ketone [MEK]	78-93-3	Not Detected	20	ua/L	E611D	05-May-2022	05-May-2022	478095
methyl isobutyl ketone [MIBK]	108-10-1	Not Detected	20	µa/L	E611D	05-Mav-2022	05-May-2022	478095
methyl-tert-butyl ether [MTBE]	1634-04-4	Not Detected	0.50	µa/L	E611D	05-Mav-2022	05-May-2022	478095
styrene	100-42-5	Not Detected	0.50	µg/L	E611D	05-May-2022	05-May-2022	478095
tetrachloroethane, 1,1,1,2-	630-20-6	Not Detected	0.50	μg/L	E611D	05-May-2022	05-Mav-2022	478095

79-34-5

127-18-4

Not Detected

Not Detected

µg/L

µg/L

0.50

0.50

E611D

E611D

05-May-2022

05-May-2022

05-May-2022

05-May-2022

05-May-2022

478095

478095

tetrachloroethane, 1,1,1,2tetrachloroethane, 1,1,2,2tetrachloroethylene

QCLot

478095

478095

478095

478095 478095

478095

478095

478095

478095

478095

478095

478095

478095

476287

476287

476287

476287

476287

476287

476287

476287

476287

476287

476287

476287

476287 476287

476287

476287

476287

476287

476287

476287

476287

476287

476287

476287

476287

476287

476287

476287

476287

476287

476287

05-May-2022

05-May-2022

05-May-2022

05-May-2022

05-May-2022

Analytical Results

dinitrotoluene, 2,4-

dinitrotoluene, 2,6-

hexachlorobenzene

hexachlorobutadiene

trichlorobenzene, 1,2,4-

VV12203261-001		Olienter		land FO Dec	d Dischart-						
Sub-Matrix: Water	Client sample ID: EQ Pond - EQ Pond Discharge										
(Matrix: water)		Client san	ipling date / t	me: 02-iviay-2	022 09:00						
Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date				
Volatile Organic Compounds											
toluene	108-88-3	Not Detected	0.50	µg/L	E611D	05-May-2022	05-May-2022				
trichloroethane, 1,1,1-	71-55-6	Not Detected	0.50	µg/L	E611D	05-May-2022	05-May-2022				
trichloroethane, 1,1,2-	79-00-5	Not Detected	0.50	µg/L	E611D	05-May-2022	05-May-2022				
trichloroethylene	79-01-6	Not Detected	0.50	µg/L	E611D	05-May-2022	05-May-2022				
trichlorofluoromethane	75-69-4	Not Detected	0.50	µg/L	E611D	05-May-2022	05-May-2022				
vinyl chloride	75-01-4	Not Detected	0.50	µg/L	E611D	05-May-2022	05-May-2022				
xylene, m+p-	179601-23-1	Not Detected	0.40	µg/L	E611D	05-May-2022	05-May-2022				
xylene, o-	95-47-6	Not Detected	0.30	µg/L	E611D	05-May-2022	05-May-2022				
xylenes, total	1330-20-7	Not Detected	0.50	µg/L	E611D	05-May-2022	05-May-2022				
BTEX, total		Not Detected	1.0	µg/L	E611D	05-May-2022	05-May-2022				
trihalomethanes [THMs], total		Not Detected	1.0	µg/L	E611D	05-May-2022	05-May-2022				
Volatile Organic Compounds Surrogates							,				
bromofluorobenzene, 4-	460-00-4	9.0	1.0	%	E611D	05-May-2022	05-May-2022				
difluorobenzene, 1,4-	540-36-3	9.8	1.0	%	E611D	05-May-2022	05-May-2022				
Polycyclic Aromatic Hydrocarbons						-	,				
acenaphthene	83-32-9	Not Detected	0.50	µg/L	E655B	04-May-2022	05-May-2022				
acenaphthylene	208-96-8	Not Detected	0.50	µg/L	E655B	04-May-2022	05-May-2022				
anthracene	120-12-7	Not Detected	0.50	µg/L	E655B	04-May-2022	05-May-2022				
benz(a)anthracene	56-55-3	Not Detected	0.50	µg/L	E655B	04-May-2022	05-May-2022				
benzo(a)pyrene	50-32-8	Not Detected	0.125	µg/L	E655B	04-May-2022	05-May-2022				
benzo(b+j)fluoranthene	n/a	Not Detected	0.50	µg/L	E655B	04-May-2022	05-May-2022				
benzo(g,h,i)perylene	191-24-2	Not Detected	0.50	µg/L	E655B	04-May-2022	05-May-2022				
benzo(k)fluoranthene	207-08-9	Not Detected	0.50	μg/L	E655B	04-May-2022	05-May-2022				
chrysene	218-01-9	Not Detected	0.50	µg/L	E655B	04-May-2022	05-May-2022				
dibenz(a,h)anthracene	53-70-3	Not Detected	0.50	µg/L	E655B	04-May-2022	05-May-2022				
fluoranthene	206-44-0	Not Detected	0.50	ua/L	E655B	04-May-2022	05-May-2022				
fluorene	86-73-7	Not Detected	0.50	ua/L	E655B	04-May-2022	05-May-2022				
indeno(1,2,3-c,d)pyrene	193-39-5	Not Detected	0.50	ua/L	E655B	04-May-2022	05-May-2022				
methvinaphthalene. 1-	90-12-0	Not Detected	1.00	ua/L	E655B	04-May-2022	05-May-2022				
methylnaphthalene, 2-	91-57-6	Not Detected	1.00	ua/L	E655B	04-May-2022	05-May-2022				
naphthalene	91-97-0	Not Detected	0.50	ug/l	E655B	04-May-2022	05-May-2022				
nervlene	91-20-3 108 55 0	Not Detected	0.50	µg/⊏	E655B	04-May-2022	05-May-2022				
nhenanthrene	85.01.8	Not Detected	0.50	µg/⊏	E655B	04-May-2022	05-May-2022				
nvrene	120.00.0	Not Detected	0.00	µg/⊑	E655B	04-May-2022	05-May-2022				
Phthalate Esters	129-00-0	Not Detected	0.00	µ9/⊏	LOOOD	04-Way-2022	03-Way-2022				
his (2 othylhoxyl) phthalato [DEHB]	117 01 7	Not Detected	2.5	ug/l	E655B	04-May-2022	05 May 2022				
Semi-Volatile Organics	117-01-7	Not Detected	2.0	µ9/⊏	LOOOD	04-Way-2022	03-1viay-2022				
his(2-chloroethyl) ether	111 44 4	Not Detected	1.00	ua/l	E655B	04-May-2022	05 May 2022				
chloroaniline 4-	111-44-4	Not Detected	1.00	r9/⊏ ua/l	F655R	04-May-2022	05 May 2022				
dichlorobenzene 12-	100-47-8	Not Detected	1.00	µg/⊏ µg/l	E655B	04-May-2022	05-Iviay-2022				
dichlorobonzono 1 3	95-50-1		1.00	µg/∟ ug/l	E655B	04-May 2022	05-Iviay-2022				
dichlorobonzono 1.4	541-73-1		1.00	µg/L	EGEED	04 May 2022	05-May-2022				
	106-46-7	Not Detected	1.00	µg/∟	E000B	04-IVIAy-2022	05-May-2022				
aichiorobenziaine, 3,3 -	91-94-1	Not Detected	1.00	µg/L	E022R	04-iviay-2022	05-May-2022				

1.00

1.00

0.100

0.50

1.00

121-14-2

606-20-2

118-74-1

87-68-3

120-82-1

Not Detected

Not Detected

Not Detected

Not Detected

Not Detected

µg/L

µg/L

µg/L

µg/L

µg/L

E655B

E655B

E655B

E655B

E655B

04-May-2022

04-May-2022

04-May-2022

04-May-2022

04-May-2022

QCLot

Analysis

Analytical Results

WT2203261-001	
VV12203201-001	

Sub-Matrix:Water (Matrix: Water)	Client sample ID: EQ Pond - EQ Pond Discharge Client sampling date / time: 02-May-2022 09:00							
Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date		

							Date	
Semi-Volatile Organics Surrogates								
fluorobiphenyl, 2-	321-60-8	3.5 DLIS,	1.0	%	E655B	04-May-2022	05-May-2022	476287
nitrobenzene-d5	4165-60-0	3.8 ^{DLIS,}	1.0	%	E655B	04-May-2022	05-May-2022	476287
terphenyl-d14, p-	1718-51-0	3.9 DLIS,	1.0	%	E655B	04-May-2022	05-May-2022	476287
Chlorinated Phenolics								
chlorophenol, 2-	95-57-8	Not Detected	0.75	µg/L	E655B	04-May-2022	05-May-2022	476287
dichlorophenol, 2,4-	120-83-2	Not Detected	0.75	µg/L	E655B	04-May-2022	05-May-2022	476287
pentachlorophenol [PCP]	87-86-5	Not Detected	1.25	µg/L	E655B	04-May-2022	05-May-2022	476287
tetrachlorophenol, 2,3,4,5-	4901-51-3	Not Detected	1.25	µg/L	E655B	04-May-2022	05-May-2022	476287
tetrachlorophenol, 2,3,4,6-	58-90-2	Not Detected	1.25	µg/L	E655B	04-May-2022	05-May-2022	476287
trichlorophenol, 2,3,6-	933-75-5	Not Detected	0.20	µg/L	E651E	04-May-2022	05-May-2022	476289
trichlorophenol, 2,4,5-	95-95-4	Not Detected	1.25	µg/L	E655B	04-May-2022	05-May-2022	476287
trichlorophenol, 2,4,6-	88-06-2	Not Detected	1.25	µg/L	E655B	04-May-2022	05-May-2022	476287
Non-Chlorinated Phenolics								
dimethylphenol, 2,4-	105-67-9	Not Detected	1.25	µg/L	E655B	04-May-2022	05-May-2022	476287
dinitrophenol, 2,4-	51-28-5	Not Detected	2.5	µg/L	E655B	04-May-2022	05-May-2022	476287
Phenolics Surrogates								
tribromophenol, 2,4,6-	118-79-6	12.3 ^{SUR-N} D,	1.0	%	E651E	04-May-2022	05-May-2022	476289
tribromophenol, 2,4,6-	118-79-6	4.16 DLIS,	0.50	%	E655B	04-May-2022	05-May-2022	476287

Please refer to the General Comments section for an explanation of any qualifiers detected.

Analytical Results

WT2203261-002

Sub-Matrix:Water (Matrix: Water)

Client sample ID: Pond A - Pond A Discharge Client sampling date / time: 02-May-2022 09:00

Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot
Field Tests								
pH, field		8.20	0.01	pH units	EF001	-	04-May-2022	-
temperature, field		7.90	0.01	°C	EF001	-	04-May-2022	-
Physical Tests								
conductivity		798	2.0	μS/cm	E100	05-May-2022	05-May-2022	477591
hardness (as CaCO3), from total Ca/Mg		288	0.50	mg/L	EC100A	-	04-May-2022	-
рН		8.33	0.10	pH units	E108	05-May-2022	05-May-2022	477590
solids, total dissolved [TDS]		468 DLDS,	20	mg/L	E162	-	04-May-2022	476771
solids, total suspended [TSS]		6.2	3.0	mg/L	E160	-	04-May-2022	476784
alkalinity, total (as CaCO3)		110	2.0	mg/L	E290	05-May-2022	06-May-2022	477589
Anions and Nutrients								
ammonia, total (as N)	7664-41-7	0.353	0.0050	mg/L	E298	06-May-2022	09-May-2022	479030
ammonia, un-ionized (as N), field	7664-41-7	0.0086	0	mg/L	EC298A	-	04-May-2022	-
bromide	24959-67-9	1.88	0.10	mg/L	E235.Br	05-May-2022	05-May-2022	477597
chloride	16887-00-6	54.7	0.50	mg/L	E235.Cl	05-May-2022	05-May-2022	477593
fluoride	16984-48-8	1.12	0.020	mg/L	E235.F	05-May-2022	05-May-2022	477595
Kjeldahl nitrogen, total [TKN]		0.491	0.050	mg/L	E318	06-May-2022	06-May-2022	479031
nitrate (as N)	14797-55-8	0.186	0.020	mg/L	E235.NO3	05-May-2022	05-May-2022	477592
nitrite (as N)	14797-65-0	Not Detected	0.010	mg/L	E235.NO2	05-May-2022	05-May-2022	477596
phosphorus, total	7723-14-0	0.0165	0.0020	mg/L	E372-U	06-May-2022	09-May-2022	479029

WT2203261-002								
Sub-Matrix:Water		Client sam	ple ID: Pond	A - Pond A Dis	scharge			
(Matrix: Water)		Client sam	Ipling date / tii	me: 02-May-20	022 09:00			
				-				
Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot
Anions and Nutrients								
sulfate (as SO4)	14808-79-8	209	0.30	mg/L	E235.SO4	05-May-2022	05-May-2022	477594
Cyanides								
cyanide, strong acid dissociable (total)		Not Detected	0.0020	mg/L	E333	04-May-2022	04-May-2022	477421
Organic / Inorganic Carbon								
carbon, dissolved organic [DOC]		4.60	0.50	mg/L	E358-L	04-May-2022	04-May-2022	476256
Total Metals								
aluminum, total	7429-90-5	0.432	0.0030	mg/L	E420	03-May-2022	04-May-2022	476011
antimony, total	7440-36-0	0.00048	0.00010	mg/L	E420	03-May-2022	04-May-2022	476011
arsenic, total	7440-38-2	0.00132	0.00010	mg/L	E420	03-May-2022	04-May-2022	476011
barium, total	7440-39-3	0.0398	0.00010	mg/L	E420	03-May-2022	04-May-2022	476011
beryllium, total	7440-41-7	Not Detected	0.000020	mg/L	E420	03-May-2022	04-May-2022	476011
bismuth, total	7440-69-9	Not Detected	0.000050	mg/L	E420	03-May-2022	04-May-2022	476011
boron, total	7440-42-8	0.110	0.010	mg/L	E420	03-May-2022	04-May-2022	476011
cadmium, total	7440-43-9	Not Detected	0.0000500	mg/L	E420	03-May-2022	04-May-2022	476011
calcium, total	7440-70-2	75.4	0.050	mg/L	E420	03-May-2022	04-May-2022	476011
cobalt, total	7440-48-4	0.00041	0.00010	mg/L	E420	03-May-2022	04-May-2022	476011
copper, total	7440-50-8	0.00265	0.00050	mg/L	E420	03-May-2022	04-May-2022	476011
iron, total	7439-89-6	0.450	0.010	mg/L	E420	03-May-2022	04-May-2022	476011
lead, total	7439-92-1	0.000377	0.000050	mg/L	E420	03-May-2022	04-May-2022	476011
magnesium, total	7439-95-4	24.2	0.0050	mg/L	E420	03-May-2022	04-May-2022	476011
manganese, total	7439-96-5	0.0331	0.00010	mg/L	E420	03-May-2022	04-May-2022	476011
mercury, total	7439-97-6	Not Detected	0.0000050	mg/L	E508	04-May-2022	04-May-2022	476234
molybdenum, total	7439-98-7	0.0558	0.000050	mg/L	E420	03-May-2022	04-May-2022	476011
nickel, total	7440-02-0	0.00415	0.00050	mg/L	E420	03-May-2022	04-May-2022	476011
potassium, total	7440-09-7	7.13	0.050	mg/L	E420	03-May-2022	04-May-2022	476011
selenium, total	7782-49-2	0.00268	0.000050	mg/L	E420	03-May-2022	04-May-2022	476011
silicon, total	7440-21-3	2.51	0.10	mg/L	E420	03-May-2022	04-May-2022	476011
silver, total	7440-22-4	Not Detected	0.000010	mg/L	E420	03-May-2022	04-May-2022	476011
sodium, total	7440-23-5	40.7	0.050	mg/L	E420	03-May-2022	04-May-2022	476011
strontium, total	7440-24-6	0.656	0.00020	mg/L	E420	03-May-2022	04-May-2022	476011
thallium, total	7440-28-0	0.000026	0.000010	mg/L	E420	03-May-2022	04-May-2022	476011
tin, total	7440-31-5	Not Detected	0.00010	mg/L	E420	03-May-2022	04-May-2022	476011
vanadium, total	7440-62-2	0.00123	0.00050	mg/L	E420	03-May-2022	04-May-2022	476011
zinc, total	7440-66-6	0.0031	0.0030	mg/L	E420	03-May-2022	04-May-2022	476011
Speciated Metals							· · ·	
chromium, hexavalent [Cr VI], total	18540-29-9	0.00067	0.00050	mg/L	E532	-	04-May-2022	476554
Aggregate Organics								
chemical oxygen demand [COD]		13 ^{sp} ,	10	mg/L	E559-L	-	05-May-2022	478083
phenols, total (4AAP)		0.0031	0.0010	mg/L	E562	06-May-2022	06-May-2022	479032
Volatile Organic Compounds								
acetone	67-64-1	Not Detected	20	µg/L	E611D	05-May-2022	05-May-2022	478095
benzene	71-43-2	Not Detected	0.50	µg/L	E611D	05-May-2022	05-May-2022	478095
bromodichloromethane	75-27-4	Not Detected	0.50	µg/L	E611D	05-May-2022	05-May-2022	478095
bromoform	75-25-2	Not Detected	0.50	µg/L	E611D	05-May-2022	05-May-2022	478095
bromomethane	74-83-9	Not Detected	0.50	µg/L	E611D	05-May-2022	05-May-2022	478095
carbon disulfide	75-15-0	Not Detected	1.0	µg/L	E611D	05-May-2022	05-May-2022	478095
carbon tetrachloride	56-23-5	Not Detected	0.20	µg/L	E611D	05-May-2022	05-May-2022	478095
chlorobenzene	108-90-7	Not Detected	0.50	µg/L	E611D	05-May-2022	05-May-2022	478095

WT2203261-002 Sub-Matrix:Water

(Matrix: Water)

Client sample ID: Pond A - Pond A Discharge Client sampling date / time: 02-May-2022 09:00

Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis	QCLot
Volatile Organic Compounds							Date	
chloroethane	75-00-3	Not Detected	0.50	µg/L	E611D	05-May-2022	05-May-2022	478095
chloroform	67-66-3	Not Detected	0.50	µg/L	E611D	05-May-2022	05-May-2022	478095
chloromethane	74-87-3	Not Detected	2.0	µg/L	E611D	05-May-2022	05-May-2022	478095
dibromochloromethane	124-48-1	Not Detected	0.50	µg/L	E611D	05-May-2022	05-May-2022	478095
dibromoethane, 1,2-	106-93-4	Not Detected	0.20	µg/L	E611D	05-May-2022	05-May-2022	478095
dichlorobenzene, 1,2-	95-50-1	Not Detected	0.50	µg/L	E611D	05-May-2022	05-May-2022	478095
dichlorobenzene, 1,3-	541-73-1	Not Detected	0.50	µg/L	E611D	05-May-2022	05-May-2022	478095
dichlorobenzene, 1,4-	106-46-7	Not Detected	0.50	µg/L	E611D	05-May-2022	05-May-2022	478095
dichlorodifluoromethane	75-71-8	Not Detected	0.50	µg/L	E611D	05-May-2022	05-May-2022	478095
dichloroethane, 1,1-	75-34-3	Not Detected	0.50	µg/L	E611D	05-May-2022	05-May-2022	478095
dichloroethane, 1,2-	107-06-2	Not Detected	0.50	µg/L	E611D	05-May-2022	05-May-2022	478095
dichloroethylene, 1,1-	75-35-4	Not Detected	0.50	µg/L	E611D	05-May-2022	05-May-2022	478095
dichloroethylene, cis-1,2-	156-59-2	Not Detected	0.50	µg/L	E611D	05-May-2022	05-May-2022	478095
dichloroethylene, trans-1,2-	156-60-5	Not Detected	0.50	µg/L	E611D	05-May-2022	05-May-2022	478095
dichloromethane	75-09-2	Not Detected	1.0	µg/L	E611D	05-May-2022	05-May-2022	478095
dichloropropane, 1,2-	78-87-5	Not Detected	0.50	µg/L	E611D	05-May-2022	05-May-2022	478095
dichloropropylene, cis+trans-1,3-	542-75-6	Not Detected	0.5	μg/L	E611D	05-May-2022	05-May-2022	478095
dichloropropylene, cis-1,3-	10061-01-5	Not Detected	0.30	µg/L	E611D	05-May-2022	05-May-2022	478095
dichloropropylene, trans-1,3-	10061-02-6	Not Detected	0.30	µg/L	E611D	05-May-2022	05-May-2022	478095
ethylbenzene	100-41-4	Not Detected	0.50	µg/L	E611D	05-May-2022	05-May-2022	478095
hexane, n-	110-54-3	Not Detected	0.50	µg/L	E611D	05-May-2022	05-May-2022	478095
hexanone, 2-	591-78-6	Not Detected	20	µg/L	E611D	05-May-2022	05-May-2022	478095
methyl ethyl ketone [MEK]	78-93-3	Not Detected	20	µg/L	E611D	05-May-2022	05-May-2022	478095
methyl isobutyl ketone [MIBK]	108-10-1	Not Detected	20	ua/L	E611D	05-May-2022	05-May-2022	478095
methyl-tert-butyl ether [MTBE]	1634-04-4	Not Detected	0.50	ua/L	E611D	05-May-2022	05-May-2022	478095
styrene	100-42-5	Not Detected	0.50	ua/L	E611D	05-May-2022	05-May-2022	478095
tetrachloroethane. 1.1.1.2-	630-20-6	Not Detected	0.50	ua/L	E611D	05-May-2022	05-May-2022	478095
tetrachloroethane, 1,1,2,2-	79-34-5	Not Detected	0.50	ua/L	E611D	05-May-2022	05-May-2022	478095
tetrachloroethylene	127-18-4	Not Detected	0.50	ua/L	E611D	05-May-2022	05-May-2022	478095
toluene	108-88-3	Not Detected	0.50	ua/L	E611D	05-May-2022	05-May-2022	478095
trichloroethane. 1.1.1-	71-55-6	Not Detected	0.50	ua/L	E611D	05-May-2022	05-May-2022	478095
trichloroethane. 1.1.2-	79-00-5	Not Detected	0.50	µg/L	E611D	05-May-2022	05-May-2022	478095
trichloroethylene	79-01-6	Not Detected	0.50	ua/L	E611D	05-May-2022	05-May-2022	478095
trichlorofluoromethane	75-69-4	Not Detected	0.50	ua/L	E611D	05-May-2022	05-May-2022	478095
vinvl chloride	75-01-4	Not Detected	0.50	ua/L	E611D	05-May-2022	05-May-2022	478095
xvlene. m+p-	179601-23-1	Not Detected	0.40	ua/L	E611D	05-May-2022	05-May-2022	478095
xvlene. o-	95-47-6	Not Detected	0.30	µg/L	E611D	05-May-2022	05-May-2022	478095
xvlenes. total	1330-20-7	Not Detected	0.50	ua/L	E611D	05-May-2022	05-May-2022	478095
BTEX. total		Not Detected	1.0	ua/L	E611D	05-May-2022	05-May-2022	478095
trihalomethanes [THMs], total		Not Detected	1.0	ua/L	E611D	05-May-2022	05-May-2022	478095
Volatile Organic Compounds Surrogates		Hot Deletica		15	-		oo may zozz	110000
bromofluorobenzene, 4-	460-00-4	9.0	1.0	%	E611D	05-May-2022	05-May-2022	478095
difluorobenzene, 1,4-	540-36-3	9.8	1.0	%	E611D	05-May-2022	05-May-2022	478095
Polycyclic Aromatic Hydrocarbons								
acenaphthene	83-32-9	Not Detected	0.50	µg/L	E655B	04-May-2022	05-Mav-2022	476287
acenaphthylene	208-96-8	Not Detected	0.50	µg/L	E655B	04-May-2022	05-Mav-2022	476287
anthracene	120-12-7	Not Detected	0.50	µg/L	E655B	04-May-2022	05-Mav-2022	476287
benz(a)anthracene	56-55-3	Not Detected	0.50	µg/L	E655B	04-May-2022	05-May-2022	476287
	00-00-0			1.3/-		,	50 may-2022	

WT2203261-002 Sub-Matrix:Water (Matrix: Water)	
Analyte	CAS Number

Client sample ID: Pond A - Pond A Discharge Client sampling date / time: 02-May-2022 09:00

Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis	QCLot
Polycyclic Aromatic Hydrocarbons							Dale	
benzo(a)pyrene	50-32-8	Not Detected	0.125	µg/L	E655B	04-May-2022	05-May-2022	476287
benzo(b+j)fluoranthene	n/a	Not Detected	0.50	µg/L	E655B	04-May-2022	05-May-2022	476287
benzo(g,h,i)perylene	191-24-2	Not Detected	0.50	µg/L	E655B	04-May-2022	05-May-2022	476287
benzo(k)fluoranthene	207-08-9	Not Detected	0.50	µg/L	E655B	04-May-2022	05-May-2022	476287
chrysene	218-01-9	Not Detected	0.50	µg/L	E655B	04-May-2022	05-May-2022	476287
dibenz(a,h)anthracene	53-70-3	Not Detected	0.50	µg/L	E655B	04-May-2022	05-May-2022	476287
fluoranthene	206-44-0	Not Detected	0.50	µg/L	E655B	04-May-2022	05-May-2022	476287
fluorene	86-73-7	Not Detected	0.50	µg/L	E655B	04-May-2022	05-May-2022	476287
indeno(1,2,3-c,d)pyrene	193-39-5	Not Detected	0.50	µg/L	E655B	04-May-2022	05-May-2022	476287
methylnaphthalene, 1-	90-12-0	Not Detected	1.00	µg/L	E655B	04-May-2022	05-May-2022	476287
methylnaphthalene, 2-	91-57-6	Not Detected	1.00	µg/L	E655B	04-May-2022	05-May-2022	476287
naphthalene	91-20-3	Not Detected	0.50	µg/L	E655B	04-May-2022	05-May-2022	476287
perylene	198-55-0	Not Detected	0.50	µg/L	E655B	04-May-2022	05-May-2022	476287
phenanthrene	85-01-8	Not Detected	0.50	µg/L	E655B	04-May-2022	05-May-2022	476287
pyrene	129-00-0	Not Detected	0.50	µg/L	E655B	04-May-2022	05-May-2022	476287
Phthalate Esters								
bis(2-ethylhexyl) phthalate [DEHP]	117-81-7	Not Detected	2.5	µg/L	E655B	04-May-2022	05-May-2022	476287
Semi-Volatile Organics								
bis(2-chloroethyl) ether	111-44-4	Not Detected	1.00	µg/L	E655B	04-May-2022	05-May-2022	476287
chloroaniline, 4-	106-47-8	Not Detected	1.00	µg/L	E655B	04-May-2022	05-May-2022	476287
dichlorobenzene, 1,2-	95-50-1	Not Detected	1.00	µg/L	E655B	04-May-2022	05-May-2022	476287
dichlorobenzene, 1,3-	541-73-1	Not Detected	1.00	µg/L	E655B	04-May-2022	05-May-2022	476287
dichlorobenzene, 1,4-	106-46-7	Not Detected	1.00	µg/L	E655B	04-May-2022	05-May-2022	476287
dichlorobenzidine, 3,3'-	91-94-1	Not Detected	1.00	µg/L	E655B	04-May-2022	05-May-2022	476287
dinitrotoluene, 2,4-	121-14-2	Not Detected	1.00	µg/L	E655B	04-May-2022	05-May-2022	476287
dinitrotoluene, 2,6-	606-20-2	Not Detected	1.00	µg/L	E655B	04-May-2022	05-May-2022	476287
	118-74-1	Not Detected	0.100	µg/L	E055B	04-May-2022	05-May-2022	476287
hexachlorobutadiene	87-68-3	Not Detected	0.50	µg/L	E655B	04-May-2022	05-May-2022	476287
tricniorobenzene, 1,2,4-	120-82-1	Not Detected	1.00	µg/L	E055B	04-May-2022	05-May-2022	476287
	001.00.0	2 2 DLIS,	1.0	0/.	EGEED	04 May 2022	05 14	470007
nuorobipnenyi, 2-	321-60-8	3.3 2.7 DLIS,	1.0	70 0/.	E055B	04-Way-2022	05-May-2022	476287
torphonyl d14 p	4165-60-0	3.7 4.0 DLIS,	1.0	70 0/2	E055B	04-Way-2022	05-May-2022	476287
Chlorinated Phenolics	17 10-51-0	4.0	1.0	70	LUUUD	04-Way-2022	05-Way-2022	4/020/
chlorophenol 2-	05 57 8	Not Detected	0.75	ua/l	E655B	04-May-2022	05 May 2022	476287
dichlorophenol 24-	120 83 2	Not Detected	0.75	µg/L	E655B	04-May-2022	05 May 2022	476287
pentachlorophenol [PCP]	87-86-5	Not Detected	1 25	ug/l	E655B	04-May-2022	05-May-2022	476287
tetrachlorophenol, 2.3.4.5-	4901-51-3	Not Detected	1.25	µg/L	E655B	04-May-2022	05-May-2022	476287
tetrachlorophenol, 2,3,4,6-	58-90-2	Not Detected	1.25	ua/L	E655B	04-May-2022	05-May-2022	476287
trichlorophenol. 2.3.6-	933-75-5	Not Detected	0.20	ua/L	E651E	04-May-2022	05-May-2022	476289
trichlorophenol. 2.4.5-	95-95-4	Not Detected	1.25	ua/L	E655B	04-May-2022	05-May-2022	476287
trichlorophenol. 2.4.6-	88-06-2	Not Detected	1.25	ua/L	E655B	04-May-2022	05-May-2022	476287
Non-Chlorinated Phenolics	00 00 2	Not Deletica		₩9 [,] =	20002	0 1 may 2022	00-Widy-2022	470207
dimethylphenol, 2,4-	105-67-9	Not Detected	1.25	µg/L	E655B	04-May-2022	05-May-2022	476287
dinitrophenol, 2,4-	51-28-5	Not Detected	2.5	µg/L	E655B	04-May-2022	05-Mav-2022	476287
Phenolics Surrogates	0.250			1.5		,		
tribromophenol, 2,4,6-	118-79-6	12.2 SUR-N	1.0	%	E651E	04-May-2022	05-Mav-2022	476289
tribromophenol, 2,4,6-	118-79-6	4.16 DLIS,	0.50	%	E655B	04-May-2022	05-May-2022	476287
				1				

Please refer to the General Comments section for an explanation of any qualifiers detected.

Analytical Results

WT2203261-003

Sub-Matrix:Water (Matrix: Water)

Client sample ID: Pond D - Pond D Discharge Client sampling date / time: 02-May-2022 09:00

Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis	QCLot
Field Tests							Dale	
pH, field		8.40	0.01	pH units	EF001	-	04-May-2022	-
temperature, field		7.50	0.01	°C	EF001	-	04-May-2022	-
Physical Tests								
conductivity		798	2.0	µS/cm	E100	06-May-2022	06-May-2022	478994
hardness (as CaCO3), from total Ca/Mg		288	0.50	mg/L	EC100A	-	04-May-2022	-
рН		8.29	0.10	pH units	E108	06-May-2022	06-May-2022	478992
solids, total dissolved [TDS]		484 DLDS,	20	mg/L	E162	-	04-May-2022	476771
solids, total suspended [TSS]		5.6	3.0	mg/L	E160	-	04-May-2022	476784
alkalinity, total (as CaCO3)		112	2.0	mg/L	E290	06-May-2022	06-May-2022	478993
Anions and Nutrients								
ammonia, total (as N)	7664-41-7	0.319	0.0050	mg/L	E298	06-May-2022	09-May-2022	479030
ammonia, un-ionized (as N), field	7664-41-7	0.0118	0	mg/L	EC298A	-	04-May-2022	-
bromide	24959-67-9	1.87	0.10	mg/L	E235.Br	06-May-2022	06-May-2022	478987
chloride	16887-00-6	55.4	0.50	mg/L	E235.Cl	06-May-2022	06-May-2022	478989
fluoride	16984-48-8	1.13	0.020	mg/L	E235.F	06-May-2022	06-May-2022	478986
Kjeldahl nitrogen, total [TKN]		0.783	0.050	mg/L	E318	06-May-2022	06-May-2022	479031
nitrate (as N)	14797-55-8	0.187	0.020	mg/L	E235.NO3	06-May-2022	06-May-2022	478990
nitrite (as N)	14797-65-0	Not Detected	0.010	mg/L	E235.NO2	06-May-2022	06-May-2022	478991
phosphorus, total	7723-14-0	0.0148	0.0020	mg/L	E372-U	06-May-2022	09-May-2022	479029
sulfate (as SO4)	14808-79-8	210	0.30	mg/L	E235.SO4	06-May-2022	06-May-2022	478988
Cyanides								
cyanide, strong acid dissociable (total)		Not Detected	0.0020	mg/L	E333	04-May-2022	04-May-2022	477421
Organic / Inorganic Carbon								
carbon, dissolved organic [DOC]		4.83	0.50	mg/L	E358-L	04-May-2022	04-May-2022	476256
Total Metals								
aluminum, total	7429-90-5	0.325	0.0030	mg/L	E420	03-May-2022	04-May-2022	476011
antimony, total	7440-36-0	0.00052	0.00010	mg/L	E420	03-May-2022	04-May-2022	476011
arsenic, total	7440-38-2	0.00144	0.00010	mg/L	E420	03-May-2022	04-May-2022	476011
barium, total	7440-39-3	0.0404	0.00010	mg/L	E420	03-May-2022	04-May-2022	476011
beryllium, total	7440-41-7	Not Detected	0.000020	mg/L	E420	03-May-2022	04-May-2022	476011
bismuth, total	7440-69-9	Not Detected	0.000050	mg/L	E420	03-May-2022	04-May-2022	476011
boron, total	7440-42-8	0.117	0.010	mg/L	E420	03-May-2022	04-May-2022	476011
cadmium, total	7440-43-9	Not Detected	0.000100	mg/L	E420	03-May-2022	04-May-2022	476011
calcium, total	7440-70-2	75.3	0.050	mg/L	E420	03-May-2022	04-May-2022	476011
cobalt, total	7440-48-4	0.00041	0.00010	mg/L	E420	03-May-2022	04-May-2022	476011
copper, total	7440-50-8	0.00300	0.00050	mg/L	E420	03-May-2022	04-May-2022	476011
iron, total	7439-89-6	0.358	0.010	mg/L	E420	03-May-2022	04-May-2022	476011
lead, total	7439-92-1	0.000365	0.000050	mg/L	E420	03-May-2022	04-May-2022	476011
magnesium, total	7439-95-4	24.4	0.0050	mg/L	E420	03-May-2022	04-May-2022	476011
manganese, total	7439-96-5	0.0247	0.00010	mg/L	E420	03-May-2022	04-May-2022	476011
mercury, total	7439-97-6	Not Detected	0.0000050	mg/L	E508	04-May-2022	04-May-2022	476234
molybdenum, total	7439-98-7	0.0583	0.000050	mg/L	E420	03-May-2022	04-May-2022	476011
nickel, total	7440-02-0	0.00428	0.00050	mg/L	E420	03-May-2022	04-May-2022	476011
potassium, total	7440-09-7	7.11	0.050	mg/L	E420	03-May-2022	04-May-2022	476011
selenium, total	7782-49-2	0.00294	0.000050	mg/L	E420	03-May-2022	04-May-2022	476011
silicon, total	7440-21-3	2.17	0.10	mg/L	E420	03-May-2022	04-May-2022	476011

Analytical Results

WT2203261-003 Sub-Matrix:Water (Matrix: Water)

Client sample ID: Pond D - Pond D Discharge
Client sampling date / time: 02-May-2022 09:00

					1	1		
Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot
Total Metals								
silver, total	7440-22-4	Not Detected	0.000010	mg/L	E420	03-May-2022	04-May-2022	476011
sodium, total	7440-23-5	41.4	0.050	mg/L	E420	03-May-2022	04-May-2022	476011
strontium, total	7440-24-6	0.637	0.00020	mg/L	E420	03-May-2022	04-May-2022	476011
thallium, total	7440-28-0	0.000031	0.000010	mg/L	E420	03-May-2022	04-May-2022	476011
tin, total	7440-31-5	Not Detected	0.00010	mg/L	E420	03-May-2022	04-May-2022	476011
vanadium, total	7440-62-2	0.00099	0.00050	mg/L	E420	03-May-2022	04-May-2022	476011
zinc, total	7440-66-6	0.0031	0.0030	mg/L	E420	03-May-2022	04-May-2022	476011
Speciated Metals								
chromium, hexavalent [Cr VI], total	18540-29-9	0.00085	0.00050	mg/L	E532	-	04-May-2022	476554
Aggregate Organics								
chemical oxygen demand [COD]		14 ^{SP,}	10	mg/L	E559-L	-	05-May-2022	478083
phenols, total (4AAP)		0.0024	0.0010	mg/L	E562	06-May-2022	06-May-2022	479032
Volatile Organic Compounds								
acetone	67-64-1	Not Detected	20	µg/L	E611D	05-May-2022	05-May-2022	478095
benzene	71-43-2	Not Detected	0.50	µg/L	E611D	05-May-2022	05-May-2022	478095
bromodichloromethane	75-27-4	Not Detected	0.50	µg/L	E611D	05-May-2022	05-May-2022	478095
bromoform	75-25-2	Not Detected	0.50	µg/L	E611D	05-May-2022	05-May-2022	478095
bromomethane	74-83-9	Not Detected	0.50	µg/L	E611D	05-May-2022	05-May-2022	478095
carbon disulfide	75-15-0	Not Detected	1.0	µg/L	E611D	05-May-2022	05-May-2022	478095
carbon tetrachloride	56-23-5	Not Detected	0.20	µg/L	E611D	05-May-2022	05-May-2022	478095
chlorobenzene	108-90-7	Not Detected	0.50	µg/L	E611D	05-May-2022	05-May-2022	478095
chloroethane	75-00-3	Not Detected	0.50	µg/L	E611D	05-May-2022	05-May-2022	478095
chloroform	67-66-3	Not Detected	0.50	µg/L	E611D	05-May-2022	05-May-2022	478095
chloromethane	74-87-3	Not Detected	2.0	µg/L	E611D	05-May-2022	05-May-2022	478095
dibromochloromethane	124-48-1	Not Detected	0.50	µg/L	E611D	05-May-2022	05-May-2022	478095
dibromoethane, 1,2-	106-93-4	Not Detected	0.20	µg/L	E611D	05-May-2022	05-May-2022	478095
dichlorobenzene, 1,2-	95-50-1	Not Detected	0.50	µg/L	E611D	05-May-2022	05-May-2022	478095
dichlorobenzene, 1,3-	541-73-1	Not Detected	0.50	µg/L	E611D	05-May-2022	05-May-2022	478095
dichlorobenzene, 1,4-	106-46-7	Not Detected	0.50	µg/L	E611D	05-May-2022	05-May-2022	478095
dichlorodifluoromethane	75-71-8	Not Detected	0.50	µg/L	E611D	05-May-2022	05-May-2022	478095
dichloroethane, 1,1-	75-34-3	Not Detected	0.50	µg/L	E611D	05-May-2022	05-May-2022	478095
dichloroethane, 1,2-	107-06-2	Not Detected	0.50	µg/L	E611D	05-May-2022	05-May-2022	478095
dichloroethylene, 1,1-	75-35-4	Not Detected	0.50	µg/L	E611D	05-May-2022	05-May-2022	478095
dichloroethylene, cis-1,2-	156-59-2	Not Detected	0.50	µg/L	E611D	05-May-2022	05-May-2022	478095
dichloroethylene, trans-1,2-	156-60-5	Not Detected	0.50	µg/L	E611D	05-May-2022	05-May-2022	478095
dichloromethane	75-09-2	Not Detected	1.0	µg/L	E611D	05-May-2022	05-May-2022	478095
dichloropropane, 1,2-	78-87-5	Not Detected	0.50	µg/L	E611D	05-May-2022	05-May-2022	478095
dichloropropylene, cis+trans-1,3-	542-75-6	Not Detected	0.5	µg/L	E611D	05-May-2022	05-May-2022	478095
dichloropropylene, cis-1,3-	10061-01-5	Not Detected	0.30	µg/L	E611D	05-May-2022	05-May-2022	478095
dichloropropylene, trans-1,3-	10061-02-6	Not Detected	0.30	µg/L	E611D	05-May-2022	05-May-2022	478095
ethylbenzene	100-41-4	Not Detected	0.50	µg/L	E611D	05-May-2022	05-May-2022	478095
hexane, n-	110-54-3	Not Detected	0.50	µg/L	E611D	05-May-2022	05-May-2022	478095
hexanone, 2-	591-78-6	Not Detected	20	µg/L	E611D	05-May-2022	05-May-2022	478095
methyl ethyl ketone [MEK]	78-93-3	Not Detected	20	µg/L	E611D	05-May-2022	05-May-2022	478095
methyl isobutyl ketone [MIBK]	108-10-1	Not Detected	20	µg/L	E611D	05-May-2022	05-May-2022	478095
methyl-tert-butyl ether [MTBE]	1634-04-4	Not Detected	0.50	µg/L	E611D	05-May-2022	05-May-2022	478095
styrene	100-42-5	Not Detected	0.50	µg/L	E611D	05-May-2022	05-May-2022	478095
tetrachloroethane, 1,1,1,2-	630-20-6	Not Detected	0.50	μg/L	E611D	05-May-2022	05-May-2022	478095

Analytical Results

WT2203261-003								
Sub-Matrix:Water		Client sam	ple ID: Pond	D - Pond D Di	ischarge			
(Matrix: Water)		Client san	npling date / t	ime: 02-May-2	022 09:00			
Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot
Volatile Organic Compounds							Duto	
tetrachloroethane, 1,1,2,2-	79-34-5	Not Detected	0.50	µg/L	E611D	05-May-2022	05-May-2022	478095
tetrachloroethylene	127-18-4	Not Detected	0.50	µg/L	E611D	05-May-2022	05-May-2022	478095
toluene	108-88-3	Not Detected	0.50	µg/L	E611D	05-May-2022	05-May-2022	478095
trichloroethane, 1,1,1-	71-55-6	Not Detected	0.50	µg/L	E611D	05-May-2022	05-May-2022	478095
trichloroethane, 1,1,2-	79-00-5	Not Detected	0.50	µg/L	E611D	05-May-2022	05-May-2022	478095
trichloroethylene	79-01-6	Not Detected	0.50	µg/L	E611D	05-May-2022	05-May-2022	478095
trichlorofluoromethane	75-69-4	Not Detected	0.50	µg/L	E611D	05-May-2022	05-May-2022	478095
vinyl chloride	75-01-4	Not Detected	0.50	µg/L	E611D	05-May-2022	05-May-2022	478095
xylene, m+p-	179601-23-1	Not Detected	0.40	µg/L	E611D	05-May-2022	05-May-2022	478095
xylene, o-	95-47-6	Not Detected	0.30	µg/L	E611D	05-May-2022	05-May-2022	478095
xylenes, total	1330-20-7	Not Detected	0.50	µg/L	E611D	05-May-2022	05-May-2022	478095
BTEX, total		Not Detected	1.0	µg/L	E611D	05-May-2022	05-May-2022	478095
trihalomethanes [THMs], total		Not Detected	1.0	µg/L	E611D	05-May-2022	05-May-2022	478095
Volatile Organic Compounds Surrogates								
bromofluorobenzene, 4-	460-00-4	9.0	1.0	%	E611D	05-May-2022	05-May-2022	478095
difluorobenzene, 1,4-	540-36-3	9.7	1.0	%	E611D	05-May-2022	05-May-2022	478095
Polycyclic Aromatic Hydrocarbons								
acenaphthene	83-32-9	Not Detected	0.50	µg/L	E655B	04-May-2022	05-May-2022	476287
acenaphthylene	208-96-8	Not Detected	0.50	μg/L	E655B	04-May-2022	05-May-2022	476287
anthracene	120-12-7	Not Detected	0.50	µg/L	E655B	04-May-2022	05-May-2022	476287
benz(a)anthracene	56-55-3	Not Detected	0.50	μg/L	E655B	04-May-2022	05-May-2022	476287
benzo(a)pyrene	50-32-8	Not Detected	0.125	μg/L	E655B	04-May-2022	05-May-2022	476287
benzo(b+j)fluoranthene	n/a	Not Detected	0.50	μg/L	E655B	04-May-2022	05-May-2022	476287
benzo(g,h,i)perylene	191-24-2	Not Detected	0.50	μg/L	E655B	04-May-2022	05-May-2022	476287
benzo(k)fluoranthene	207-08-9	Not Detected	0.50	µg/L	E655B	04-May-2022	05-May-2022	476287
chrysene	218-01-9	Not Detected	0.50	µg/L	E655B	04-May-2022	05-May-2022	476287
dibenz(a,h)anthracene	53-70-3	Not Detected	0.50	μg/L	E655B	04-May-2022	05-May-2022	476287
fluoranthene	206-44-0	Not Detected	0.50	µg/L	E655B	04-May-2022	05-May-2022	476287
fluorene	86-73-7	Not Detected	0.50	µg/L	E655B	04-May-2022	05-May-2022	476287
indeno(1,2,3-c,d)pyrene	193-39-5	Not Detected	0.50	µg/L	E655B	04-May-2022	05-May-2022	476287
methylnaphthalene, 1-	90-12-0	Not Detected	1.00	µg/L	E655B	04-May-2022	05-May-2022	476287
methylnaphthalene, 2-	91-57-6	Not Detected	1.00	µg/L	E655B	04-May-2022	05-May-2022	476287
naphthalene	91-20-3	Not Detected	0.50	µg/L	E655B	04-May-2022	05-May-2022	476287
perylene	198-55-0	Not Detected	0.50	µg/L	E655B	04-May-2022	05-May-2022	476287
phenanthrene	85-01-8	Not Detected	0.50	µg/L	E655B	04-May-2022	05-May-2022	476287
pyrene	129-00-0	Not Detected	0.50	µg/L	E655B	04-May-2022	05-May-2022	476287
Phthalate Esters								
bis(2-ethylhexyl) phthalate [DEHP]	117-81-7	Not Detected	2.5	µg/L	E055B	04-May-2022	05-May-2022	476287
Semi-volatile Organics		NARA	1.00	ug/l	EGEER	04 May 2022	05 M 0000	470007
bis(2-chioroethyi) ether	111-44-4	Not Detected	1.00	µg/L	E000D	04-May-2022	05-May-2022	4/628/
chioroaniline, 4-	106-47-8	Not Detected	1.00	µg/L	E000B	04-IVIAY-2022	05-May-2022	4/6287
dichlorobenzene, 1,2-	95-50-1		1.00	µg/∟	E000B	04-Way 2022	05-May-2022	4/028/
dichlorobenzene, 1,3-	541-73-1	Not Detected	1.00	µg/L	E000D	04-iviay-2022	05-May-2022	4/628/
dichlorobonzidino 2.2'	106-46-7		1.00	µg/L	E000D	04-1viay-2022	05-May-2022	4/628/
dinitrotoluono 24	91-94-1		1.00	µg/L	EREED	04-Way 2022	05-Way-2022	4/028/
dinitrotoluone 2.6	121-14-2		1.00	µg/L	EREED	04-Way 2022	05-May-2022	4/028/
hovachlorohonzona	606-20-2		0.100	µg/L	E000D	04-IVIAY-2022	05-Way-2022	4/028/
nexachioropenzene	118-74-1	Not Detected	0.100	µg/L	E000B	04-iviay-2022	05-May-2022	476287

Analytical Results

WT2203261-003								
Sub-Matrix:Water		Client sam	<i>ple ID:</i> Pond	D - Pond D D	ischarge			
(Matrix: Water)		Client sam	pling date / t	ime: 02-May-2	022 09:00			
Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot
Semi-Volatile Organics								
hexachlorobutadiene	87-68-3	Not Detected	0.50	µg/L	E655B	04-May-2022	05-May-2022	476287
hexachloroethane	67-72-1	Not Detected	1.00	µg/L	E655B	04-May-2022	05-May-2022	476287
trichlorobenzene, 1,2,4-	120-82-1	Not Detected	1.00	µg/L	E655B	04-May-2022	05-May-2022	476287
Semi-Volatile Organics Surrogates								
fluorobiphenyl, 2-	321-60-8	3.5 DLIS,	1.0	%	E655B	04-May-2022	05-May-2022	476287
nitrobenzene-d5	4165-60-0	3.8 DLIS,	1.0	%	E655B	04-May-2022	05-May-2022	476287
terphenyl-d14, p-	1718-51-0	4.1 DLIS,	1.0	%	E655B	04-May-2022	05-May-2022	476287
Chlorinated Phenolics								
chlorophenol, 2-	95-57-8	Not Detected	0.75	µg/L	E655B	04-May-2022	05-May-2022	476287
dichlorophenol, 2,4-	120-83-2	Not Detected	0.75	µg/L	E655B	04-May-2022	05-May-2022	476287
pentachlorophenol [PCP]	87-86-5	Not Detected	1.25	µg/L	E655B	04-May-2022	05-May-2022	476287
tetrachlorophenol, 2,3,4,5-	4901-51-3	Not Detected	1.25	µg/L	E655B	04-May-2022	05-May-2022	476287
tetrachlorophenol, 2,3,4,6-	58-90-2	Not Detected	1.25	µg/L	E655B	04-May-2022	05-May-2022	476287
trichlorophenol, 2,3,6-	933-75-5	Not Detected	0.20	µg/L	E651E	04-May-2022	05-May-2022	476289
trichlorophenol, 2,4,5-	95-95-4	Not Detected	1.25	µg/L	E655B	04-May-2022	05-May-2022	476287
trichlorophenol, 2,4,6-	88-06-2	Not Detected	1.25	µg/L	E655B	04-May-2022	05-May-2022	476287
Non-Chlorinated Phenolics								
dimethylphenol, 2,4-	105-67-9	Not Detected	1.25	µg/L	E655B	04-May-2022	05-May-2022	476287
dinitrophenol, 2,4-	51-28-5	Not Detected	2.5	µg/L	E655B	04-May-2022	05-May-2022	476287
Phenolics Surrogates								
tribromophenol, 2,4,6-	118-79-6	12.4 SUR-N	1.0	%	E651E	04-May-2022	05-May-2022	476289
tribromophenol, 2,4,6-	118-79-6	4.22	0.50	%	E655B	04-May-2022	05-May-2022	476287

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order	: WT2203261	Page	: 1 of 21
Amendment	:1		
Client	: Clean Harbors Environmental Services, Inc.	Laboratory	: Waterloo - Environmental
Contact	: Rob Girard	Account Manager	: Rick Hawthorne
Address	: 4090 TELFER ROAD RR1	Address	: 60 Northland Road, Unit 1
	Corunna ON Canada N0N 1G0		Waterloo, Ontario Canada N2V 2B8
Telephone	519 864 3815	Telephone	: +1 519 886 6910
Project	: 12572192-20.22	Date Samples Received	: 03-May-2022 10:15
PO	: 735-002833	Issue Date	: 16-May-2022 08:31
C-O-C number	:		
Sampler	: Client		
Site	: 4090 Telfer Road, RR#1, Corunna		
Quote number	: 12572192-20.22-SSOW-735-002833		
No. of samples received	: 3		
No. of samples analysed	:3		

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summarizes.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers Outliers : Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Matrix Spike outliers occur.
- Laboratory Control Sample (LCS) outliers occur please see following pages for full details.
- Test sample Surrogate recovery outliers exist for all regular sample matrices please see following pages for full details.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• <u>No</u> Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• <u>No</u> Quality Control Sample Frequency Outliers occur.

Outliers : Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: Water

Analyte Group	Laboratory sample ID	Client/Ref Sample ID	Analyte	CAS Number	Method	Result	Limits	Comment
Laboratory Control Sample (LCS) Rec	overies							
Chlorinated Phenolics	QC-476289-002		trichlorophenol, 2,3,6-	933-75-5	E651E	139 % ^{LCS-H}	50.0-130%	Recovery greater than upper control limit
Non-Chlorinated Phenolics	QC-MRG3-4762860 dinitrophenol, 2,4- 02		51-28-5	E655B	148 % ^{LCS-H}	40.0-140%	Recovery greater than upper control limit	
Result Qualifiers								
Qualifier De	scription							
LCS-H Lai reli	b Control Sample recovery able. Other results, if report	was above ALS DQO. No ed, have been qualified.	on-detected sample results a	re considered				

Regular Sample Surrogates

Analyte Group	Laboratory sample ID	Client/Ref Sample ID	Analyte	CAS Number	Result	Limits	Comment
Samples Submitted							
Semi-Volatile Organics Surrogates	WT2203261-001	EQ Pond EQ Pond	fluorobiphenyl, 2-	321-60-8	44.0 %	50.0-140	Recovery less than lower
		Discharge				%	data quality objective
Semi-Volatile Organics Surrogates	WT2203261-002	Pond A Pond A Discharge	fluorobiphenyl, 2-	321-60-8	41.8 %	50.0-140	Recovery less than lower
						%	data quality objective
Semi-Volatile Organics Surrogates	WT2203261-003	Pond D Pond D Discharge	fluorobiphenyl, 2-	321-60-8	44.3 %	50.0-140	Recovery less than lower
						%	data quality objective
Semi-Volatile Organics Surrogates	WT2203261-001	EQ Pond EQ Pond	nitrobenzene-d5	4165-60-0	47.6 %	50.0-140	Recovery less than lower
		Discharge				%	data quality objective
Semi-Volatile Organics Surrogates	WT2203261-002	Pond A Pond A Discharge	nitrobenzene-d5	4165-60-0	46.5 %	50.0-140	Recovery less than lower
						%	data quality objective
Semi-Volatile Organics Surrogates	WT2203261-003	Pond D Pond D Discharge	nitrobenzene-d5	4165-60-0	48.2 %	50.0-140	Recovery less than lower
						%	data quality objective
Semi-Volatile Organics Surrogates	WT2203261-001	EQ Pond EQ Pond	terphenyl-d14, p-	1718-51-0	49.1 %	60.0-140	Recovery less than lower
		Discharge				%	data quality objective
Semi-Volatile Organics Surrogates	WT2203261-002	Pond A Pond A Discharge	terphenyl-d14, p-	1718-51-0	49.6 %	60.0-140	Recovery less than lower
						%	data quality objective
Semi-Volatile Organics Surrogates	WT2203261-003	Pond D Pond D Discharge	terphenyl-d14, p-	1718-51-0	50.8 %	60.0-140	Recovery less than lower
						%	data quality objective
Phenolics Surrogates	WT2203261-001	EQ Pond EQ Pond	tribromophenol, 2,4,6-	118-79-6	154 %	40.0-150	Recovery greater than upper
		Discharge				%	data quality objective
Phenolics Surrogates	WT2203261-002	Pond A Pond A Discharge	tribromophenol, 2,4,6-	118-79-6	153 %	40.0-150	Recovery greater than upper
						%	data quality objective
Phenolics Surrogates	WT2203261-003	Pond D Pond D Discharge	tribromophenol, 2,4,6-	118-79-6	155 %	40.0-150	Recovery greater than upper
						%	data quality objective

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and /or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					Ev	aluation: × =	Holding time exce	edance ; 🗸	<pre>/ = Within</pre>	Holding Time
Analyte Group	Method	Sampling Date	Exti	raction / Pr	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual		-	Rec	Actual	
Aggregate Organics : Chemical Oxygen Demand by Colourimetry (Low Level)										
Amber glass total (sulfuric acid)										
EQ Pond - EQ Pond Discharge	E559-L	02-May-2022					05-May-2022	28 days	3 days	✓
Aggregate Organics : Chemical Oxygen Demand by Colourimetry (Low Level)										
Amber glass total (sulfuric acid)										
Pond A - Pond A Discharge	E559-L	02-May-2022					05-May-2022	28 days	3 days	✓
Aggregate Organics : Chemical Oxygen Demand by Colourimetry (Low Level)										
Amber glass total (sulfuric acid)										
Pond D - Pond D Discharge	E559-L	02-May-2022					05-May-2022	28 days	3 days	✓
Aggregate Organics : Phenols (4AAP) in Water by Colorimetry										
Amber glass total (sulfuric acid)										
EQ Pond - EQ Pond Discharge	E562	02-May-2022					06-May-2022	28 days	4 days	✓
Aggregate Organics : Phenols (4AAP) in Water by Colorimetry										
Amber glass total (sulfuric acid)										,
Pond A - Pond A Discharge	E562	02-May-2022					06-May-2022	28 days	4 days	✓
Aggregate Organics : Phenols (4AAP) in Water by Colorimetry										
Amber glass total (sulfuric acid)										
Pond D - Pond D Discharge	E562	02-May-2022					06-May-2022	28 days	4 days	✓
Anions and Nutrients : Ammonia by Fluorescence					_					
Amber glass total (sulfuric acid)	5000	00.140000	00.140000				00.14	00.1		,
EQ Pond - EQ Pond Discharge	E298	02-May-2022	06-May-2022				06-May-2022	28 days	4 days	*

Matrix: Water					Ev	aluation: × =	Holding time exce	edance ; 🗸	= Within	Holding Time
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation Date	Holding Rec	g Times Actual	Eval	Analysis Date	Holding Rec	Times Actual	Eval
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid) Pond A - Pond A Discharge	E298	02-May-2022	06-May-2022				06-May-2022	28 days	4 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid) Pond D - Pond D Discharge	E298	02-May-2022	06-May-2022				06-May-2022	28 days	4 days	✓
Anions and Nutrients : Bromide in Water by IC										
HDPE [ON MECP] EQ Pond - EQ Pond Discharge	E235.Br	02-May-2022					04-May-2022	28 days	2 days	4
Anions and Nutrients : Bromide in Water by IC										
HDPE [ON MECP] Pond A - Pond A Discharge	E235.Br	02-May-2022					05-May-2022	28 days	3 days	~
Anions and Nutrients : Bromide in Water by IC										
HDPE [ON MECP] Pond D - Pond D Discharge	E235.Br	02-May-2022					06-May-2022	28 days	4 days	✓
Anions and Nutrients : Chloride in Water by IC										
HDPE [ON MECP] EQ Pond - EQ Pond Discharge	E235.Cl	02-May-2022					04-May-2022	28 days	2 days	✓
Anions and Nutrients : Chloride in Water by IC										
HDPE [ON MECP] Pond A - Pond A Discharge	E235.Cl	02-May-2022					05-May-2022	28 days	3 days	✓
Anions and Nutrients : Chloride in Water by IC										
HDPE [ON MECP] Pond D - Pond D Discharge	E235.Cl	02-May-2022					06-May-2022	28 days	4 days	√
Anions and Nutrients : Fluoride in Water by IC										
HDPE [ON MECP] EQ Pond - EQ Pond Discharge	E235.F	02-May-2022					04-May-2022	28 days	2 days	√

Matrix: Water					Eva	aluation: × =	Holding time exce	edance ; 🗸	<pre>< = Within</pre>	Holding Time
Analyte Group	Method	Sampling Date	Ext	traction / Pr	eparation		Analysis			
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Fluoride in Water by IC										
HDPE [ON MECP]										
Pond A - Pond A Discharge	E235.F	02-May-2022					05-May-2022	28 days	3 days	~
Anions and Nutrients : Fluoride in Water by IC										
HDPE [ON MECP]										
Pond D - Pond D Discharge	E235.F	02-May-2022					06-May-2022	28 days	4 days	~
Anions and Nutrients : Nitrate in Water by IC										
HDPE [ON MECP]										
EQ Pond - EQ Pond Discharge	E235.NO3	02-May-2022					04-May-2022	7 days	2 days	~
Anions and Nutrients : Nitrate in Water by IC										
HDPE [ON MECP]										
Pond A - Pond A Discharge	E235.NO3	02-May-2022					05-May-2022	7 days	3 days	~
Anions and Nutrients : Nitrate in Water by IC										
HDPE [ON MECP]										
Pond D - Pond D Discharge	E235.NO3	02-May-2022					06-May-2022	7 days	4 days	~
Anions and Nutrients : Nitrite in Water by IC										
HDPE [ON MECP]										
EQ Pond - EQ Pond Discharge	E235.NO2	02-May-2022					04-May-2022	7 days	2 days	~
Anions and Nutrients : Nitrite in Water by IC										
HDPE [ON MECP]	5005 1100									,
Pond A - Pond A Discharge	E235.NO2	02-May-2022					05-May-2022	7 days	3 days	•
Anions and Nutrients : Nitrite in Water by IC										
HDPE [ON MECP]										,
Pond D - Pond D Discharge	E235.NO2	02-May-2022					06-May-2022	7 days	4 days	~
Anions and Nutrients : Sulfate in Water by IC										
HDPE [ON MECP]										,
EQ Pond - EQ Pond Discharge	E235.SO4	02-May-2022					04-May-2022	28 days	2 days	~

Matrix: Water					Ev	aluation: × =	Holding time exce	edance ; 🗸	<pre>< = Within</pre>	Holding Time
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Sulfate in Water by IC										
HDPE [ON MECP]										
Pond A - Pond A Discharge	E235.SO4	02-May-2022					05-May-2022	28 days	3 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE [ON MECP]										
Pond D - Pond D Discharge	E235.SO4	02-May-2022					06-May-2022	28 days	4 days	1
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid)										
EQ Pond - EQ Pond Discharge	E318	02-May-2022	06-May-2022				06-May-2022	28 days	4 days	✓
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)							-			
Amber glass total (sulfuric acid)										
Pond A - Pond A Discharge	E318	02-May-2022	06-May-2022				06-May-2022	28 days	4 days	✓
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid)	5949									,
Pond D - Pond D Discharge	E318	02-May-2022	06-May-2022				06-May-2022	28 days	4 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid)	E070 II	00.14	00 M				00.14	00.1	7	,
EQ Pond - EQ Pond Discharge	E372-0	02-May-2022	06-May-2022				09-May-2022	28 days	7 days	•
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)	1									
Amber glass total (sulfuric acid)	E272 I I	02 May 2022	06 May 2022				00 May 2022		7 daya	
Pond A - Pond A Discharge	E372-0	02-111ay-2022	00-101ay-2022				09-May-2022	20 days	7 days	•
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid)	E272 I I	02 May 2022	06 May 2022				00 May 2022	29 dovo	7 daya	
Pond D - Pond D Discharge	E372-0	02-111ay-2022	00-101ay-2022				09-1viay-2022	20 uays	7 uays	•
Chlorinated Phenolics : BNA (ON 625 list) by GC-MS										
Amper glass/ letion lined cap [UN MECP]	E655B	02-May-2022	04-May-2022				05-May-2022			
	LOUD	52-1110y-2022	0 7-1110y-2022				00-Way-2022			

Matrix: Water					Ev	aluation: × =	Holding time exce	edance ; •	= Within	Holding Time
Analyte Group	Method	Sampling Date	Ext	traction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding Times		Eval
			Date	Rec	Actual			Rec	Actual	
Chlorinated Phenolics : BNA (ON 625 list) by GC-MS										
Amber glass/Teflon lined cap [ON MECP]										
Pond A - Pond A Discharge	E655B	02-May-2022	04-May-2022				05-May-2022			
Chlorinated Phenolics : BNA (ON 625 list) by GC-MS										
Amber glass/Teflon lined cap [ON MECP]										
Pond D - Pond D Discharge	E655B	02-May-2022	04-May-2022				05-May-2022			
Chlorinated Phenolics : Phenolics (Ontario Extra List) by GC-MS										
Amber glass/Teflon lined cap [ON MECP]						,				,
EQ Pond - EQ Pond Discharge	E651E	02-May-2022	04-May-2022	14	2 days	✓	05-May-2022	40 days	1 days	✓
				days						
Chlorinated Phenolics : Phenolics (Ontario Extra List) by GC-MS										
Amber glass/Teflon lined cap [ON MECP]						,				,
Pond A - Pond A Discharge	E651E	02-May-2022	04-May-2022	14	2 days	✓	05-May-2022	40 days	1 days	✓
				days						
Chlorinated Phenolics : Phenolics (Ontario Extra List) by GC-MS										
Amber glass/Teflon lined cap [ON MECP]						,				
Pond D - Pond D Discharge	E651E	02-May-2022	04-May-2022	14	2 days	~	05-May-2022	40 days	1 days	✓
				days						
Cyanides : Total Cyanide										
HDPE - total (sodium hydroxide)										,
EQ Pond - EQ Pond Discharge	E333	02-May-2022					04-May-2022	14 days	3 days	-
Cyanides : Total Cyanide										
HDPE - total (sodium hydroxide)	E222	00 May 2000					04.14		0.1	,
Pond A - Pond A Discharge	E333	02-May-2022					04-May-2022	14 days	3 days	•
Cyanides : Total Cyanide							1			
HDPE - total (sodium hydroxide)	E222	02 May 2022					04 May 2022	14 days	2 days	
Pond D - Pond D Discharge	E333	02-May-2022					04-May-2022	14 days	3 days	¥
Field Tests : Field pH,EC,Salinity,CI2,CI02,ORP,DO, Turbidity,T,T-P,o-PO4,NH3,Ch	loramine									
Glass vial total (nydrochloric acid)	EE001	02-May-2022					04-May-2022			
La Fond - La Fond Discharge		02-11/1ay-2022					04-1VIAy-2022			
		1								

Matrix: Water					Ev	aluation: × =	Holding time exce	edance ; •	= Within	Holding Time
Analyte Group	Method	Sampling Date	Ex	traction / Pr	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Field Tests : Field pH,EC,Salinity,Cl2,ClO2,ORP,DO, Turbidity,T,T-P,o-PO4,NH3,Ch	loramine									
Glass vial total (hydrochloric acid)										
Pond A - Pond A Discharge	EF001	02-May-2022					04-May-2022			
Field Tests : Field pH,EC,Salinity,Cl2,ClO2,ORP,DO, Turbidity,T,T-P,o-PO4,NH3,Ch	loramine									
Glass vial total (hydrochloric acid)										
Pond D - Pond D Discharge	EF001	02-May-2022					04-May-2022			
Non-Chlorinated Phenolics : BNA (ON 625 list) by GC-MS										
Amber glass/Teflon lined cap [ON MECP]										
EQ Pond - EQ Pond Discharge	E655B	02-May-2022	04-May-2022				05-May-2022			
Non-Chlorinated Phenolics : BNA (ON 625 list) by GC-MS										
Amber glass/Teflon lined cap [ON MECP]										
Pond A - Pond A Discharge	E655B	02-May-2022	04-May-2022				05-May-2022			
Non-Chlorinated Phenolics : BNA (ON 625 list) by GC-MS										
Amber glass/Teflon lined cap [ON MECP]										
Pond D - Pond D Discharge	E655B	02-May-2022	04-May-2022				05-May-2022			
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Leve	el)									
Amber glass dissolved (sulfuric acid)										
Pond A - Pond A Discharge	E358-L	02-May-2022	04-May-2022				04-May-2022	28 days	2 days	1
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Leve	el)									
Amber glass dissolved (lab preserved)										
EQ Pond - EQ Pond Discharge	E358-L	02-May-2022	04-May-2022	3 days	2 days	✓	04-May-2022	28 days	0 days	1
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Leve	el)									
Amber glass dissolved (lab preserved)										
Pond D - Pond D Discharge	E358-L	02-May-2022	04-May-2022	3 days	2 days	✓	04-May-2022	28 days	0 days	1
Phthalate Esters : BNA (ON 625 list) by GC-MS										
Amber glass/Teflon lined cap [ON MECP]										
EQ Pond - EQ Pond Discharge	E655B	02-May-2022	04-May-2022				05-May-2022			

Matrix: Water					Ev	aluation: × =	Holding time exce	edance ; •	= Within	Holding Time
Analyte Group	Method	Sampling Date	Ext	traction / Pr	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Phthalate Esters : BNA (ON 625 list) by GC-MS										
Amber glass/Teflon lined cap [ON MECP]										
Pond A - Pond A Discharge	E655B	02-May-2022	04-May-2022				05-May-2022			
Phthalata Estars - RNA (ON 625 list) by GC-MS										
Amber glass/Teflon lined can ION MECP1										
Pond D - Pond D Discharge	E655B	02-May-2022	04-May-2022				05-May-2022			
Physical Tests : Alkalinity Species by Titration										
HDPE [ON MECP]										
EQ Pond - EQ Pond Discharge	E290	02-May-2022					04-May-2022	14 days	2 days	✓
Physical Tests : Alkalinity Species by Titration					1				1	
HDPE [ON MECP]	E200	02 May 2022					05 May 2022	14 days	3 days	
Fold A - Fold A Discharge	L290	02-11/ay-2022					03-1viay-2022	14 uays	Juays	•
Physical Tests : Alkalinity Species by Titration										
HDPE [ON MECP]										
Pond D - Pond D Discharge	E290	02-May-2022					06-May-2022	14 days	4 days	✓
Physical Tests : Conductivity in Water										
HDPE [ON MECP]										,
EQ Pond - EQ Pond Discharge	E100	02-May-2022					04-May-2022	28 days	2 days	~
Pond A - Pond A Discharge	E100	02-May-2022					05-May-2022	28 days	3 days	1
							-			
Physical Tests : Conductivity in Water										
HDPE [ON MECP]										
Pond D - Pond D Discharge	E100	02-May-2022					06-May-2022	28 days	4 days	✓
Physical Tests : pH by Meter										
HDPE [ON MECP]	F100	00 May 2000					04 Mary 2000	4	Ordens	
EQ Pond - EQ Pond Discharge	EIU8	02-May-2022					04-May-2022	4 days	2 days	*

Matrix: Water					Ev	aluation: × =	Holding time exce	edance ; •	= Within	Holding Time
Analyte Group	Method	Sampling Date	Ext	raction / Pr	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	, Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : pH by Meter										
HDPE [ON MECP]										
Pond A - Pond A Discharge	E108	02-May-2022					05-May-2022	4 days	3 days	✓
Physical Tests : pH by Meter								1		
HDPE [ON MECP]										
Pond D - Pond D Discharge	E108	02-May-2022					06-May-2022	4 days	4 days	✓
Physical Tests : TDS by Gravimetry										
HDPE [ON MECP]										
EQ Pond - EQ Pond Discharge	E162	02-May-2022					04-May-2022	7 days	2 days	1
Physical Tests : TDS by Gravimetry										
HDPE [ON MECP]										
Pond A - Pond A Discharge	E162	02-May-2022					04-May-2022	7 days	2 days	✓
Physical Tests : TDS by Gravimetry								1		
HDPE [ON MECP]										
Pond D - Pond D Discharge	E162	02-May-2022					04-May-2022	7 days	2 days	✓
Physical Tests : TSS by Gravimetry										
HDPE [ON MECP]										
EQ Pond - EQ Pond Discharge	E160	02-May-2022					04-May-2022	7 days	2 days	✓
Physical Tests : TSS by Gravimetry								1		
HDPE [ON MECP]										
Pond A - Pond A Discharge	E160	02-May-2022					04-May-2022	7 days	2 days	✓
Physical Tests : TSS by Gravimetry								1		
HDPE [ON MECP]										
Pond D - Pond D Discharge	E160	02-May-2022					04-May-2022	7 days	2 days	✓
Polycyclic Aromatic Hydrocarbons : BNA (ON 625 list) by GC-MS								I		
Amber glass/Teflon lined cap [ON MECP]										
EQ Pond - EQ Pond Discharge	E655B	02-May-2022	04-May-2022				05-May-2022			

Matrix: Water					Ev	aluation: × =	Holding time exce	edance ; 🗸	<pre>/ = Within</pre>	Holding Time
Analyte Group	Method	Sampling Date	Ext	traction / Pi	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Polycyclic Aromatic Hydrocarbons : BNA (ON 625 list) by GC-MS										
Amber glass/Teflon lined cap [ON MECP]										
Pond A - Pond A Discharge	E655B	02-May-2022	04-May-2022				05-May-2022			
Polycyclic Aromatic Hydrocarbons : BNA (ON 625 list) by GC-MS										
Amber glass/Teflon lined cap [ON MECP]										
Pond D - Pond D Discharge	E655B	02-May-2022	04-May-2022				05-May-2022			
Semi-Volatile Organics : BNA (ON 625 list) by GC-MS										
Amber glass/Teflon lined cap [ON MECP]										
EQ Pond - EQ Pond Discharge	E655B	02-May-2022	04-May-2022	14	2 days	✓	05-May-2022	40 days	1 days	✓
				days						
Semi-Volatile Organics : BNA (ON 625 list) by GC-MS										
Amber glass/Teflon lined cap [ON MECP]										
Pond A - Pond A Discharge	E655B	02-May-2022	04-May-2022	14	2 days	✓	05-May-2022	40 days	1 days	✓
				days						
Semi-Volatile Organics : BNA (ON 625 list) by GC-MS										
Amber glass/Teflon lined cap [ON MECP]										
Pond D - Pond D Discharge	E655B	02-May-2022	04-May-2022	14	2 days	✓	05-May-2022	40 days	1 days	✓
				days						
Speciated Metals : Total Hexavalent Chromium (Cr VI) by IC										
HDPE - total (sodium hydroxide)										
EQ Pond - EQ Pond Discharge	E532	02-May-2022					04-May-2022	28 days	2 days	✓
Speciated Metals : Total Hexavalent Chromium (Cr VI) by IC										
HDPE (sodium hydroxide+ammonium hydroxide+ammonium sulfate))										
Pond A - Pond A Discharge	E532	02-May-2022					04-May-2022	28 days	2 days	✓
Speciated Metals : Total Hexavalent Chromium (Cr VI) by IC										
HDPE (sodium hydroxide+ammonium hydroxide+ammonium sulfate))										
Pond D - Pond D Discharge	E532	02-May-2022					04-May-2022	28 days	2 days	✓
Total Metals : Total Mercury in Water by CVAAS										
Glass vial total (hydrochloric acid)										
EQ Pond - EQ Pond Discharge	E508	02-May-2022					04-May-2022	28 days	2 days	✓

Matrix: Water					E١	aluation: × =	Holding time exce	edance ; •	<pre>< = Within</pre>	Holding Time
Analyte Group	Method	Sampling Date	Ext	raction / Pr	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual		-	Rec	Actual	
Total Metals : Total Mercury in Water by CVAAS										
Glass vial total (hydrochloric acid)										
Pond A - Pond A Discharge	E508	02-May-2022					04-May-2022	28 days	2 days	✓
Total Metals : Total Mercury in Water by CVAAS										
Glass vial total (hydrochloric acid)										
Pond D - Pond D Discharge	E508	02-May-2022					04-May-2022	28 days	2 days	1
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid)										
EQ Pond - EQ Pond Discharge	E420	02-May-2022					04-May-2022	180	2 days	✓
								days		
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid)										
Pond A - Pond A Discharge	E420	02-May-2022					04-May-2022	180	2 days	✓
								days		
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid)										
Pond D - Pond D Discharge	E420	02-May-2022					04-May-2022	180	2 days	✓
								days		
Volatile Organic Compounds : VOCs (ON List) by Headspace GC-MS										
Glass vial (sodium bisulfate)										
EQ Pond - EQ Pond Discharge	E611D	02-May-2022	05-May-2022				05-May-2022	14 days	3 days	•
Volatile Organic Compounds : VOCs (ON List) by Headspace GC-MS										
Glass vial (sodium bisulfate)										
Pond A - Pond A Discharge	E611D	02-May-2022	05-May-2022				05-May-2022	14 days	3 days	~
Volatile Organic Compounds : VOCs (ON List) by Headspace GC-MS										
Glass vial (sodium bisulfate)										,
Pond D - Pond D Discharge	E611D	02-May-2022	05-May-2022				05-May-2022	14 days	3 days	✓

Legend & Qualifier Definitions

Rec. HT: ALS recommended hold time (see units).

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Water	Evaluation: × = QC frequency outside specification; √ = QC frequency within specifica								
Quality Control Sample Type			Co	ount					
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation		
Laboratory Duplicates (DUP)									
Alkalinity Species by Titration	E290	476309	3	22	13.6	5.0	✓		
Ammonia by Fluorescence	E298	479030	1	17	5.8	5.0	✓		
Bromide in Water by IC	E235.Br	476315	3	4	75.0	5.0	✓		
Chemical Oxygen Demand by Colourimetry (Low Level)	E559-L	478083	1	12	8.3	5.0	✓		
Chloride in Water by IC	E235.Cl	476317	3	20	15.0	5.0	✓		
Conductivity in Water	E100	476311	3	12	25.0	5.0	✓		
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	476256	1	20	5.0	5.0	✓		
Fluoride in Water by IC	E235.F	476316	3	10	30.0	5.0	✓		
Nitrate in Water by IC	E235.NO3	476312	3	34	8.8	5.0	✓		
Nitrite in Water by IC	E235.NO2	476313	3	25	12.0	5.0	✓		
pH by Meter	E108	476310	2	33	6.0	5.0	✓		
Phenols (4AAP) in Water by Colorimetry	E562	479032	1	16	6.2	5.0	✓		
Sulfate in Water by IC	E235.SO4	476314	3	19	15.7	5.0	✓		
TDS by Gravimetry	E162	476771	1	6	16.6	5.0	✓		
Total Cyanide	E333	477421	1	12	8.3	5.0	✓		
Total Hexavalent Chromium (Cr VI) by IC	E532	476554	1	14	7.1	5.0	✓		
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	479031	1	16	6.2	5.0	✓		
Total Mercury in Water by CVAAS	E508	476234	1	13	7.6	5.0	✓		
Total Metals in Water by CRC ICPMS	E420	476011	1	13	7.6	5.0	1		
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	479029	1	17	5.8	5.0	✓		
TSS by Gravimetry	E160	476784	1	6	16.6	4.7	✓		
VOCs (ON List) by Headspace GC-MS	E611D	478095	1	20	5.0	5.0	✓		
Laboratory Control Samples (LCS)									
Alkalinity Species by Titration	E290	476309	3	22	13.6	5.0	1		
Ammonia by Fluorescence	E298	479030	1	17	5.8	5.0	✓		
BNA (ON 625 list) by GC-MS	E655B	476287	1	7	14.2	5.0	✓		
Bromide in Water by IC	E235.Br	476315	3	4	75.0	5.0	✓		
Chemical Oxygen Demand by Colourimetry (Low Level)	E559-L	478083	1	12	8.3	5.0	✓		
Chloride in Water by IC	E235.Cl	476317	3	20	15.0	5.0	✓		
Conductivity in Water	E100	476311	3	12	25.0	5.0	✓		
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	476256	1	20	5.0	5.0	✓		
Fluoride in Water by IC	E235.F	476316	3	10	30.0	5.0	✓		
Nitrate in Water by IC	E235.NO3	476312	3	34	8.8	5.0	✓		
Nitrite in Water by IC	E235.NO2	476313	3	25	12.0	5.0	1		
pH by Meter	E108	476310	3	33	9.0	5.0	✓		
Phenolics (Ontario Extra List) by GC-MS	E651E	476289	1	3	33.3	5.0	✓		
Phenols (4AAP) in Water by Colorimetry	E562	479032	1	16	6.2	5.0	~		

Matrix: Water	Evaluation: \star = QC frequency outside specification; \checkmark = QC frequency w							
Quality Control Sample Type			Co	unt		Frequency (%)		
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation	
Laboratory Control Samples (LCS) - Continued								
Sulfate in Water by IC	E235.SO4	476314	3	19	15.7	5.0	✓	
TDS by Gravimetry	E162	476771	1	6	16.6	5.0	✓	
Total Cyanide	E333	477421	1	12	8.3	5.0	✓	
Total Hexavalent Chromium (Cr VI) by IC	E532	476554	1	14	7.1	5.0	✓	
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	479031	1	16	6.2	5.0	✓	
Total Mercury in Water by CVAAS	E508	476234	1	13	7.6	5.0	✓	
Total Metals in Water by CRC ICPMS	E420	476011	1	13	7.6	5.0	✓	
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	479029	1	17	5.8	5.0	✓	
TSS by Gravimetry	E160	476784	1	6	16.6	4.7	✓	
VOCs (ON List) by Headspace GC-MS	E611D	478095	1	20	5.0	5.0	✓	
Method Blanks (MB)								
Alkalinity Species by Titration	E290	476309	3	22	13.6	5.0	1	
Ammonia by Fluorescence	E298	479030	1	17	5.8	5.0	✓	
BNA (ON 625 list) by GC-MS	E655B	476287	1	7	14.2	5.0	✓	
Bromide in Water by IC	E235.Br	476315	3	4	75.0	5.0	✓	
Chemical Oxygen Demand by Colourimetry (Low Level)	E559-L	478083	1	12	8.3	5.0	✓	
Chloride in Water by IC	E235.CI	476317	3	20	15.0	5.0	✓	
Conductivity in Water	E100	476311	3	12	25.0	5.0	✓	
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	476256	1	20	5.0	5.0	✓	
Fluoride in Water by IC	E235.F	476316	3	10	30.0	5.0	✓	
Nitrate in Water by IC	E235.NO3	476312	3	34	8.8	5.0	✓	
Nitrite in Water by IC	E235.NO2	476313	3	25	12.0	5.0	✓	
Phenolics (Ontario Extra List) by GC-MS	E651E	476289	1	3	33.3	5.0	✓	
Phenols (4AAP) in Water by Colorimetry	E562	479032	1	16	6.2	5.0	✓	
Sulfate in Water by IC	E235.SO4	476314	3	19	15.7	5.0	✓	
TDS by Gravimetry	E162	476771	1	6	16.6	5.0	✓	
Total Cyanide	E333	477421	1	12	8.3	5.0	✓	
Total Hexavalent Chromium (Cr VI) by IC	E532	476554	1	14	7.1	5.0	✓	
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	479031	1	16	6.2	5.0	✓	
Total Mercury in Water by CVAAS	E508	476234	1	13	7.6	5.0	✓	
Total Metals in Water by CRC ICPMS	E420	476011	1	13	7.6	5.0	✓	
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	479029	1	17	5.8	5.0	✓	
TSS by Gravimetry	E160	476784	1	6	16.6	4.7	✓	
VOCs (ON List) by Headspace GC-MS	E611D	478095	1	20	5.0	5.0	✓	
Matrix Spikes (MS)								
Ammonia by Fluorescence	E298	479030	1	17	5.8	5.0	✓	
Bromide in Water by IC	E235.Br	476315	3	4	75.0	5.0	✓	
Chemical Oxygen Demand by Colourimetry (Low Level)	E559-L	478083	1	12	8.3	5.0	✓	
Chloride in Water by IC	E235.Cl	476317	3	20	15.0	5.0	✓	
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	476256	1	20	5.0	5.0	1	

Page	: 17 of 21
Work Order	: WT2203261 Amendment 1
Client	: Clean Harbors Environmental Services, Inc.
Project	12572192-20.22

Matrix: Water		Evaluation	n: × = QC freque	ency outside spe	cification; ✓ = 0	QC frequency wit	hin specification.
Quality Control Sample Type			Co	ount		Frequency (%)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Matrix Spikes (MS) - Continued							
Fluoride in Water by IC	E235.F	476316	3	10	30.0	5.0	✓
Nitrate in Water by IC	E235.NO3	476312	3	34	8.8	5.0	✓
Nitrite in Water by IC	E235.NO2	476313	3	25	12.0	5.0	✓
Phenols (4AAP) in Water by Colorimetry	E562	479032	1	16	6.2	5.0	✓
Sulfate in Water by IC	E235.SO4	476314	3	19	15.7	5.0	✓
Total Cyanide	E333	477421	1	12	8.3	5.0	✓
Total Hexavalent Chromium (Cr VI) by IC	E532	476554	1	14	7.1	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	479031	1	16	6.2	5.0	✓
Total Mercury in Water by CVAAS	E508	476234	1	13	7.6	5.0	✓
Total Metals in Water by CRC ICPMS	E420	476011	1	13	7.6	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	479029	1	17	5.8	5.0	✓
VOCs (ON List) by Headspace GC-MS	E611D	478095	1	20	5.0	5.0	✓

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Conductivity in Water	E100	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is measured by immersion of a conductivity cell with platinum electrodes into a water
	Environmental			sample. Conductivity measurements are temperature-compensated to 25 C.
pH by Meter	E108	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally $20 \pm 5^{\circ}$ C). For high accuracy test results,
	Waterloo - Environmental			pH should be measured in the field within the recommended 15 minute hold time.
TSS by Gravimetry	E160	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, following by drying of the filter at $104 \pm 1^{\circ}$ C, with gravimetric measurement of the
	Waterloo -			filtered solids. Samples containing very high dissolved solid content (i.e. seawaters,
	Environmental			brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples.
TDS by Gravimetry	E162	Water	APHA 2540 C (mod)	Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter with evaporation of the filtrate at 180 + 2°C for 16 hours or to constant weight
	Waterloo -			with gravimetric measurement of the residue.
	Environmental			····· 3·······
Bromide in Water by IC	E235.Br	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	Waterloo -			
	Environmental			
Chloride in Water by IC	E235.CI	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	Waterloo -			
	Environmental			
Fluoride in Water by IC	E235.F	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	Waterloo -			
	Environmental			
Nitrite in Water by IC	E235.NO2	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	Waterloo -			
	Environmental	10/-1		
Nitrate in Water by IC	E235.NO3	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	Waterloo -			
	Environmental	10/-1		
Suitate in Water by IC	E235.SO4	vvater	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	Waterloo -			
	Environmental			

Page: 19 of 21Work Order: WT2203261 Amendment 1Client: Clean Harbors Environmental Services, Inc.Project: 12572192-20.22

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Alkalinity Species by Titration	E290	Water	APHA 2320 B (mod)	Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate,
				carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total
	Waterloo -			alkalinity values.
	Environmental			
Ammonia by Fluorescence	E298	Water	J. Environ. Monit.,	Ammonia in water is analyzed by flow-injection analysis with fluorescence detection
			2005, 7, 37-42 (mod)	after reaction with orthophthaldialdehyde (OPA).
	Waterloo -			
T + 1/2 + 1 + 1 + 1	Environmental	\\/ator		
I otal Kjeldahl Nitrogen by Fluorescence (Low	E318	vvater	APHA 4500-Norg D	I otal Kjeldahl Nitrogen is determined using block digestion followed by flow-injection
Level)	Waterlag		(moa)	analysis with fluorescence detection.
	Environmental			
Total Cvanide	Environmental	Water	ISO 14403 (mod)	Total or Strong Acid Dissociable (SAD) Cyanide is determined by Continuous Flow
	2000	i ato.	100 11100 (incu)	Analyzer (CEA) with in-line LIV digestion followed by colourmetric analysis
	Waterloo -			
	Environmental			Method Limitation: High levels of thiocyanate (SCN) may cause positive interference (up
				to 0.5% of SCN concentration).
Dissolved Organic Carbon by Combustion	E358-L	Water	APHA 5310 B (mod)	Dissolved Organic Carbon (Non-Purgeable), also known as NPOC (dissolved), is a
(Low Level)				direct measurement of DOC after a filtered (0.45 micron) sample has been acidified and
	Waterloo -			purged to remove inorganic carbon (IC). Analysis is by high temperature combustion
	Environmental			with infrared detection of CO2. NPOC does not include volatile organic species that are
				purged off with IC. For samples where the majority of DC (dissolved carbon) is
				comprised of IC (which is common), this method is more accurate and more reliable than
				the DOC by subtraction method (i.e. DC minus DIC).
Total Phosphorus by Colourimetry (0.002	E372-U	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated
mg/L)	Waterlag			persulfate digestion of the sample.
	Environmental			
Total Metals in Water by CRC ICPMS	Environmental	Water	EPA 200 2/6020B	Water samples are digested with nitric and hydrochloric acids and analyzed by
,	LTZO		(mod)	Collision/Reaction Cell ICPMS
	Waterloo -		(
	Environmental			Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered
				by this method.
Total Mercury in Water by CVAAS	E508	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction
				with stannous chloride, and analyzed by CVAAS
	Waterloo -			
	Environmental			
Total Hexavalent Chromium (Cr VI) by IC	E532	Water	APHA 3500-Cr C (Ion	Hexavalent Chromium is measured by Ion chromatography-Post column reaction and UV
			Chromatography)	detection.
	Waterloo -			
	Environmental	14/-4		Results are based on an un-filtered, field-preserved sample.
Chemical Oxygen Demand by Colourimetry	E559-L	vvaler	AF MA 3220 D (1100)	Samples are analyzed using the closed reliux colourmetric method.
	Waterloo -			
	Environmental			

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Phenols (4AAP) in Water by Colorimetry	E562 Waterloo - Environmental	Water	EPA 9066	This automated method is based on the distillation of phenol and subsequent reaction of the distillate with alkaline ferricyanide (K3Fe(CN)6) and 4-amino-antipyrine (4-AAP) to form a red complex which is measured colorimetrically.
VOCs (ON List) by Headspace GC-MS	E611D Waterloo - Environmental	Water	EPA 8260D (mod)	Volatile Organic Compounds (VOCs) are analyzed by static headspace GC-MS. Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler, causing VOCs to partition between the aqueous phase and the headspace in accordance with Henry's law.
Phenolics (Ontario Extra List) by GC-MS	E651E Waterloo - Environmental	Water	EPA 8270E (mod)	Phenolics are analyzed by GC-MS.
BNA (ON 625 list) by GC-MS	E655B Waterloo - Environmental	Water	EPA 8270E (mod)	BNA are analyzed by GC-MS.
Hardness (Calculated) from Total Ca/Mg	EC100A Waterloo - Environmental	Water	APHA 2340B	"Hardness (as CaCO3), from total Ca/Mg" is calculated from the sum of total Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations. Hardness from total Ca/Mg is normally comparable to Dissolved Hardness in non-turbid waters.
Un-ionized and Ionized Ammonia (Calculation) (Field Temperature and pH)	EC298A Waterloo - Environmental	Water	CCME CWQG Ammonia	Un-ionized ammonia is calculated from test results for total ammonia, field temperature and pH, and is expressed in units of mg/L "as N".
Field pH,EC,Salinity,Cl2,ClO2,ORP,DO, Turbidity,T,T-P,o-PO4,NH3,Chloramine	EF001 Waterloo - Environmental	Water	Field Measurement (Client Supplied)	Field pH,EC,Salinity,Cl2,ClO2,ORP,DO, Turbidity,T,T-P,o-PO4,NH3 or Chloramine measurements provided by client and recorded on ALS report may affect the validity of results.
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298 Waterloo - Environmental	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
Digestion for TKN in water	EP318 Waterloo - Environmental	Water	APHA 4500-Norg D (mod)	Samples are digested using block digestion with Copper Sulfate Digestion Reagent.
Preparation for Dissolved Organic Carbon for Combustion	EP358 Waterloo - Environmental	Water	APHA 5310 B (mod)	Preparation for Dissolved Organic Carbon

Page	: 21 of 21
Work Order	: WT2203261 Amendment 1
Client	: Clean Harbors Environmental Services, Inc.
Project	12572192-20.22

Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Digestion for Total Phosphorus in water	EP372	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.
	Waterloo -			
	Environmental			
VOCs Preparation for Headspace Analysis	EP581	Water	EPA 5021A (mod)	Samples are prepared in headspace vials and are heated and agitated on the
				headspace autosampler. An aliquot of the headspace is then injected into the
	Waterloo -			GC/MS-FID system.
	Environmental			
Phenolics Extraction	EP651	Water	EPA 3511 (mod)	Phenolics are extracted from acidic aqueous sample using DCM liquid-liquid extraction.
	Waterloo -			
	Environmental			
BNA Extraction	EP655	Water	EPA 3510C (mod)	SVOCs are extracted from aqueous sample using DCM liquid-liquid extraction.
	Waterloo -			
	Environmental			

QUALITY CONTROL REPORT

Work Order	WT2203261	Page	: 1 of 24
Amendment	÷1		
Client	: Clean Harbors Environmental Services, Inc.	Laboratory	: Waterloo - Environmental
Contact	: Rob Girard	Account Manager	Rick Hawthorne
Address	:455 Phillip Street	Address	≑60 Northland Road, Unit 1
	Waterloo ON Canada N2L 3X2		Waterloo, Ontario Canada N2V 2B8
Telephone	: 519 864 3815	Telephone	: +1 519 886 6910
Project	: 12572192-20.22	Date Samples Received	:03-May-2022 10:15
PO	:735-002833	Date Analysis Commenced	:03-May-2022
C-O-C number	:	Issue Date	: 16-May-2022 08:31
Sampler	: Client		
Site	:4090 Telfer Road, RR#1, Corunna		
Quote number	: 12572192-20.22-SSOW-735-002833		
No. of samples received	: 3		
No. of samples analysed	: 3		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives
- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Greg Pokocky	Supervisor - Inorganic	Waterloo Inorganics, Waterloo, Ontario
Greg Pokocky	Supervisor - Inorganic	Waterloo Metals, Waterloo, Ontario
Jocelyn Kennedy	Department Manager - Semi-Volatile Organics	Waterloo Organics, Waterloo, Ontario
Jon Fisher	Department Manager - Inorganics	Waterloo Inorganics, Waterloo, Ontario
Khairul Intiar	Login	Waterloo Administration, Waterloo, Ontario
Sarah Birch	Team Leader - Volatiles	Waterloo Organics, Waterloo, Ontario

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key :

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Page: 3 of 24Work Order: WT2203261 Amendment 1Client: Clean Harbors Environmental Services, Inc.Project: 12572192-20.22

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Water					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Physical Tests (QC	Lot: 476309)										
WT2203261-001	EQ Pond EQ Pond Discharge	alkalinity, total (as CaCO3)		E290	2.0	mg/L	112	111	0.376%	20%	
Physical Tests (QC	Lot: 476310)										
WT2203261-001	EQ Pond EQ Pond Discharge	рН		E108	0.10	pH units	8.15	8.09	0.06	Diff <2x LOR	
Physical Tests (QC	Lot: 476311)										
WT2203261-001	EQ Pond EQ Pond Discharge	conductivity		E100	2.0	µS/cm	805	796	1.12%	10%	
Physical Tests (QC	Lot: 476771)										
WT2203261-003	Pond D Pond D Discharge	solids, total dissolved [TDS]		E162	20	mg/L	484	491	1.44%	20%	
Physical Tests (QC	Lot: 476784)								1	· · · · ·	
WT2203261-003	Pond D Pond D Discharge	solids, total suspended [TSS]		E160	3.0	mg/L	5.6	6.8	1.2	Diff <2x LOR	
Physical Tests (QC	Lot: 477589)							1			
WT2203261-002	Pond A Pond A Discharge	alkalinity, total (as CaCO3)		E290	2.0	mg/L	110	109	1.44%	20%	
Physical Tests (QC	Lot: 477591)								1		
WT2203261-002	Pond A Pond A Discharge	conductivity		E100	2.0	μS/cm	798	800	0.250%	10%	
Physical Tests (QC	Lot: 478992)										
WT2203261-003	Pond D Pond D Discharge	рН		E108	0.10	pH units	8.29	8.19	0.10	Diff <2x LOR	
Physical Tests (QC	Lot: 478993)										
WT2203261-003	Pond D Pond D Discharge	alkalinity, total (as CaCO3)		E290	2.0	mg/L	112	109	2.87%	20%	
Physical Tests (QC	Lot: 478994)										
WT2203261-003	Pond D Pond D Discharge	conductivity		E100	2.0	μS/cm	798	791	0.881%	10%	
Anions and Nutrient	s (QC Lot: 476312)										
WT2203261-001	EQ Pond EQ Pond Discharge	nitrate (as N)	14797-55-8	E235.NO3	0.020	mg/L	0.356	0.354	0.293%	20%	
Anions and Nutrient	s (QC Lot: 476313)								1	· · · · ·	
WT2203261-001	EQ Pond EQ Pond Discharge	nitrite (as N)	14797-65-0	E235.NO2	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
Anions and Nutrient	s (QC Lot: 476314)										
WT2203261-001	EQ Pond EQ Pond Discharge	sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	206	206	0.0633%	20%	
Anions and Nutrient	s (QC Lot: 47631 <u>5)</u>									· · · · · ·	
WT2203261-001	EQ Pond EQ Pond Discharge	bromide	24959-67-9	E235.Br	0.10	mg/L	1.39	1.39	0.187%	20%	
Anions and Nutrient	s (QC Lot: 476316)								I	· · · · · ·	

Page	: 4 of 24
Work Order	: WT2203261 Amendment 1
Client	: Clean Harbors Environmental Services, Inc.
Proiect	12572192-20.22

Sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Anions and Nutrient	ts (QC Lot: 476316) - co	ontinued									
WT2203261-001	EQ Pond EQ Pond Discharge	fluoride	16984-48-8	E235.F	0.020	mg/L	1.09	1.09	0.282%	20%	
Anions and Nutrient	ts (QC Lot: 476317)										
WT2203261-001	EQ Pond EQ Pond Discharge	chloride	16887-00-6	E235.Cl	0.50	mg/L	54.5	54.7	0.301%	20%	
Anions and Nutrient	ts (QC Lot: 477592)										
WT2203261-002	Pond A Pond A Discharge	nitrate (as N)	14797-55-8	E235.NO3	0.020	mg/L	0.186	0.186	0.0005	Diff <2x LOR	
Anions and Nutrient	ts (QC Lot: 477593)										
WT2203261-002	Pond A Pond A Discharge	chloride	16887-00-6	E235.Cl	0.50	mg/L	54.7	54.8	0.144%	20%	
Anions and Nutrient	ts (QC Lot: 477594)								1		
WT2203261-002	Pond A Pond A Discharge	sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	209	209	0.0858%	20%	
Anions and Nutrient	ts (QC Lot: 477595)										
WT2203261-002	Pond A Pond A Discharge	fluoride	16984-48-8	E235.F	0.020	mg/L	1.12	1.12	0.0469%	20%	
Anions and Nutrient	ts (QC ot: 477596)										
WT2203261-002	Pond A Pond A Discharge	nitrite (as N)	14797-65-0	E235.NO2	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
Anions and Nutrient	ts (QC Lot: 477597)										
WT2203261-002	Pond A Pond A Discharge	bromide	24959-67-9	E235.Br	0.10	mg/L	1.88	1.89	0.601%	20%	
Anions and Nutrient	ts (QC Lot: 478986)										
WT2203261-003	Pond D Pond D Discharge	fluoride	16984-48-8	E235.F	0.020	mg/L	1.13	1.13	0.311%	20%	
Anions and Nutrient	ts (QC Lot: 478987)										
WT2203261-003	Pond D Pond D Discharge	bromide	24959-67-9	E235.Br	0.10	mg/L	1.87	1.90	1.26%	20%	
Anions and Nutrient	ts (QC Lot: 478988)					I			1		
WT2203261-003	Pond D Pond D Discharge	sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	210	210	0.234%	20%	
Anions and Nutrient	ts (QC Lot: 478989)										
WT2203261-003	Pond D Pond D Discharge	chloride	16887-00-6	E235.Cl	0.50	mg/L	55.4	55.3	0.220%	20%	
Anions and Nutrient	ts (QC Lot: 478990)										
WT2203261-003	Pond D Pond D Discharge	nitrate (as N)	14797-55-8	E235.NO3	0.020	mg/L	0.187	0.190	0.002	Diff <2x LOR	
Anions and Nutrient	ts (QC Lot: 478991)				1						
WT2203261-003	Pond D Pond D Discharge	nitrite (as N)	14797-65-0	E235.NO2	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
Anions and Nutrient	ts (QC Lot: 479029)				1						
WT2203193-003	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0107	0.0088	0.0019	Diff <2x LOR	
Anions and Nutrient	ts (QC Lot: <u>479030)</u>										
WT2203193-005	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.0053	0.0079	0.0026	Diff <2x LOR	
Anions and Nutrient	ts (QC Lot: <u>479031)</u>										
WT2203193-002	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	0.848	0.869	2.39%	20%	
Cyanides (QC Lot:	477421)				-	I					

Page	5 of 24
Work Order	: WT2203261 Amendment 1
Client	: Clean Harbors Environmental Services, Inc.
Project	12572192-20.22

Sub-Matrix: Water					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Cyanides (QC Lot: 4	77421) - continued										
FC2200824-001	Anonymous	cyanide, strong acid dissociable (total)		E333	0.0020	mg/L	<0.0020	<0.0020	0	Diff <2x LOR	
Organic / Inorganic	Carbon (QC Lot: 476256	5)									
WT2203050-007	Anonymous	carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	15.5	16.6	7.05%	20%	
Total Metals (QC Lo	t: 476011)										
WT2203249-001	Anonymous	aluminum, total	7429-90-5	E420	0.0300	mg/L	0.0428	0.0581	0.0153	Diff <2x LOR	
		antimony, total	7440-36-0	E420	0.00100	mg/L	0.00168	0.00172	0.00004	Diff <2x LOR	
		arsenic, total	7440-38-2	E420	0.00100	mg/L	0.00135	0.00116	0.00019	Diff <2x LOR	
		barium, total	7440-39-3	E420	0.00100	mg/L	0.295	0.303	2.69%	20%	
		beryllium, total	7440-41-7	E420	0.000200	mg/L	<0.000200	<0.000200	0	Diff <2x LOR	
		bismuth, total	7440-69-9	E420	0.000500	mg/L	<0.000500	<0.000500	0	Diff <2x LOR	
		boron, total	7440-42-8	E420	0.100	mg/L	0.136	0.143	0.007	Diff <2x LOR	
		cadmium, total	7440-43-9	E420	0.0000500	mg/L	<0.0000500	<0.0000500	0	Diff <2x LOR	
		calcium, total	7440-70-2	E420	0.500	mg/L	156	161	3.48%	20%	
		cobalt, total	7440-48-4	E420	0.00100	mg/L	<0.00100	<0.00100	0	Diff <2x LOR	
		copper, total	7440-50-8	E420	0.00500	mg/L	0.0332	0.0338	0.00059	Diff <2x LOR	
		iron, total	7439-89-6	E420	0.100	mg/L	0.830	0.854	0.024	Diff <2x LOR	
		lead, total	7439-92-1	E420	0.000500	mg/L	0.00357	0.00355	0.000023	Diff <2x LOR	
		magnesium, total	7439-95-4	E420	0.0500	mg/L	37.4	38.7	3.33%	20%	
		manganese, total	7439-96-5	E420	0.00100	mg/L	0.233	0.239	2.84%	20%	
		molybdenum, total	7439-98-7	E420	0.000500	mg/L	0.0101	0.0105	3.81%	20%	
		nickel, total	7440-02-0	E420	0.00500	mg/L	<0.00500	<0.00500	0	Diff <2x LOR	
		potassium, total	7440-09-7	E420	0.500	mg/L	40.4	42.5	5.01%	20%	
		selenium, total	7782-49-2	E420	0.000500	mg/L	<0.000500	<0.000500	0	Diff <2x LOR	
		silicon, total	7440-21-3	E420	1.00	mg/L	8.06	8.32	0.26	Diff <2x LOR	
		silver, total	7440-22-4	E420	0.000100	mg/L	<0.000100	<0.000100	0	Diff <2x LOR	
		sodium, total	7440-23-5	E420	0.500	mg/L	330	334	1.18%	20%	
		strontium, total	7440-24-6	E420	0.00200	mg/L	7.29	7.57	3.73%	20%	
		thallium, total	7440-28-0	E420	0.000100	mg/L	<0.000100	<0.000100	0	Diff <2x LOR	
		tin, total	7440-31-5	E420	0.00100	mg/L	<0.00100	<0.00100	0	Diff <2x LOR	
		vanadium, total	7440-62-2	E420	0.00500	mg/L	<0.00500	<0.00500	0	Diff <2x LOR	
		zinc, total	7440-66-6	E420	0.0300	mg/L	0.377	0.386	2.25%	20%	
Total Metals (QC Lo	t: 476234)										
WT2203237-001	Anonymous	mercury, total	7439-97-6	E508	0.0000050	mg/L	0.000078	0.0000057	0.0000021	Diff <2x LOR	
Speciated Metals (C	C Lot: 476554)										
WT2203249-001	Anonymous	chromium, hexavalent [Cr VI], total	18540-29-9	E532	0.00050	mg/L	0.00140	0.00145	0.00005	Diff <2x LOR	

Page	: 6 of 24
Work Order	: WT2203261 Amendment 1
Client	: Clean Harbors Environmental Services, Inc.
Project	: 12572192-20.22

Sub-Matrix: Water	ıb-Matrix: Water				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Aggregate Organics	(QC Lot: 478083)										
WT2203252-001	Anonymous	chemical oxygen demand [COD]		E559-L	10	mg/L	16	15	2	Diff <2x LOR	
Aggregate Organics	(QC Lot: 479032)										
WT2203193-004	Anonymous	phenols, total (4AAP)		E562	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
Volatile Organic Co	mpounds (QC Lot: 478	3095)									
WT2203274-001	Anonymous	acetone	67-64-1	E611D	20	µg/L	<20	<20	0	Diff <2x LOR	
		benzene	71-43-2	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		bromodichloromethane	75-27-4	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		bromoform	75-25-2	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		bromomethane	74-83-9	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		carbon disulfide	75-15-0	E611D	1.0	µg/L	<1.0	<1.0	0	Diff <2x LOR	
		carbon tetrachloride	56-23-5	E611D	0.20	µg/L	<0.20	<0.20	0	Diff <2x LOR	
		chlorobenzene	108-90-7	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		chloroethane	75-00-3	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		chloroform	67-66-3	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		chloromethane	74-87-3	E611D	2.0	µg/L	<2.0	<2.0	0	Diff <2x LOR	
		dibromochloromethane	124-48-1	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		dibromoethane, 1,2-	106-93-4	E611D	0.20	µg/L	<0.20	<0.20	0	Diff <2x LOR	
		dichlorobenzene, 1,2-	95-50-1	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		dichlorobenzene, 1,3-	541-73-1	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		dichlorobenzene, 1,4-	106-46-7	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		dichlorodifluoromethane	75-71-8	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		dichloroethane, 1,1-	75-34-3	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		dichloroethane, 1,2-	107-06-2	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		dichloroethylene, 1,1-	75-35-4	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		dichloroethylene, cis-1,2-	156-59-2	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		dichloroethylene, trans-1,2-	156-60-5	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		dichloromethane	75-09-2	E611D	1.0	µg/L	<1.0	<1.0	0	Diff <2x LOR	
		dichloropropane, 1,2-	78-87-5	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		dichloropropylene, cis-1,3-	10061-01-5	E611D	0.30	µg/L	<0.30	<0.30	0	Diff <2x LOR	
		dichloropropylene, trans-1,3-	10061-02-6	E611D	0.30	µg/L	<0.30	<0.30	0	Diff <2x LOR	
		ethylbenzene	100-41-4	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		hexane, n-	110-54-3	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		hexanone, 2-	591-78-6	E611D	20	µg/L	<20	<20	0	Diff <2x LOR	
		methyl ethyl ketone [MEK]	78-93-3	E611D	20	μg/L	<20	<20	0	Diff <2x LOR	
		methyl isobutyl ketone [MIBK]	108-10-1	E611D	20	ua/L	<20	<20	0	Diff <2x LOR	

Page: 7 of 24Work Order: WT2203261 Amendment 1Client: Clean Harbors Environmental Services, Inc.Project: 12572192-20.22

Sub-Matrix: Water					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Volatile Organic Co	mpounds (QC Lot: 478	095) - continued									
WT2203274-001	Anonymous	methyl-tert-butyl ether [MTBE]	1634-04-4	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		styrene	100-42-5	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		tetrachloroethane, 1,1,1,2-	630-20-6	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		tetrachloroethane, 1,1,2,2-	79-34-5	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		tetrachloroethylene	127-18-4	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		toluene	108-88-3	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		trichloroethane, 1,1,1-	71-55-6	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		trichloroethane, 1,1,2-	79-00-5	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		trichloroethylene	79-01-6	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		trichlorofluoromethane	75-69-4	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		vinyl chloride	75-01-4	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR	
		xylene, m+p-	179601-23-1	E611D	0.40	µg/L	<0.40	<0.40	0	Diff <2x LOR	
		xylene, o-	95-47-6	E611D	0.30	μg/L	<0.30	<0.30	0	Diff <2x LOR	

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Water					
Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 476309)					
alkalinity, total (as CaCO3)	E290	1	mg/L	1.1	
Physical Tests (QCLot: 476311)					
conductivity	E100	1	μS/cm	1.2	
Physical Tests (QCLot: 476771)					
solids, total dissolved [TDS]	E162	10	mg/L	<10	
Physical Tests (QCLot: 476784)					
solids, total suspended [TSS]	E160	3	mg/L	<3.0	
Physical Tests (QCLot: 477589)					
alkalinity, total (as CaCO3)	E290	1	mg/L	<1.0	
Physical Tests (QCLot: 477591)					
conductivity	E100	1	µS/cm	<1.0	
Physical Tests (QCLot: 478993)					
alkalinity, total (as CaCO3)	E290	1	mg/L	<1.0	
Physical Tests (QCLot: 478994)					
conductivity	E100	1	µS/cm	1.0	
Anions and Nutrients (QCLot: 476312)					
nitrate (as N)	14797-55-8 E235.NO3	0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 476313)			-		
nitrite (as N)	14797-65-0 E235.NO2	0.01	mg/L	<0.010	
Anions and Nutrients (QCLot: 476314)				.0.00	
sulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	<0.30	
Anions and Nutrients (QCLot: 476315)	04050 07 0 5005 Br	0.4		-0.40	
bromide	24959-67-9 E235.BF	0.1	mg/L	<0.10	
Anions and Nutrients (QCLot: 476316)		0.02		<0.020	
	10904-40-0 E233.F	0.02	ing/∟	<0.020	
Anions and Nutrients (QCLot: 476317)	16887.00.6 5235.01	0.5	ma/l	<0.50	
	10667-00-0 E233.CI	0.5	ilig/∟	<0.50	
Anions and Nutrients (QCLot: 477592)	14707 55 8 E225 NO2	0.03	ma/l	<0.020	
	14797-33-0 2233.1003	0.02	iiig/∟	~0.020	
Anions and Nutrients (QCLot: 477593)	16887-00-6 E235 CI	0.5	ma/l	<0.50	
		0.0	mg/∟	~0.00	
Anions and Nutrients (QCLot: 477594)	14808-79-8 E235 SO4	0.3	ma/l	<0.30	
Suilate (as SU4)		0.5	iiig/L	~0.00	

Page	: 9 of 24
Work Order	: WT2203261 Amendment 1
Client	: Clean Harbors Environmental Services, Inc.
Project	: 12572192-20.22

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Anions and Nutrients (QCLot: 477595)					
fluoride	16984-48-8 E235.F	0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 477596)					
nitrite (as N)	14797-65-0 E235.NO2	0.01	mg/L	<0.010	
Anions and Nutrients (QCLot: 477597)					
bromide	24959-67-9 E235.Br	0.1	mg/L	<0.10	
Anions and Nutrients (QCLot: 478986)					
fluoride	16984-48-8 E235.F	0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 478987)					
bromide	24959-67-9 E235.Br	0.1	mg/L	<0.10	
Anions and Nutrients (QCLot: 478988)					
sulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	<0.30	
Anions and Nutrients (QCLot: 478989)					
chloride	16887-00-6 E235.Cl	0.5	mg/L	<0.50	
Anions and Nutrients (QCLot: 478990)					
nitrate (as N)	14797-55-8 E235.NO3	0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 478991)					
nitrite (as N)	14797-65-0 E235.NO2	0.01	mg/L	<0.010	
Anions and Nutrients (QCLot: 479029)					
phosphorus, total	7723-14-0 E372-U	0.002	mg/L	<0.0020	
Anions and Nutrients (QCLot: 479030)					
ammonia, total (as N)	7664-41-7 E298	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 479031)					
Kjeldahl nitrogen, total [TKN]	E318	0.05	mg/L	<0.050	
Cyanides (QCLot: 477421)					
cyanide, strong acid dissociable (total)	E333	0.002	mg/L	<0.0020	
Organic / Inorganic Carbon (QCLot: 4	76256)				
carbon, dissolved organic [DOC]	E358-L	0.5	mg/L	<0.50	
Total Metals (QCLot: 476011)					
aluminum, total	7429-90-5 E420	0.003	mg/L	<0.0030	
antimony, total	7440-36-0 E420	0.0001	mg/L	<0.00010	
arsenic, total	7440-38-2 E420	0.0001	mg/L	<0.00010	
barium, total	7440-39-3 E420	0.0001	mg/L	<0.00010	
beryllium, total	7440-41-7 E420	0.00002	mg/L	<0.000020	
bismuth, total	7440-69-9 E420	0.00005	mg/L	<0.000050	
boron, total	7440-42-8 E420	0.01	mg/L	<0.010	
cadmium, total	7440-43-9 E420	0.000005	mg/L	<0.000050	
1 - Contraction of the second s	I. I	l l	I	1	

Page	: 10 of 24
Work Order	: WT2203261 Amendment 1
Client	: Clean Harbors Environmental Services, Inc.
Project	: 12572192-20.22

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Total Metals (QCLot: 476011) - continued						
calcium, total	7440-70-2	E420	0.05	mg/L	<0.050	
cobalt, total	7440-48-4	E420	0.0001	mg/L	<0.00010	
copper, total	7440-50-8	E420	0.0005	mg/L	<0.00050	
iron, total	7439-89-6	E420	0.01	mg/L	<0.010	
lead, total	7439-92-1	E420	0.00005	mg/L	<0.000050	
magnesium, total	7439-95-4	E420	0.005	mg/L	<0.0050	
manganese, total	7439-96-5	E420	0.0001	mg/L	<0.00010	
molybdenum, total	7439-98-7	E420	0.00005	mg/L	<0.000050	
nickel, total	7440-02-0	E420	0.0005	mg/L	<0.00050	
potassium, total	7440-09-7	E420	0.05	mg/L	<0.050	
selenium, total	7782-49-2	E420	0.00005	mg/L	<0.000050	
silicon, total	7440-21-3	E420	0.1	mg/L	<0.10	
silver, total	7440-22-4	E420	0.00001	mg/L	<0.000010	
sodium, total	7440-23-5	E420	0.05	mg/L	<0.050	
strontium, total	7440-24-6	E420	0.0002	mg/L	<0.00020	
thallium, total	7440-28-0	E420	0.00001	mg/L	<0.000010	
tin, total	7440-31-5	E420	0.0001	mg/L	<0.00010	
vanadium, total	7440-62-2	E420	0.0005	mg/L	<0.00050	
zinc, total	7440-66-6	E420	0.003	mg/L	<0.0030	
Total Metals (QCLot: 476234)						
mercury, total	7439-97-6	E508	0.000005	mg/L	<0.000050	
Speciated Metals (QCLot: 476554)						
chromium, hexavalent [Cr VI], total	18540-29-9	E532	0.0005	mg/L	<0.00050	
Aggregate Organics (QCLot: 478083)						
chemical oxygen demand [COD]		E559-L	10	mg/L	<10	
Aggregate Organics (QCLot: 479032)						
phenols, total (4AAP)		E562	0.001	mg/L	<0.0010	
Volatile Organic Compounds (QCLot: 478095)						
acetone	67-64-1	E611D	20	μg/L	<20	
benzene	71-43-2	E611D	0.5	μg/L	<0.50	
bromodichloromethane	75-27-4	E611D	0.5	μg/L	<0.50	
bromoform	75-25-2	E611D	0.5	µg/L	<0.50	
bromomethane	74-83-9	E611D	0.5	µg/L	<0.50	
carbon disulfide	75-15-0	E611D	1	µg/L	<1.0	
carbon tetrachloride	56-23-5	E611D	0.2	µg/L	<0.20	
chlorobenzene	108-90-7	E611D	0.5	µg/L	<0.50	
I contract the second se		1 Contraction of the second	1 Contraction of the second	I	1	I contract of the second se

Page	: 11 of 24
Work Order	: WT2203261 Amendment 1
Client	: Clean Harbors Environmental Services, Inc.
Project	: 12572192-20.22

Analyte CAS Number	Method	LOR	Unit	Result	Qualifier
Volatile Organic Compounds (QCLot: 478095) - continued					
chloroethane 75-00-3	E611D	0.5	µg/L	<0.50	
chloroform 67-66-3	E611D	0.5	µg/L	<0.50	
chloromethane 74-87-3	E611D	2	µg/L	<2.0	
dibromochloromethane 124-48-1	E611D	0.5	µg/L	<0.50	
dibromoethane, 1,2- 106-93-4	E611D	0.2	µg/L	<0.20	
dichlorobenzene, 1,2- 95-50-1	E611D	0.5	µg/L	<0.50	
dichlorobenzene, 1,3- 541-73-1	E611D	0.5	µg/L	<0.50	
dichlorobenzene, 1,4- 106-46-7	E611D	0.5	μg/L	<0.50	
dichlorodifluoromethane 75-71-8	E611D	0.5	μg/L	<0.50	
dichloroethane, 1,1- 75-34-3	E611D	0.5	μg/L	<0.50	
dichloroethane, 1,2- 107-06-2	E611D	0.5	μg/L	<0.50	
dichloroethylene, 1,1- 75-35-4	E611D	0.5	μg/L	<0.50	
dichloroethylene, cis-1,2- 156-59-2	E611D	0.5	µg/L	<0.50	
dichloroethylene, trans-1,2- 156-60-5	E611D	0.5	µg/L	<0.50	
dichloromethane 75-09-2	E611D	1	µg/L	<1.0	
dichloropropane, 1,2- 78-87-5	E611D	0.5	µg/L	<0.50	
dichloropropylene, cis-1,3- 10061-01-5	E611D	0.3	µg/L	<0.30	
dichloropropylene, trans-1,3- 10061-02-6	E611D	0.3	µg/L	<0.30	
ethylbenzene 100-41-4	E611D	0.5	µg/L	<0.50	
hexane, n- 110-54-3	E611D	0.5	µg/L	<0.50	
hexanone, 2- 591-78-6	E611D	20	µg/L	<20	
methyl ethyl ketone [MEK] 78-93-3	E611D	20	µg/L	<20	
methyl isobutyl ketone [MIBK] 108-10-1	E611D	20	µg/L	<20	
methyl-tert-butyl ether [MTBE] 1634-04-4	E611D	0.5	µg/L	<0.50	
styrene 100-42-5	E611D	0.5	µg/L	<0.50	
tetrachloroethane, 1,1,1,2- 630-20-6	E611D	0.5	µg/L	<0.50	
tetrachloroethane, 1,1,2,2- 79-34-5	E611D	0.5	µg/L	<0.50	
tetrachloroethylene 127-18-4	E611D	0.5	µg/L	<0.50	
toluene 108-88-3	E611D	0.5	µg/L	<0.50	
trichloroethane, 1,1,1- 71-55-6	E611D	0.5	µg/L	<0.50	
trichloroethane, 1,1,2- 79-00-5	E611D	0.5	µg/L	<0.50	
trichloroethylene 79-01-6	E611D	0.5	µg/L	<0.50	
trichlorofluoromethane 75-69-4	E611D	0.5	µg/L	<0.50	
vinyl chloride 75-01-4	E611D	0.5	µg/L	<0.50	
xylene, m+p- 179601-23-1	E611D	0.4	µg/L	<0.40	
xylene, o- 95-47-6	E611D	0.3	μg/L	<0.30	

Analyte	CAS Number	r Method	LOR	Unit	Result	Qualifier
Polycyclic Aromatic Hydrocarbons (QCLot: 476287)						
acenaphthene	83-32-9	E655B	0.2	µg/L	<0.20	
acenaphthylene	208-96-8	E655B	0.2	µg/L	<0.20	
anthracene	120-12-7	E655B	0.2	µg/L	<0.20	
benz(a)anthracene	56-55-3	E655B	0.2	μg/L	<0.20	
benzo(a)pyrene	50-32-8	E655B	0.05	μg/L	<0.050	
benzo(g,h,i)perylene	191-24-2	E655B	0.2	μg/L	<0.20	
benzo(k)fluoranthene	207-08-9	E655B	0.2	μg/L	<0.20	
chrysene	218-01-9	E655B	0.2	μg/L	<0.20	
dibenz(a,h)anthracene	53-70-3	E655B	0.2	μg/L	<0.20	
fluoranthene	206-44-0	E655B	0.2	μg/L	<0.20	
fluorene	86-73-7	E655B	0.2	μg/L	<0.20	
indeno(1,2,3-c,d)pyrene	193-39-5	E655B	0.2	μg/L	<0.20	
methylnaphthalene, 1-	90-12-0	E655B	0.4	μg/L	<0.40	
methylnaphthalene, 2-	91-57-6	E655B	0.4	μg/L	<0.40	
naphthalene	91-20-3	E655B	0.2	μg/L	<0.20	
perylene	198-55-0	E655B	0.2	μg/L	<0.20	
phenanthrene	85-01-8	E655B	0.2	μg/L	<0.20	
pyrene	129-00-0	E655B	0.2	μg/L	<0.20	
Phthalate Esters (QCLot: 476287)						
bis(2-ethylhexyl) phthalate [DEHP]	117-81-7	E655B	1	µg/L	<1.0	
Semi-Volatile Organics (QCLot: 47628	7)					
bis(2-chloroethyl) ether	111-44-4	E655B	0.4	µg/L	<0.40	
chloroaniline, 4-	106-47-8	E655B	0.4	µg/L	<0.40	
dichlorobenzene, 1,2-	95-50-1	E655B	0.4	µg/L	<0.40	
dichlorobenzene, 1,3-	541-73-1	E655B	0.4	µg/L	<0.40	
dichlorobenzene, 1,4-	106-46-7	E655B	0.4	µg/L	<0.40	
dichlorobenzidine, 3,3'-	91-94-1	E655B	0.4	µg/L	<0.40	
dinitrotoluene, 2,4-	121-14-2	E655B	0.4	µg/L	<0.40	
dinitrotoluene, 2,6-	606-20-2	E655B	0.4	μg/L	<0.40	
hexachlorobenzene	118-74-1	E655B	0.04	μg/L	<0.040	
hexachlorobutadiene	87-68-3	E655B	0.2	μg/L	<0.20	
hexachloroethane	67-72-1	E655B	0.4	μg/L	<0.40	
trichlorobenzene, 1,2,4-	120-82-1	E655B	0.4	μg/L	<0.40	
Chlorinated Phenolics (QCLot: 476287)						
chlorophenol, 2-	95-57-8	E655B	0.3	µg/L	<0.30	
dichlorophenol, 2,4-	120-83-2	E655B	0.3	µg/L	<0.30	
Page	: 13 of 24					
------------	--					
Work Order	: WT2203261 Amendment 1					
Client	: Clean Harbors Environmental Services, Inc.					
Project	: 12572192-20.22					

Sub-Matrix: Water

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Chlorinated Phenolics (QCLot: 476287)	- continued					
pentachlorophenol [PCP]	87-86-5	E655B	0.5	µg/L	<0.50	
tetrachlorophenol, 2,3,4,5-	4901-51-3	E655B	0.5	µg/L	<0.50	
tetrachlorophenol, 2,3,4,6-	58-90-2	E655B	0.5	μg/L	<0.50	
trichlorophenol, 2,4,5-	95-95-4	E655B	0.5	μg/L	<0.50	
trichlorophenol, 2,4,6-	88-06-2	E655B	0.5	µg/L	<0.50	
Chlorinated Phenolics (QCLot: 476289)						
trichlorophenol, 2,3,6-	933-75-5	E651E	0.2	µg/L	<0.20	
Non-Chlorinated Phenolics (QCLot: 4762	287)					
dimethylphenol, 2,4-	105-67-9	E655B	0.5	µg/L	<0.50	
dinitrophenol, 2,4-	51-28-5	E655B	1	µg/L	<1.0	

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water						Laboratory Control Sample (LCS) Report					
					Spike	Recovery (%)	Recovery	Limits (%)			
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier		
Physical Tests (QCLot: 476309)											
alkalinity, total (as CaCO3)		E290	1	mg/L	150 mg/L	101	85.0	115			
Physical Tests (QCLot: 476310)											
рН		E108		pH units	7 pH units	99.6	98.0	102			
Physical Tests (QCLot: 476311)											
conductivity		E100	1	µS/cm	1409 µS/cm	99.8	90.0	110			
Physical Tests (QCLot: 476771)											
solids, total dissolved [TDS]		E162	10	mg/L	1000 mg/L	85.6	85.0	115			
Physical Tests (QCLot: 476784)											
solids, total suspended [TSS]		E160	3	mg/L	150 mg/L	94.0	85.0	115			
Physical Tests (QCLot: 477589)											
alkalinity, total (as CaCO3)		E290	1	mg/L	150 mg/L	101	85.0	115			
Physical Tests (QCLot: 477590)											
рН		E108		pH units	7 pH units	100	98.0	102			
Physical Tests (QCLot: 477591)											
conductivity		E100	1	μS/cm	1409 µS/cm	100	90.0	110			
Physical Tests (QCLot: 478992)						1			1		
pH		E108		pH units	7 pH units	100	98.0	102			
Physical Tests (QCLot: 478993)						1			1		
alkalinity, total (as CaCO3)		E290	1	mg/L	150 mg/L	102	85.0	115			
Physical Tests (QCLot: 478994)									1		
conductivity		E100	1	μS/cm	1409 µS/cm	99.2	90.0	110			
Anions and Nutrients (QCLot: 476312)											
nitrate (as N)	14797-55-8	E235.NO3	0.02	mg/L	2.5 mg/L	100	90.0	110			
Anions and Nutrients (QCLot: 476313)											
nitrite (as N)	14797-65-0	E235.NO2	0.01	mg/L	0.5 mg/L	101	90.0	110			
Anions and Nutrients (QCLot: 476314)											
sulfate (as SO4)	14808-79-8	E235.SO4	0.3	mg/L	100 mg/L	103	90.0	110			
Anions and Nutrients (QCLot: 476315)											
bromide	24959-67-9	E235.Br	0.1	mg/L	0.5 mg/L	103	85.0	115			
Anions and Nutrients (QCLot: 476316)											
fluoride	16984-48-8	E235.F	0.02	mg/L	1 mg/L	101	90.0	110			
Anions and Nutrients (QCLot: 476317)											

Page: 15 of 24Work Order: WT2203261 Amendment 1Client: Clean Harbors Environmental Services, Inc.Project: 12572192-20.22

Sub-Matrix: Water									
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number Met	thod	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Anions and Nutrients (QCLot: 476317) - contin	ued								
chloride	16887-00-6 E23	35.CI	0.5	mg/L	100 mg/L	102	90.0	110	
Anions and Nutrients (QCLot: 477592)									
nitrate (as N)	14797-55-8 E23	35.NO3	0.02	mg/L	2.5 mg/L	99.9	90.0	110	
Anions and Nutrients (QCLot: 477593)									
chloride	16887-00-6 E23	35.CI	0.5	mg/L	100 mg/L	102	90.0	110	
Anions and Nutrients (QCLot: 477594)									
sulfate (as SO4)	14808-79-8 E23	35.SO4	0.3	mg/L	100 mg/L	102	90.0	110	
Anions and Nutrients (QCLot: 477595)									
fluoride	16984-48-8 E23	35.F	0.02	mg/L	1 mg/L	100	90.0	110	
Anions and Nutrients (QCLot: 477596)									
nitrite (as N)	14797-65-0 E23	35.NO2	0.01	mg/L	0.5 mg/L	100	90.0	110	
Anions and Nutrients (QCLot: 477597)									
bromide	24959-67-9 E23	35.Br	0.1	mg/L	0.5 mg/L	99.0	85.0	115	
Anions and Nutrients (QCLot: 478986)									
fluoride	16984-48-8 E23	35.F	0.02	mg/L	1 mg/L	100	90.0	110	
Anions and Nutrients (QCLot: 478987)									
bromide	24959-67-9 E23	35.Br	0.1	mg/L	0.5 mg/L	100	85.0	115	
Anions and Nutrients (QCLot: 478988)									
sulfate (as SO4)	14808-79-8 E23	35.SO4	0.3	mg/L	100 mg/L	102	90.0	110	
Anions and Nutrients (QCLot: 478989)									
chloride	16887-00-6 E23	35.CI	0.5	mg/L	100 mg/L	102	90.0	110	
Anions and Nutrients (QCLot: 478990)									
nitrate (as N)	14797-55-8 E23	35.NO3	0.02	mg/L	2.5 mg/L	100	90.0	110	
Anions and Nutrients (QCLot: 478991)									
nitrite (as N)	14797-65-0 E23	35.NO2	0.01	mg/L	0.5 mg/L	101	90.0	110	
Anions and Nutrients (QCLot: 479029)									
phosphorus, total	7723-14-0 E37	72-U	0.002	mg/L	0.431 mg/L	95.1	80.0	120	
Anions and Nutrients (QCLot: 479030)									
ammonia, total (as N)	7664-41-7 E29	98	0.005	mg/L	0.2 mg/L	100	85.0	115	
Anions and Nutrients (QCLot: 479031)									
Kjeldahl nitrogen, total [TKN]	E31	18	0.05	mg/L	4 mg/L	99.4	75.0	125	
Cyanides (QCLot: 477421)									
cyanide, strong acid dissociable (total)	E33	33	0.002	mg/L	0.25 mg/L	95.5	80.0	120	
Organic / Inorganic Carbon (QCLot: 476256)			0.5				20.0	100	
carbon, dissolved organic [DOC]	E35	08-L	0.5	mg/L	8.57 mg/L	102	80.0	120	

Page	: 16 of 24
Work Order	: WT2203261 Amendment 1
Client	: Clean Harbors Environmental Services, Inc.
Project	: 12572192-20.22

					Laboratory Control Sample (LCS) Report					
					Spike	Recovery (%)	Recovery			
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier	
otal Metals (QCLot: 476011)	7429-90-5	E420	0.003	ma/l	0.1 mg/l	00.4	80.0	120		
	7429-30-3	E420	0.0001	mg/L	0.1 mg/L	99.4	80.0	120		
	7440-30-0	E420	0.0001	mg/L	0.05 mg/L	100	80.0	120		
	7440-36-2	E420	0.0001	mg/L	0.05 mg/L	107	80.0	120		
Jarium, total	7440-39-3	E420	0.0001	mg/L	0.0125 mg/L	102	80.0	120		
	7440-41-7	E420	0.00002	mg/L	0.005 mg/L	95.4	80.0	120		
	7440-69-9	E420	0.00005	mg/∟	0.05 mg/L	95.3	80.0	120		
Joron, total	7440-42-8	E420	0.01	mg/L	0.05 mg/L	90.4	80.0	120		
admium, total	7440-43-9	E420	0.000005	mg/L	0.005 mg/L	102	80.0	120		
calcium, total	7440-70-2	E420	0.05	mg/L	2.5 mg/L	94.4	80.0	120		
cobalt, total	/440-48-4	E420	0.0001	mg/L	0.0125 mg/L	99.4	80.0	120		
copper, total	7440-50-8	E420	0.0005	mg/L	0.0125 mg/L	99.3	80.0	120		
ron, total	7439-89-6	E420	0.01	mg/L	0.05 mg/L	100	80.0	120		
ead, total	7439-92-1	E420	0.00005	mg/L	0.025 mg/L	101	80.0	120		
nagnesium, total	7439-95-4	E420	0.005	mg/L	2.5 mg/L	102	80.0	120		
nanganese, total	7439-96-5	E420	0.0001	mg/L	0.0125 mg/L	99.2	80.0	120		
nolybdenum, total	7439-98-7	E420	0.00005	mg/L	0.0125 mg/L	100	80.0	120		
nickel, total	7440-02-0	E420	0.0005	mg/L	0.025 mg/L	99.5	80.0	120		
potassium, total	7440-09-7	E420	0.05	mg/L	2.5 mg/L	101	80.0	120		
selenium, total	7782-49-2	E420	0.00005	mg/L	0.05 mg/L	108	80.0	120		
silicon, total	7440-21-3	E420	0.1	mg/L	0.5 mg/L	98.3	60.0	140		
silver, total	7440-22-4	E420	0.00001	mg/L	0.005 mg/L	95.9	80.0	120		
sodium, total	7440-23-5	E420	0.05	mg/L	2.5 mg/L	102	80.0	120		
strontium, total	7440-24-6	E420	0.0002	mg/L	0.0125 mg/L	104	80.0	120		
hallium, total	7440-28-0	E420	0.00001	mg/L	0.05 mg/L	98.1	80.0	120		
in, total	7440-31-5	E420	0.0001	mg/L	0.025 mg/L	101	80.0	120		
vanadium, total	7440-62-2	E420	0.0005	mg/L	0.025 mg/L	102	80.0	120		
zinc, total	7440-66-6	E420	0.003	mg/L	0.025 mg/L	109	80.0	120		
Total Metals (QCLot: 476234)										
nercury, total	7439-97-6	E508	0.000005	mg/L	0.0001 mg/L	97.3	80.0	120		
Speciated Metals (QCLot: 476554)										
chromium, hexavalent [Cr VI], total	18540-29-9	E532	0.0005	mg/L	0.025 mg/L	99.3	80.0	120		
Aggregate Organics (QCLot: 478083)		E550-I	10	ma/l	100 mg/l	00.7	85.0	115		
				ilig/L	100 mg/L	33.1	00.0	110		
ohenols, total (4AAP)		E562	0.001	mg/L	0.02 mg/L	103	85.0	115		

Page	: 17 of 24
Work Order	: WT2203261 Amendment 1
Client	: Clean Harbors Environmental Services, Inc.
Project	: 12572192-20.22

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report					
			Spike	Recovery (%)	Recover					
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier	
olatile Organic Compounds (QCLot	: 478095)	E611D	20		400 //	440	70.0	120	1	
icetone	71 42 0	E611D	20	µg/L	100 µg/L	116	70.0	130		
penzene	71-43-2	E611D	0.5	µg/L	100 µg/L	110	70.0	130		
romodicniorometnane	75-27-4	E611D	0.5	µg/L	100 µg/L	106	70.0	130		
	75-25-2		0.5	µg/L	100 µg/L	104	70.0	130		
	74-03-9	E611D	0.5	µg/L	100 µg/L	93.4	70.0	130		
	75-15-0	E611D	0.2	µg/L	100 µg/L	96.2	70.0	130		
	50-23-5	E611D	0.2	µg/L	100 µg/L	104	70.0	130		
	75.00.3	E611D	0.5	µg/L	100 µg/L	102	70.0	130		
nioroethane	75-00-3	E011D	0.5	µg/L	100 µg/L	108	70.0	130		
	07-00-3		0.5	μg/L	100 µg/L	106	70.0	130		
	74-87-3	E011D	2	µg/L	100 µg/L	96.4	70.0	130		
Ibromochloromethane	124-48-1	E011D	0.5	µg/L	100 µg/L	101	70.0	130		
ibromoethane, 1,2-	106-93-4	E611D	0.2	µg/L	100 µg/L	100	70.0	130		
chlorobenzene, 1,2-	95-50-1	E611D	0.5	µg/L	100 µg/L	113	70.0	130		
chlorobenzene, 1,3-	541-73-1	E611D	0.5	µg/L	100 µg/L	110	70.0	130		
ichlorobenzene, 1,4-	106-46-7	E611D	0.5	µg/L	100 µg/L	113	70.0	130		
chlorodifluoromethane	/5-/1-8	E611D	0.5	µg/L	100 µg/L	87.8	70.0	130		
ichloroethane, 1,1-	75-34-3	E611D	0.5	µg/L	100 µg/L	106	70.0	130		
ichloroethane, 1,2-	107-06-2	E611D	0.5	µg/L	100 µg/L	105	70.0	130		
chloroethylene, 1,1-	75-35-4	E611D	0.5	µg/L	100 µg/L	106	70.0	130		
chloroethylene, cis-1,2-	156-59-2	E611D	0.5	µg/L	100 µg/L	108	70.0	130		
ichloroethylene, trans-1,2-	156-60-5	E611D	0.5	µg/L	100 µg/L	111	70.0	130		
chloromethane	75-09-2	E611D	1	µg/L	100 µg/L	106	70.0	130		
ichloropropane, 1,2-	78-87-5	E611D	0.5	µg/L	100 µg/L	108	70.0	130		
chloropropylene, cis-1,3-	10061-01-5	E611D	0.3	µg/L	100 µg/L	92.4	70.0	130		
ichloropropylene, trans-1,3-	10061-02-6	E611D	0.3	µg/L	100 µg/L	93.2	70.0	130		
thylbenzene	100-41-4	E611D	0.5	µg/L	100 µg/L	105	70.0	130		
exane, n-	110-54-3	E611D	0.5	µg/L	100 µg/L	110	70.0	130		
exanone, 2-	591-78-6	E611D	20	µg/L	100 µg/L	82.2	70.0	130		
ethyl ethyl ketone [MEK]	78-93-3	E611D	20	µg/L	100 µg/L	105	70.0	130		
ethyl isobutyl ketone [MIBK]	108-10-1	E611D	20	µg/L	100 µg/L	86.3	70.0	130		
ethyl-tert-butyl ether [MTBE]	1634-04-4	E611D	0.5	μg/L	100 µg/L	103	70.0	130		
<i>/</i> rene	100-42-5	E611D	0.5	μg/L	100 µg/L	90.2	70.0	130		
trachloroethane, 1,1,1,2-	630-20-6	E611D	0.5	μg/L	100 µg/L	101	70.0	130		
trachloroethane, 1,1,2,2-	79-34-5	E611D	0.5	µg/L	100 µg/L	108	70.0	130		
trachloroethylene	127-18-4	E611D	0.5	µg/L	100 µg/L	103	70.0	130		
oluene	108-88-3	E611D	0.5	µg/L	100 µg/L	107	70.0	130		

Page	: 18 of 24
Work Order	: WT2203261 Amendment 1
Client	: Clean Harbors Environmental Services, Inc.
Project	: 12572192-20.22

Jb-Matrix: Water					Laboratory Control Sample (LCS) Report				
		Spike	Recovery (%)	Recovery Limits (%)					
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Volatile Organic Compounds (QCL	ot: 478095) - continued								
trichloroethane, 1,1,1-	71-55-6	E611D	0.5	µg/L	100 µg/L	101	70.0	130	
trichloroethane, 1,1,2-	79-00-5	E611D	0.5	µg/L	100 µg/L	104	70.0	130	
trichloroethylene	79-01-6	E611D	0.5	µg/L	100 µg/L	103	70.0	130	
trichlorofluoromethane	75-69-4	E611D	0.5	µg/L	100 µg/L	97.5	70.0	130	
vinyl chloride	75-01-4	E611D	0.5	µg/L	100 µg/L	94.7	70.0	130	
xylene, m+p-	179601-23-1	E611D	0.4	µg/L	200 µg/L	108	70.0	130	
xylene, o-	95-47-6	E611D	0.3	µg/L	100 µg/L	108	70.0	130	
Polycyclic Aromatic Hydrocarbons	(QCLot: 476287)								
acenaphthene	83-32-9	E655B	0.2	µg/L	1.6 µg/L	90.5	50.0	140	
acenaphthylene	208-96-8	E655B	0.2	µg/L	1.6 µg/L	86.4	50.0	140	
anthracene	120-12-7	E655B	0.2	μg/L	1.6 µg/L	97.1	50.0	140	
benz(a)anthracene	56-55-3	E655B	0.2	µg/L	1.6 µg/L	103	50.0	140	
benzo(a)pyrene	50-32-8	E655B	0.05	µg/L	1.6 µg/L	86.6	50.0	140	
benzo(g,h,i)perylene	191-24-2	E655B	0.2	µg/L	1.6 µg/L	99.6	50.0	140	
benzo(k)fluoranthene	207-08-9	E655B	0.2	µg/L	1.6 µg/L	100	50.0	140	
chrysene	218-01-9	E655B	0.2	µg/L	1.6 µg/L	97.2	50.0	140	
dibenz(a,h)anthracene	53-70-3	E655B	0.2	µg/L	1.6 µg/L	102	50.0	140	
fluoranthene	206-44-0	E655B	0.2	µg/L	1.6 µg/L	105	50.0	140	
fluorene	86-73-7	E655B	0.2	µg/L	1.6 µg/L	93.9	50.0	140	
indeno(1,2,3-c,d)pyrene	193-39-5	E655B	0.2	µg/L	1.6 µg/L	95.4	50.0	140	
methylnaphthalene, 1-	90-12-0	E655B	0.4	µg/L	1.6 µg/L	78.8	50.0	140	
methylnaphthalene, 2-	91-57-6	E655B	0.4	µg/L	1.6 µg/L	84.4	50.0	140	
naphthalene	91-20-3	E655B	0.2	µg/L	1.6 µg/L	86.1	50.0	140	
perylene	198-55-0	E655B	0.2	µg/L	1.6 µg/L	95.7	50.0	140	
phenanthrene	85-01-8	E655B	0.2	µg/L	1.6 µg/L	93.6	50.0	140	
pyrene	129-00-0	E655B	0.2	µg/L	1.6 µg/L	102	50.0	140	
Phthalate Esters (QCLot: 476287)									
bis(2-ethylhexyl) phthalate [DEHP]	117-81-7	E655B	1	µg/L	6.4 µg/L	110	50.0	140	
Semi-Volatile Organics (QCLot: 470	6287)	FORED					50.0	440	
bis(2-chloroethyl) ether	111-44-4	E055B	0.4	µg/L "	1.6 µg/L	93.4	50.0	140	
chloroaniline, 4-	106-47-8	E055B	0.4	µg/L	1.6 µg/L	68.4	30.0	140	
dichlorobenzene, 1,2-	95-50-1	E655B	0.4	µg/L	1.6 µg/L	71.2	40.0	130	
dichlorobenzene, 1,3-	541-73-1	E655B	0.4	µg/L	1.6 µg/L	62.6	50.0	140	
dichlorobenzene, 1,4-	106-46-7	E655B	0.4	µg/L	1.6 µg/L	65.0	40.0	130	
dichlorobenzidine, 3,3'-	91-94-1	E655B	0.4	µg/L	1.6 µg/L	68.4	50.0	140	

Page	: 19 of 24
Work Order	: WT2203261 Amendment 1
Client	: Clean Harbors Environmental Services, Inc.
Project	: 12572192-20.22

Sub-Matrix: Water				Laboratory Control Sample (LCS) Report								
					Spike Recovery (%) Recovery Limits (%)							
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier			
Semi-Volatile Organics (QCLot: 476287) - continued												
dinitrotoluene, 2,4-	121-14-2	E655B	0.4	µg/L	1.6 µg/L	118	50.0	140				
dinitrotoluene, 2,6-	606-20-2	E655B	0.4	µg/L	1.6 µg/L	107	50.0	140				
hexachlorobenzene	118-74-1	E655B	0.04	µg/L	1.6 µg/L	87.1	40.0	130				
hexachlorobutadiene	87-68-3	E655B	0.2	μg/L	1.6 µg/L	48.6	40.0	130				
hexachloroethane	67-72-1	E655B	0.4	μg/L	1.6 µg/L	55.3	40.0	130				
trichlorobenzene, 1,2,4-	120-82-1	E655B	0.4	μg/L	1.6 µg/L	64.5	50.0	130				
Chlorinated Phenolics (QCLot: 4	476287)											
chlorophenol, 2-	95-57-8	E655B	0.3	µg/L	4.8 µg/L	85.3	65.0	130				
dichlorophenol, 2,4-	120-83-2	E655B	0.3	μg/L	4.8 µg/L	90.9	65.0	130				
pentachlorophenol [PCP]	87-86-5	E655B	0.5	μg/L	4.8 µg/L	129	65.0	130				
tetrachlorophenol, 2,3,4,5-	4901-51-3	E655B	0.5	μg/L	4.8 µg/L	100	50.0	130				
tetrachlorophenol, 2,3,4,6-	58-90-2	E655B	0.5	μg/L	4.8 µg/L	109	65.0	130				
trichlorophenol, 2,4,5-	95-95-4	E655B	0.5	μg/L	4.8 µg/L	104	65.0	130				
trichlorophenol, 2,4,6-	88-06-2	E655B	0.5	µg/L	4.8 µg/L	102	65.0	130				
Chlorinated Phenolics (QCLot: 4	476289)					1						
trichlorophenol, 2,3,6-	933-75-5	E651E	0.2	µg/L	0.4 µg/L	# 139	50.0	130	LCS-H			
Non-Chlorinated Phenolics (QC	Lot: 476287)					1						
dimethylphenol, 2,4-	105-67-9	E655B	0.5	µg/L	4.8 μg/L	79.8	30.0	130				
dinitrophenol, 2,4-	51-28-5	E655B	1	µg/L	4.8 μg/L	# 148	40.0	140	LCS-H			
Ovelifiere												
Quaimers												
Qualifier	Description											

LCS-H

Lab Control Sample recovery was above ALS DQO. Non-detected sample results are considered reliable. Other results, if reported, have been qualified.

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water					Matrix Spike (MS) Report								
					Spil	ke	Recovery (%)	Recovery	Limits (%)				
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier			
Anions and Nutri	ents (QCLot: 476312)												
WT2203261-001	EQ Pond EQ Pond Discharge	nitrate (as N)	14797-55-8	E235.NO3	2.50 mg/L	2.5 mg/L	100	75.0	125				
Anions and Nutri	ents (QCLot: 476313)												
WT2203261-001	EQ Pond EQ Pond Discharge	nitrite (as N)	14797-65-0	E235.NO2	0.512 mg/L	0.5 mg/L	102	75.0	125				
Anions and Nutri	ents (QCLot: 476314)												
WT2203261-001	EQ Pond EQ Pond Discharge	sulfate (as SO4)	14808-79-8	E235.SO4	ND mg/L	100 mg/L	ND	75.0	125				
Anions and Nutri	ents (QCLot: 476315)												
WT2203261-001	EQ Pond EQ Pond Discharge	bromide	24959-67-9	E235.Br	ND mg/L	0.5 mg/L	ND	75.0	125				
Anions and Nutri	ents (QCLot: 476316)												
WT2203261-001	EQ Pond EQ Pond Discharge	fluoride	16984-48-8	E235.F	ND mg/L	1 mg/L	ND	75.0	125				
Anions and Nutri	ents (QCLot: 476317)												
WT2203261-001	EQ Pond EQ Pond Discharge	chloride	16887-00-6	E235.CI	102 mg/L	100 mg/L	102	75.0	125				
Anions and Nutri	ents (QCLot: 477592)												
WT2203261-002	Pond A Pond A Discharge	nitrate (as N)	14797-55-8	E235.NO3	2.44 mg/L	2.5 mg/L	97.8	75.0	125				
Anions and Nutri	ents (QCLot: 477593)												
WT2203261-002	Pond A Pond A Discharge	chloride	16887-00-6	E235.CI	99.5 mg/L	100 mg/L	99.5	75.0	125				
Anions and Nutri	ents (QCLot: 477594)												
WT2203261-002	Pond A Pond A Discharge	sulfate (as SO4)	14808-79-8	E235.SO4	ND mg/L	100 mg/L	ND	75.0	125				
Anions and Nutri	ents (QCLot: 477595)												
WT2203261-002	Pond A Pond A Discharge	fluoride	16984-48-8	E235.F	ND mg/L	1 mg/L	ND	75.0	125				
Anions and Nutri	ents (QCLot: 477596)												
WT2203261-002	Pond A Pond A Discharge	nitrite (as N)	14797-65-0	E235.NO2	0.500 mg/L	0.5 mg/L	100	75.0	125				
Anions and Nutri	ents (QCLot: 477597)												
WT2203261-002	Pond A Pond A Discharge	bromide	24959-67-9	E235.Br	ND mg/L	0.5 mg/L	ND	75.0	125				
Anions and Nutri	ents (QCLot: 478986)												
WT2203261-003	Pond D Pond D Discharge	fluoride	16984-48-8	E235.F	ND mg/L	1 mg/L	ND	75.0	125				
Anions and Nutri	ents (QCLot: 478987)												

Page	: 21 of 24
Work Order	: WT2203261 Amendment 1
Client	: Clean Harbors Environmental Services, Inc.
Project	12572192-20.22

Matrix Spike (MS) Report Sub-Matrix: Water Recovery (%) Recovery Limits (%) Spike Laboratory sample Client sample ID Analyte CAS Number Method Concentration Target MS Low High Qualifier חו Anions and Nutrients (QCLot: 478987) - continued WT2203261-003 Pond D Pond D Discharge bromide 24959-67-9 E235.Br ND mg/L 0.5 mg/L ND 75.0 125 ----Anions and Nutrients (QCLot: 478988) Pond D Pond D Discharge WT2203261-003 sulfate (as SO4) 14808-79-8 E235.SO4 ND 75.0 125 ND mg/L 100 mg/L ----Anions and Nutrients (QCLot: 478989) WT2203261-003 Pond D Pond D Discharge chloride 16887-00-6 E235.CI 99.6 mg/L 99.6 75.0 125 100 mg/L ----Anions and Nutrients (QCLot: 478990) WT2203261-003 Pond D Pond D Discharge nitrate (as N) 14797-55-8 E235.NO3 2.46 mg/L 98.5 75.0 125 2.5 mg/L ----Anions and Nutrients (QCLot: 478991) WT2203261-003 Pond D Pond D Discharge nitrite (as N) 14797-65-0 E235.NO2 0.504 ma/L 101 75.0 125 0.5 mg/L ----Anions and Nutrients (QCLot: 479029) WT2203193-003 Anonymous phosphorus, total 7723-14-0 E372-U 0.0874 mg/L 87.4 70.0 130 0.1 mg/L ----Anions and Nutrients (QCLot: 479030) WT2203193-005 Anonymous 0.105 mg/L ammonia, total (as N) 7664-41-7 E298 0.1 mg/L 105 75.0 125 ----Anions and Nutrients (QCLot: 479031) WT2203193-002 Anonymous Kjeldahl nitrogen, total [TKN] 2.37 mg/L ----E318 2.5 mg/L 94.9 70.0 130 ----Cyanides (QCLot: 477421) FC2200824-001 Anonymous cyanide, strong acid dissociable (total) E333 0.231 mg/L 0.25 mg/L 92.5 70.0 130 --------Organic / Inorganic Carbon (QCLot: 476256) WT2203050-007 Anonymous carbon, dissolved organic [DOC] E358-L ND mg/L 5 mg/L ND 70.0 130 --------Total Metals (QCLot: 476011) WT2203250-001 Anonymous aluminum, total 7429-90-5 E420 ND mg/L 0.1 mg/L ND 70.0 130 ---antimony, total 7440-36-0 E420 0.0551 mg/L 0.05 mg/L 110 70.0 130 ---arsenic, total 7440-38-2 E420 0.0560 mg/L 0.05 mg/L 112 70.0 130 barium, total 7440-39-3 E420 ND mg/L 0.0125 mg/L ND 70.0 130 beryllium, total 7440-41-7 E420 0.00499 mg/L 0.005 mg/L 99.8 70.0 130 bismuth, total 7440-69-9 E420 0.0507 mg/L 0.05 mg/L 101 70.0 130 ---boron, total 7440-42-8 E420 ND mg/L 0.05 mg/L ND 70.0 130 cadmium, total 7440-43-9 E420 70.0 0.00543 mg/L 0.005 mg/L 109 130 calcium, total 7440-70-2 E420 ND mg/L 2.5 mg/L ND 70.0 130 cobalt. total 7440-48-4 E420 0.0128 mg/L 0.0125 mg/L 102 70.0 130 ---copper, total 7440-50-8 E420 ND 70.0 ND mg/L 0.0125 mg/L 130 iron, total 7439-89-6 E420 ND mg/L ND 70.0 130 0.05 mg/L ---lead, total E420 0.0242 mg/L 7439-92-1 0.025 mg/L 96.7 70.0 130

Page: 22 of 24Work Order: WT2203261 Amendment 1Client: Clean Harbors Environmental Services, Inc.Project: 12572192-20.22

Sub-Matrix: Water					Matrix Spike (MS) Report								
					Spi	ike	Recovery (%)	Recovery	Limits (%)				
Laboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier			
Total Metals (QC	Lot: 476011) - continue	d											
WT2203250-001	Anonymous	magnesium, total	7439-95-4	E420	ND mg/L	2.5 mg/L	ND	70.0	130				
		manganese, total	7439-96-5	E420	ND mg/L	0.0125 mg/L	ND	70.0	130				
		molybdenum, total	7439-98-7	E420	0.0130 mg/L	0.0125 mg/L	104	70.0	130				
		nickel, total	7440-02-0	E420	0.0252 mg/L	0.025 mg/L	101	70.0	130				
		potassium, total	7440-09-7	E420	ND mg/L	2.5 mg/L	ND	70.0	130				
		selenium, total	7782-49-2	E420	0.0566 mg/L	0.05 mg/L	113	70.0	130				
		silicon, total	7440-21-3	E420	ND mg/L	0.5 mg/L	ND	70.0	130				
		silver, total	7440-22-4	E420	0.00488 mg/L	0.005 mg/L	97.7	70.0	130				
		sodium, total	7440-23-5	E420	ND mg/L	2.5 mg/L	ND	70.0	130				
		strontium, total	7440-24-6	E420	ND mg/L	0.0125 mg/L	ND	70.0	130				
		thallium, total	7440-28-0	E420	0.0495 mg/L	0.05 mg/L	99.1	70.0	130				
		tin, total	7440-31-5	E420	0.0256 mg/L	0.025 mg/L	102	70.0	130				
		vanadium, total	7440-62-2	E420	0.0259 mg/L	0.025 mg/L	103	70.0	130				
		zinc, total	7440-66-6	E420	ND mg/L	0.025 mg/L	ND	70.0	130				
Total Metals (QC	Lot: 476234)												
WT2203249-001	Anonymous	mercury, total	7439-97-6	E508	0.000102 mg/L	0.0001 mg/L	102	70.0	130				
Speciated Metals	(QCLot: 476554)												
WT2203249-001	Anonymous	chromium, hexavalent [Cr VI], total	18540-29-9	E532	0.0396 mg/L	0.04 mg/L	98.9	70.0	130				
Aggregate Organ	ics (QCLot: 478083)												
WT2203252-001	Anonymous	chemical oxygen demand [COD]		E559-L	103 mg/L	100 mg/L	103	75.0	125				
Aggregate Organ	ics (QCLot: 479032)												
WT2203193-004	Anonymous	phenols, total (4AAP)		E562	0.0196 mg/L	0.02 mg/L	98.1	75.0	125				
Volatile Organic (Compounds (QCLot: 47	/8095)											
WT2203274-001	Anonymous	acetone	67-64-1	E611D	104 µg/L	100 µg/L	104	60.0	140				
		benzene	71-43-2	E611D	109 µg/L	100 µg/L	109	60.0	140				
		bromodichloromethane	75-27-4	E611D	103 µg/L	100 µg/L	103	60.0	140				
		bromoform	75-25-2	E611D	99.4 µg/L	100 µg/L	99.4	60.0	140				
		bromomethane	74-83-9	E611D	95.4 µg/L	100 µg/L	95.4	60.0	140				
		carbon disulfide	75-15-0	E611D	99.4 µg/L	100 µg/L	99.4	60.0	140				
		carbon tetrachloride	56-23-5	E611D	98.2 µg/L	100 µg/L	98.2	60.0	140				
		chlorobenzene	108-90-7	E611D	96.3 µg/L	100 µg/L	96.3	60.0	140				
		chloroethane	75-00-3	E611D	99.1 µg/L	100 µg/L	99.1	60.0	140				
		chloroform	67-66-3	E611D	103 µg/L	100 µg/L	103	60.0	140				
		chloromethane	74-87-3	E611D	96.4 µg/L	100 µg/L	96.4	60.0	140				
	1	dibromochloromethane	124-48-1	E611D	99.7 µg/L	100 µg/L	99.7	60.0	140				

Page: 23 of 24Work Order: WT2203261 Amendment 1Client: Clean Harbors Environmental Services, Inc.Project: 12572192-20.22

Sub-Matrix: Water	ter						Matrix Spi	ke (MS) Report		
					Spi	ike	Recovery (%)	Recovery	Limits (%)	
Laboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Volatile Organic (Compounds (QCLot:	478095) - continued								
WT2203274-001	Anonymous	dibromoethane, 1,2-	106-93-4	E611D	99.3 µg/L	100 µg/L	99.3	60.0	140	
		dichlorobenzene, 1,2-	95-50-1	E611D	104 µg/L	100 µg/L	104	60.0	140	
		dichlorobenzene, 1,3-	541-73-1	E611D	98.8 µg/L	100 µg/L	98.8	60.0	140	
		dichlorobenzene, 1,4-	106-46-7	E611D	102 µg/L	100 µg/L	102	60.0	140	
		dichlorodifluoromethane	75-71-8	E611D	93.0 µg/L	100 µg/L	93.0	60.0	140	
		dichloroethane, 1,1-	75-34-3	E611D	105 µg/L	100 µg/L	105	60.0	140	
		dichloroethane, 1,2-	107-06-2	E611D	105 µg/L	100 µg/L	105	60.0	140	
		dichloroethylene, 1,1-	75-35-4	E611D	102 µg/L	100 µg/L	102	60.0	140	
		dichloroethylene, cis-1,2-	156-59-2	E611D	104 µg/L	100 µg/L	104	60.0	140	
		dichloroethylene, trans-1,2-	156-60-5	E611D	104 µg/L	100 µg/L	104	60.0	140	
		dichloromethane	75-09-2	E611D	102 µg/L	100 µg/L	102	60.0	140	
		dichloropropane, 1,2-	78-87-5	E611D	105 µg/L	100 µg/L	105	60.0	140	
		dichloropropylene, cis-1,3-	10061-01-5	E611D	95.8 µg/L	100 µg/L	95.8	60.0	140	
		dichloropropylene, trans-1,3-	10061-02-6	E611D	91.8 µg/L	100 µg/L	91.8	60.0	140	
		ethylbenzene	100-41-4	E611D	98.1 µg/L	100 µg/L	98.1	60.0	140	
		hexane, n-	110-54-3	E611D	107 µg/L	100 µg/L	107	60.0	140	
		hexanone, 2-	591-78-6	E611D	93 µg/L	100 µg/L	93.0	60.0	140	
		methyl ethyl ketone [MEK]	78-93-3	E611D	104 µg/L	100 µg/L	104	60.0	140	
		methyl isobutyl ketone [MIBK]	108-10-1	E611D	98 µg/L	100 µg/L	98.0	60.0	140	
		methyl-tert-butyl ether [MTBE]	1634-04-4	E611D	102 µg/L	100 µg/L	102	60.0	140	
		styrene	100-42-5	E611D	95.1 μg/L	100 µg/L	95.1	60.0	140	
		tetrachloroethane, 1,1,1,2-	630-20-6	E611D	95.9 µg/L	100 µg/L	95.9	60.0	140	
		tetrachloroethane, 1,1,2,2-	79-34-5	E611D	108 µg/L	100 µg/L	108	60.0	140	
		tetrachloroethylene	127-18-4	E611D	93.3 µg/L	100 µg/L	93.3	60.0	140	
		toluene	108-88-3	E611D	101 µg/L	100 µg/L	101	60.0	140	
		trichloroethane, 1,1,1-	71-55-6	E611D	97.2 µg/L	100 µg/L	97.2	60.0	140	
		trichloroethane, 1,1,2-	79-00-5	E611D	102 µg/L	100 µg/L	102	60.0	140	
		trichloroethylene	79-01-6	E611D	98.1 µg/L	100 µg/L	98.1	60.0	140	
		trichlorofluoromethane	75-69-4	E611D	95.3 µg/L	100 µg/L	95.3	60.0	140	
		vinyl chloride	75-01-4	E611D	96.2 µg/L	100 µg/L	96.2	60.0	140	
		xylene, m+p-	179601-23-1	E611D	199 µg/L	200 µg/L	99.4	60.0	140	
		xylene, o-	95-47-6	E611D	100 µg/L	100 µg/L	100	60.0	140	

2		
LS)	2	1
WWW.a		
lsgloba		
al.com		

Chain of Custody (COC) / Analytical Request Form

Canada Toll Free: 1 800 668 9878

COC Number: 20

Page

Environmental Division Waterloo Work Order Reference WT2203261

G		Ę	3	G	
Ē	2		5		

Ife to complete all p	N/	reased by:	D	D YES	samples for hu	□ YES	e samples taken	URINKING W	Delation													I fun	(lab use only)	ALS Lab Wor		LSD	PO / AFE:	Job #:	ALS Account a		Contact:	Company:		invoice To	rustal Code:	Doctol Coul	City/Province	Chant	Frione:	Contact:	company:	vebout Io
AGE FOR ALS LOCATIONS AND SAMPLY	Kacha Hav 2	Date:	SHIPMENT RELEASE (client us	I NO	man consumption/ use2	N	from a Regulated DW System?	Vater (DW) Samples ¹ (client use)											PONDA 110 x +	PUND East		(This description v EQ Pond Discharge	Sample Identifica	rk Order # (lab use only):				44985-20-21	#/ Quote #	Project Information		GHD Ltd. (Acct 13791)	Copy of Invoice with Report	Same as Report To	NZL 3X2	vvaterioo, ON	455 Phillip St.	Company address below will appear on	519-884-0510	Stephanie Berton	GHD Ltd. (Acct 13791)	Contact and company name below v
NGINFORMATION	A HILL COCC	Time: D	50)	Please provide field temp a	2			Notes / Specify Lim										10401		Poud		will appear on the report)	tion and/or Coordinates	4 48060								i i i		YES NO				the final report				will appear on the final report
	eceived by:	IN		ind field pH for u			(LAC	its for result eva																LS Contact:	Location:	Requisitioner:	Major/Minor Code:	AFE/Cost Center:	Oil	Email 2	Email 1 or Fax	Select Invoice			Email 3	Email 2	Email 1 or Fax	Select Distribut	Compare Res	Merge QC/QC	Select Report I	
WHI		TIME SHIPMEN		inionized calculat			er coc oniy)	luation by selection										2-5-20	7-2-6-7	1	2-5-20	(dd-mmm-yy)	Date	Rick H					and Gas Requir		Invoicing-Canac	Distribution:	Invoice			See SSOW/PO	stephanie.berto	ion: 🗹 Emai	ults to Criteria on Ren	Reports with Cr	format: v pns	Reports
	Date:	RECEPTION (Ia		ion.				ng from drop-down										0000	. 0 900		0000	(hh:mm)	Time	Sampler:			Routing Code:	PO#	ed Fields (client		a@ghd.com	EMAIL MAIL	Kecipients				n@ghd.com		ort - nrovide details be			/ Recipients
		b use only)			0	10		below										Water	vvater		Water	Sample Type							use)			FAX						FAX	tow if how sharked			
100	ime:	ちばん		100	Cooler	Submis	Cooling	1	-									11	11	-	1	NU	ME	BER	OF	C	ON	TA		E	RS		F		Ģ		8		1	X	1	
-	R			INIT	Custo	ision C	Meth		_	-	-	-	-		-	+	-	7	7	:	77	svoo	Cs (\$	SVOC-4	4985	-P-\	NT)							ane an	late en	s may a	tay [E]	day [P2	day [Pq	outine [F		
くったた	eceive	No.	1000	AL COC	dy Sea	omme	d.			-	-	+	-	-	+	+	+	ת	7	:	70	VOC	(VC	C-ROU	-HS-	WT,)				In			aunt	d Time	pply to	if receiv] if rece	If recei	l] if rece		
	d by:		TAKEL .	LER TE	Is Inta	ents id	NO		-	-	+	+	+	-	+	-	+	70	7	2	R	ALK,	Con	ductivity	/, pH,	TD	S, T	SS	_	_	ficate F		or tests	Require	Danaile	rush res	ed by 3	ived by	ved by	lived by	marou	
				MPER	8	entified	M	SAN	-		\vdash		+	-	+	+	-	7	7	-		Phero	S6 (Br,N2N	3, CL	, F,	BR,	so	4)	_	Itered (I		that can	d for a		uests or	by 10a	3pm M	Spm M-	3pm M	nd Im	1
7	3	FINAL	E ST	TURES		on Sa	ICE	IPLE		1	1	-	1	1	-	+	-	R	70	-	D	DOC						F	+	-), Prese		not be p	1000	Ton t	weeker	- 1009	F - 509	F- 20%	-F - no	e(IAI	
	~	SHIP		റ്	S	Imple	¢	RECE							1	t	1	R	R	,	D	NH3-U	Jnio	nized A	mmo	nia		-	+	-	erved (F	Þ	erforme	AIS:		nds, sta	6 rush s	6 rush s	rush s	surchar) Requ	
U	Date:	MENT	2	44	VA	Recei	GE PAC	PTDE										70	R	7		Total	Vieta	als, Hard	dness	s-Ca	IC-T	-w	-	\neg) or Filt	nalys	d accord			utory h	urcharg	urcharg	urcharg	ges app	lested	
0	2	RECE	+	Idinipo	Samol	ot Notii	S	TAILS										ק	R	x	0	Mercu	ry T	otal		-	-		1	-	ered and	is Reo	ing to th			olidays ;	e minim	e minim	minim	¥		
F	S	PTION	de	FIL	Cilet	icatior	FROZ	(lab										R	R	7	7	Total (Cyar	nide, To	tal Cr	6			T	-	Prese	uest	e TAT re	0	ĺ.				E			1
1		lab		L COO	di C		E	ISE OF	-	_						-		77	R	7	F	REP: V	VT-4	44985-V	oc						ved (F/		quested	CI-ITITITI		Tele						
+		ISP ON		als Int		Tes C		N.	-	_	-	-		-	-	-	-	R 7	R 1	R 8	F	REP: V	VT-4	14985-N	letals	1				_	P) below		, you will	H-YY-11		phone						
4	16.	ŝ		MPERA				and and	-	-		-			-	-	-	8 8	20	80.	F	Field T	emp)		_			1			-	be cont	TALLEY.		+		ĥ	S	ł.		
1	Time					UN I		F	+		-					-	-	N	+	w			DI	ES /		11/	21	-	1		4		acted.	tomp		19 886			9			i
		T	-	S L		INIED	TATED								-		-		-		E	XTE	ND	EDST	OP			D	1.00							6910	11	1	2			00
1				VA		10														-	s	USP	EC	TED H	AZA	R) (s	ee	not	eel	1										!	C
							-		-		_	-	-	-	_	-	-										10										-		-	-		

CERTIFICATE OF ANALYSIS

Work Order	: WP2200475	Page	: 1 of 2
Client	Clean Harbors Environmental	Laboratory	: Winnipeg - Environmental
	Services, Inc.		
Contact	: Rob Girard	Account Manager	: Rick Hawthorne
Address	: 4090 TELFER ROAD RR1 RR1	Address	1329 Niakwa Road East, Unit 12
	Corunna ON Canada N0N 1G0		Winnipeg MB Canada R2J 3T4
Telephone	: 519 864 3815	Telephone	+1 204 255 9720
Project	: 12572192-20.22	Date Samples Received	: 03-May-2022 08:50
PO	: 735-002833	Date Analysis	: 04-May-2022
		Commenced	
C-O-C number	:	Issue Date	: 04-May-2022 15:13
Sampler	:		
Site	: 4090 Telfer Road, RR#1, Corunna		
Quote number	12572192-20.22-SSOW-735-002833		
No. of samples received	: 1		
No. of samples analysed	: 1		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with FDA 21 CFR Part 11.

Signatories Position

Jeremy Byrnes

Senior Analyst

Laboratory Department

Limnology, Winnipeg, Manitoba

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance. Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key : CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
%	percent
°C	degrees Celsius
pH units	pH units

>: greater than.

<: less than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical Results

WP2200475-001

Sub-Matrix:Water

(Matrix: Water)

Client sample ID: EQ Pond Discharge Microtox - EQ Pond Microtox

Client sampling date / time: 03-May-2022 00:00

Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis	QCLot
							Date	
Microtox								
Mtx colour		None	-	-	E863	-	04-May-2022	-
Mtx colour correction required		No	-	-	E863	-	04-May-2022	-
odour		Mild	-	-	E863	-	04-May-2022	-
Mtx turbidity		Low	-	-	E863	-	04-May-2022	-
solids, total [TS]		Low	-	-	E863	-	04-May-2022	-
temperature		19.8	0.010	°C	E863	-	04-May-2022	-
oxygen, dissolved	7782-44-7	115	0.10	%	E863	-	04-May-2022	-
Mtx pH, initial		7.81	0.010	pH units	E863	-	04-May-2022	-
Mtx Microtox other		See	-	-	E863	-	04-May-2022	-
		Attached						
Mtx IC50 (5 min)		>90	-	%	E863	-	04-May-2022	-
Mtx IC50 (15 min)		>90	-	%	E863	-	04-May-2022	-
Mtx IC50 (30 min)		>90	-	%	E863	-	04-May-2022	-
Mtx IC20 (5 min)	n/a	>90	-	%	E863	-	04-May-2022	-
Mtx IC20 (15 min)	n/a	>90	-	%	E863	-	04-May-2022	-
Mtx IC20 (30 min)	n/a	>90	-	%	E863	-	04-May-2022	-

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order	: WP2200475	Page	: 1 of 5
Client	: Clean Harbors Environmental Services, Inc.	Laboratory	: Winnipeg - Environmental
Contact	Rob Girard	Account Manager	: Rick Hawthorne
Address	: 4090 TELFER ROAD RR1	Address	: 1329 Niakwa Road East, Unit 12
	Corunna ON Canada N0N 1G0		Winnipeg, Manitoba Canada R2J 3T4
Telephone	: 519 864 3815	Telephone	: +1 204 255 9720
Project	: 12572192-20.22	Date Samples Received	: 03-May-2022 08:50
PO	: 735-002833	Issue Date	: 04-May-2022 15:13
C-O-C number	:		
Sampler	:		
Site	: 4090 Telfer Road, RR#1, Corunna		
Quote number	: 12572192-20.22-SSOW-735-002833		
No. of samples received	:1		
No. of samples analysed	:1		

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summarizes.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers

Outliers : Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• No Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• <u>No</u> Quality Control Sample Frequency Outliers occur.

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and /or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

flatrix: Water Evaluation: × = Holding time exceedance ; ✓ = Within Holding Time													
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	is				
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval			
			Date	Rec	Actual			Rec	Actual				
Microtox : Microtox Toxicity Test													
Amber glass EQ Pond Discharge Microtox - EQ Pond Microtox	E863	03-May-2022					04-May-2022	3 days	2 days	4			

Legend & Qualifier Definitions

Rec. HT: ALS recommended hold time (see units).

Page: 4 of 5Work Order: WP2200475Client: Clean Harbors Environmental Services, Inc.Project: 12572192-20.22

Quality Control Parameter Frequency Compliance

• No Quality Control data available for this section.

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Microtox Toxicity Test	E863	Water	Env. Canada EPS	The Microtox test organism is a marine luminescent bacteria (Vibrio fischeri). This
			1/RM/24	method measures the light output before and after the bacteria are exposed to a dilution
	Winnipeg -			series of concentrations of a sample. The degree of light loss (an indication of metabolic
	Environmental			inhibition) indicates the degree of toxicity of the sample.

QUALITY CONTROL REPORT

Work Order	WP2200475	Page	: 1 of 2						
Client	· Clean Harbors Environmental Services. Inc.	Laboratory	· Winnipeg - Environmental						
Contact	Rob Girard	Account Manager	Rick Hawthorne						
Address	: 455 Phillip Street Waterloo ON Canada N2L 3X2	Address	: 1329 Niakwa Road East, Unit 12 Winnipeg, Manitoba Canada R2J 3T4						
Telephone	: 519 864 3815	Telephone	:+1 204 255 9720						
Project	: 12572192-20.22	Date Samples Received	:03-May-2022 08:50						
PO	:735-002833	Date Analysis Commenced	:04-May-2022						
C-O-C number	:	Issue Date	:04-May-2022 15:13						
Sampler	:								
Site	:4090 Telfer Road, RR#1, Corunna								
Quote number	: 12572192-20.22-SSOW-735-002833								
No. of samples received	:1								
No. of samples analysed	:1								
 This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information: Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits Matrix Spike (MS) Report; Recovery and Acceptance Limits 									

- Reference Material (RM) Report; Recovery and Acceptance Limits
- Method Blank (MB) Report; Recovery and Acceptance Limits
- Laboratory Control Sample (LCS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Jeremy Byrnes	Senior Analyst	Limnology, Winnipeg, Manitoba

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key :

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percentage Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

COC Number: 20 -

Canada Toll Free: 1 800 668 9878

Page of

Depart Outcome of company and processing of pr																								
Campair, SHO LLA (GNU.100) Solid Report Formati _ The _ Exact _ The _	Report To	Contact and company name below will ap	pear on the final report		Reports / F	Recipients				Turna	round T	ime (T	AT) Re	equest	ed									
Contract. Norgo ODCC Reports with ODA Image ODCCC Reports with ODA Image ODCC Repo	Company:	GHD Ltd. (GHDL100)		Select Report F	ormat: 🔄 PDF		DD (DIGITAL)	Rou Rou	itine (R) i	f received	l by 3pm	M-F -	no surc	harges a	apply	-								
Pinece: [318] #344.0511 [318] #344.0511 [318] #347.651 #means data labor the finance of the finan	Contact:	Kory Ozgun		Merge QC/QCI	Reports with COA	YES N	0 N/A	4 d	ay [P4] if	received	by 3pm	M-F-2	20% rus	sh surch	arge m	inimum								0C ·
Company soles also all apper on the first right Desk: Intell PAN Intell PAN Intell PAN	Phone:	519-884-0510		Compare Resu	its to Criteria on Report	- provide details belo	ow if box checked		ay [P3]i ay [P3]i	f received f received	by 3pm	M-F - 3	25% ru 50% ru	ish surch	harge m	ninimum	1	AFF	ALS	ALS	use of	LABE 1(y)		ιc.
Street Emmit to File, key cognitigity con emit to File, key cognitigity con emits Emmit to File, key cognitizity effects Poslal Cose 175		Company address below will appear on the fi	inal report	Select Distributi	on: 🖃 EMAIL		FAX		ay [r∠]i ∋y [E]if	received	by 3pm if	M-F - 10	00% ru	sh surch	hange n hange n	ninimum	1		1	•		• ·		
ClassProduct Match 0, 0N Email 2 See SOV/IPO Could wilds Class 2 Model Code 11.3 SZ Consider	Street:	455 Phillip St.		Email 1 or Fax	kory.ozgun@ghd.o			San	ne day (E s may app	2] if rece ply to rust	ived by 1 resuests	0am Mi s on wee	FS - 20 ekends.	0% rus statuto	h surch Irv holic	arge. Ad	dditiora d non-	al						
Produit Cock Produit Cock<	City/Province:	Waterloo, ON		Email 2	See SSOW/PO	· .		rout	ine tests											<u></u>	· · · · · · · · · · · · · · · · · · ·			
Name Sample Service Note:	Postal Code:	N2L 3X2	·	Email 3		····-		Â, D	ate and	Time Re	quired fo	r all E&	P TAT				dd	-761000	47 h	h mun	am/pr	;1		
Copy of Produce with Report Its 5 _ 10 Saled House 01 [1 PKL] MBL _ MADE Max Max Adapts Request Company Child (GHDLMG) Email 1 or fair transformed (Child (GHDLMG)	Invoice To	Same as Report To	<u> </u>	1	Invoice R	ecipients				For	ests that	can not l	be perfe	ormed ad	cording	to the T	IAT req	uested,	you will	be cont	acted.	_		
Company CHD Ld. (2HDL100) Email 1 or Fax. Involving-Canada@pht.com Project Information Project Informatio		Copy of Invoice with Report YES	☑ NO	Select Invoice D)istribution: - EM	MAIL 🗍 MAIL [FAX							Ana	lysis	Requ	est							
Contact: Email 2 Image: Contact: Project Information ALS Account # Courbe #: W1202CGH0L1000000 (Planned Event) ALS Account # Courbe #: W1202CGH0L10000000 (Planned Event) Dab #: 12527198-20.22 MaxeMere Code Reduiting Code: Contact: Reduiting Code: USD Location: ALS Lab Work Order # (tab use only): ALS Contact: Sample Type Contact: EDP Ond Discharge Environmental Division Environmental Division Water Winnipeg Water Winnipeg Vinte Conter: Winnipeg Water Environmental Division Water Winnipeg Vinte Conter: Winter:	Company:	GHD Ltd. (GHDL100)		Email 1 or Fax	Invoicing-Canada	@ghd.com		L SZ		Indica	ate Filtere	ed (F), P	reserve	ed (P) o	r Filtere	ed and F	reserv	red (F/P) below			T	8	(se
Project Information Other and Gale Required Frieder(checking) Other and Gale Required Frieder(checkin	Contact:			Email 2				빌										\square					Ψ	ote
ALS Account # / Ducks #. W12022GHDL100000 (Planned Event) PECK Code Center: PO # Time PO # PO # PEC PEC </td <td></td> <td>Project Information</td> <td></td> <td>Oi</td> <td>and Gas Require</td> <td>d Fields (client</td> <td>use) - (seu</td> <td>Ī</td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>~</td> <td>ğ</td> <td>99</td>		Project Information		Oi	and Gas Require	d Fields (client	use) - (seu	Ī				•										~	ğ	99
Job F: 12572192-20.22 Magnetine code: IPouling Cod	ALS Account #	VT2022GHDL10	000060 (Planned Event)	AFE/Cost Center.		PO#		15								.]						기	2	ŝ
PO / AFE: 736-002833 Requisitioner: V	Job #:	12572192-20.22	. <u> </u>	Major/Minor Code:		Routing Code:		ļõ					1						1			보	ğ	8
LSD. Location: ALS Contact: Rick H Sampler: Barbelow	PO / AFE:	735-002833		Requisitioner:	•	- · · · · -							1			ŀ						z	2	AZA
ALS Lab Work Order # (lab use only): ALS Contact: Rick H Sampler: Bangler:	LSD:			Location:				Jōl	bed		1.										1	21	š	Ŧ
ALS Sample # Sample # dentification and/or Coordinates Date Time Sample Type 2 9	ALS Lab Wor	rk Order # (lab use only):		ALS Contact:	Rick H	Sampler:		BER	t (Winni	* :										đ		PLE		ECTED
(iab use only) (This description will appear on the report) (dd-mmm-yy) (thumm) Sample type Z <thz< th=""> <thz< th=""> <thz< th=""> <thz< th=""> <th< td=""><td>ALS Sample #</td><td>Sample Identificatio</td><td>on and/or Coordinates</td><td>1</td><td>Date</td><td>Time</td><td></td><td>12</td><td>atox</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td>Ξ</td><td>Ę</td><td>Ξŀ</td><td>Ē</td><td>SPE</td></th<></thz<></thz<></thz<></thz<>	ALS Sample #	Sample Identificatio	on and/or Coordinates	1	Date	Time		12	atox										1	Ξ	Ę	Ξŀ	Ē	SPE
EQ Pond Discharge Water R Image: State of the second	(iab use only)	(This description wil	l appear on the report)		(dd-mmm-yy)	(hh:mm)	Sample Type	" ź	Micr											Т.	Те Ц	S	<u>۲</u>	SU
Environmental Division Winnipeg Work Order Reference WP2200475 WP2200475 Image: State from a Regulated DW System? It is j not the second of the se		EQ Pond Discharge		·a	1		Water		R				1											
Winnipeg Work Order Reference WP2200475 WP2200475 Image: State of the second		·····		ental Divisio	on	· · · · · · · · · · · · · · · · · · ·																	-	
Work Order Reference WP2200475 Work Order Reference WP2200475 Image: State of the		·	Winnipeg	011101 2 1 1 1 2			1				+-		<u> </u>					-+	\rightarrow		-+			·
WP2200475 Image: State from a Regulated DW System? Image: State from a R	<u> </u>		Work Ord	der Reference	i	<u> </u>						-					\rightarrow		\rightarrow		+			
Drinking Water (DW) Samples' (client use) Notes / Specify Limits for result evaluation by selecting from drop-down below (Excel CQC only) SAMPLE RECEIPT DETAILS (lab use only) Drinking Water (DW) Samples' (client use) Notes / Specify Limits for result evaluation by selecting from drop-down below (Excel CQC only) SAMPLE RECEIPT DETAILS (lab use only) Please send to ALS Winnipeg ASAP for analysis (Short Hold Time) Address: 1329 Niakwa Submission Comments identified on Sample Receipt Sample Custody Seals Intact: res NA SHIPMENT RELEASE (client use) INITIAL SHIPMENT RECEPTION (lab use only) Final. SHIPMENT RECEPTION (lab use only) Released by: Date: Time: Received by: Date://YAY U 3 2U22 Time: Received by: Date: Time:			- WP:	22004	75 —	+						<u> </u>							+		-+		_	
Drinking Water (DW) Samples ¹ (client use) Notes / Spectry Limits for result evaluation by selecting from drop-down below (Excel COC only) Cooling Method: Note / Spectry Limits for result evaluation by selecting from drop-down below (Excel COC only) Cooling Method: Note / Spectry Limits for result evaluation by selecting from drop-down below (Excel COC only) Are samples taken from a Regulated DW System? YES Notes / Spectry Limits for result evaluation by selecting from drop-down below (Excel COC only) Cooling Method: Note / Spectry Limits for result evaluation by selecting from drop-down below (Excel COC only) Are samples taken from a Regulated DW System? YES NO Please send to ALS Winnipeg ASAP for analysis (Short Hold Time) Address: 1329 Niakwa Road East, Unit 12 Winnipeg MB. Conadia B21 3T4 Submission Comments identified on Sample Receipt Notification: YES					. •						_		<u> </u>						\rightarrow		$ \rightarrow $			
Image: State from a Regulated DW System? Image: State from a Regulated DW System? Image: State from a Regulated DW System? I YES No SAMPLE RECEIPT DETAILS (lab use only) Cooling Method: Income is identified on Sample Receipt Notification: YES I YES No Samples for human consumption/ use? Please send to ALS Winnipeg ASAP for analysis (Short Hold Time) Address: 1329 Niakwa Samples for human consumption/ use? Final. Science in the Receipt Notification: YES No ShiPMENT RELEASE (client use) Time: Received by: Date: Initial. ShiPMENT RECEPTION (lab use only) Final. ShiPMENT RECEPTION (lab use only) Final. ShiPMENT RECEPTION (lab use only) Cooler Custody Seals Intact: YES _ NO Final. ShiPMENT RECEPTION (lab use only) Cooler Custody Seals Intact: YES _ NO Released by: Date: Time: Received by: Date: Time: Received by: Date: Time:				• • • • • • • • • • • • • • • • • • •	101						·										[
Image: State from a Regulated DW System? Image: State from a Regulated DW System? I YES I NO Notes / Specify Limits for result evaluation by selecting from drop-down below (Excel COC only) Cooling Method: Notes / Specify Limits for result evaluation by selecting from drop-down below (Excel COC only) I YES I NO Notes / Specify Limits for result evaluation by selecting from drop-down below (Excel COC only) Cooling Method: Notes / Specify Limits for result evaluation by selecting from drop-down below (Excel COC only) Cooling Method: Notes / Specify Limits for result evaluation by selecting from drop-down below (Excel COC only) Cooling Method: Notes / Specify Limits for result evaluation by selecting from drop-down below (Excel COC only) Cooling Method: Note I YES I NO Please send to ALS Winnipeg ASAP for analysis (Short Hold Time) Address: 1329 Niakwa NinTiAL COLER TEMPERATURES *C FINAL COLER TEMPERATURES *C NinTiAL SHIPMENT RECEPTION (lab use only) FINAL SHIPMENT RECEPTION (lab use only) Final SHIPMENT RECEPTION (lab use only) Final SHIPMENT RECEPTION (lab use only) Cooler Custody Seals Intact: YES Material Coler Temperatures *C FINAL SHIPMENT RECEPTION (lab use only) Final SHIPMENT RECEPTION (lab use only) Final SHIPMENT RECEPTION (lab use only) Coler Custody S																								
Drinking Water (DW) Samples ¹ (client use) Notes / Specify Limits for result evaluation by selecting from drop-down below (Excel COC only) SAMPLE RECEIPT DETAILS (lab use only) Drinking Water (DW) Samples ¹ (client use) Notes / Specify Limits for result evaluation by selecting from drop-down below (Excel COC only) Cooling Method: Note / SAMPLE RECEIPT DETAILS (lab use only) Are samples taken from a Regulated DW System? I YES → NO Rozen Coolins INITIATE J YES → NO Please send to ALS Winnipeg ASAP for analysis (Short Hold Time) Address: 1329 Niakwa Submission Comments identified on Sample Receipt Notification: YES _ NO Mete asamples for human consumption/ use? Please send to ALS Winnipeg ASAP for analysis (Short Hold Time) Address: 1329 Niakwa NNITIAL COOLER TEMPERATURES *C FINAL COOLER TEMPERATURES *C FINAL COOLER TEMPERATURES *C SHIPMENT RELEASE (client use) Time: Received by. Date: Wint Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y																							- 1	
Drinking Water (DW) Samples ¹ (client use) Notes / Specify Limits for result evaluation by selecting from drop-down below (Excel COC only) SAMPLE RECEIPT DETAILS (lab use only) Drinking Water (DW) Samples ¹ (client use) Notes / Specify Limits for result evaluation by selecting from drop-down below (Excel COC only) SAMPLE RECEIPT DETAILS (lab use only) Are samples taken from a Regulated DW System? I YES NO I YES NO Are samples for human consumption/ use? Please send to ALS Winnipeg ASAP for analysis (Short Hold Time) Address: 1329 Niakwa Submission Comments identified on Sample Receipt Notification: I YES INC Cooler Custody Seals Intact: YES Z NO FINAL COLER TEMPERATURES °C FINAL COLER TEMPERATURES °C ShiPMENT RELEASE (client use) Time: Received by: Date: INITIAL SHIPMENT RECEPTION (lab use only) FINAL SHIPMENT RECEPTION (lab use only) Released by: Date: Time: Received by: Date: Time:				114			1														-+			
Telephone : + 1 204 255 9720 SAMPLE RECEIPT DETAILS (lab use only) Drinking Water (DW) Samples ¹ (client use) Notes / Specify Limits for result evaluation by selecting from drop-down below (Excel COC only) SAMPLE RECEIPT DETAILS (lab use only) Are samples taken from a Regulated DW System? IVES > NO IVES > NO Samples for human consumption/ use? Please send to ALS Winnipeg ASAP for analysis (Short Hold Time) Address: 1329 Niakwa Submission Consumption / use? INITIAL COLER TEMPERATURES °C FINAL COLER TEMPERATURES °C FINAL COLER TEMPERATURES °C YES \subseteq NO SHIPMENT RELEASE (client use) INITIAL SHIPMENT RECEPTION (lab use only) FINAL SHIPMENT RECEPTION (lab use only) Released by: Date: Time: Received by, A Date://MAT U 3 ZUZZ Time: Received by, Bate: Date: Time:	<u> </u>	····		የሚከት የስራ መ	\ I	<u> </u>	1:					+	-					-+	\rightarrow	-				
Drinking Water (DW) Samples ¹ (client use) Notes / Specify Limits for result evaluation by selecting from drop-down below (Excel COC only) SAMPLE RECEIPT DETAILS (lab use only) Are samples taken from a Regulated DW System? ICE			 Telephone : + 1	1 204 255 9720								<u> </u>												
Drinking Water (DW) Samples ¹ (client use) Notes / Specify Limits for result evaluation by selecting from drop-down below (Excel COC only) SAMPLE RECEIPT DETAILS (lab use only) Are samples taken from a Regulated DW System? ICE ICE ICE ICE ICE ICE ICE Cooling Method: ICE		· · · · · · · · · · · · · · · · · · ·			<u> </u>		-					ļ	<u> </u>									_		
Drinking Water (DW) Samples ¹ (client use) Notes / Specify Limits for result evaluation by selecting from drop-down below (Excel COC only) SAMPLE RECEIPT DETAILS (lab use only) Are samples taken from a Regulated DW System? ICE PACKS FROZEN Cooling Method: ICE PACKS FROZEN Cooling Method: ICE PACKS FROZEN Cooling INITIATED Are samples for human consumption/ use? Please send to ALS Winnipeg ASAP for analysis (Short Hold Time) Address: 1329 Niakwa Submission Comments identified on Sample Custody Seals Intact: YES NO Are samples for human consumption/ use? Please send to ALS Winnipeg ASAP for analysis (Short Hold Time) Address: 1329 Niakwa INITIAL COOLER TEMPERATURES *C FINAL COOLER TEMPERATURES *C FINAL COOLER TEMPERATURES *C YES Z NO No INITIAL SHIPMENT RECEPTION (lab use only) FINAL SHIPMENT RECEPTION (lab use only) FINAL SHIPMENT RECEPTION (lab use only) Released by: Date: Time: Received by, A · Date: IVA U 3 2U22 Time: Received by, A · Date: Time: Received by. Date: Time: Received by.			· · · · · · · · · · · · · · · · · · ·		1																			
Cooling Method: NONE ICE ICE PACKS FROZEN COOLING INITIATED Are samples taken from a Regulated DW System? IVES NO I YES NO Are samples for human consumption/ use? Please send to ALS Winnipeg ASAP for analysis (Short Hold Time) Address: 1329 Niakwa Submission Comments identified on Sample Receipt Notification: IVES IVES NO I YES NO Road East, Unit 12 Winninee MB. Canada R2 I 3T4 INITIAL SHIPMENT RECEPTION (lab use only) FINAL COOLER TEMPERATURES °C FINAL COOLER TEMPERATURES °C SHIPMENT RELEASE (client use) INITIAL SHIPMENT RECEPTION (lab use only) FINAL SHIPMENT RECEPTION (lab use only) FINAL SHIPMENT RECEPTION (lab use only) Released by: Date: Time: Received by, A. Date: IVAY U 3 2U22 Time: Received by; Date: Time:	Drinking	Water (DW) Samples ¹ (client use)	Notes / Specify	Limits for result e	evaluation by select	ing from drop-do	wn below					SAM	IPLE	RECE	IPT DI	ETAIL	S (lab) use (mly)					
Are samples taken from a Regulated DW System? I YES INO I YES INO NO Are samples for human consumption/ use? Please send to ALS Winnipeg ASAP for analysis (Short Hold Time) Address: 1329 Niakwa Submission Comments identified on Sample Receipt Notification: YES IN/A Sample Custody Seals Intact: YES IN/A Sample Custody Seals Inta				(E	xcel COC only)			Cooli	ng Met	hod: {	NON		ĨŒ		CE PAC	KS [FRC	DZEN		၂ထ	OLING	INITIA	TED	<u> </u>
In this with not interviewed by: Please send to ALS Winnipeg ASAP for analysis (Short Hold Time) Address: 1329 Niakwa Cooler Custody Seals Intact: res N/A Sample Custody Seals Intact Res N/A Sample Custody Seals Intact Res N/A Sample Custody Seal	Are samples tak	Ken from a Regulated DW System?						Subr	nission	Comme	ents ide	ntified	on Sa	mple I	Recei	ot Noti	ficatio		<u> </u>	ÆS	<u> </u>	0		
Are samples for numan consumption/ use? Please send to ALS Winniped ASAP for analysis (Short Hold Time) Address: 1329 Niakwa INITIAL COOLER TEMPERATURES *C PIRAL COOLER TEMPERATURES *C Image: YES IN NO Road East, Unit 12 Road				1			4000 N. 1.	Coole	er Cust	ody Sea	Is Intac	t:		s 🔟	N/A	Samp	le Cu	stody !	Seals	Intact	-	YES] N,	/A ·
Image: No Image	Are samples for	r numan consumption/ use?	Please send to ALS Wit Road Fast Unit 12	nnipeg ASAP for	analysis (Short Hol	d Time) Address	: 1329 Niakwa			TIAL COC	LER TEI	MPERA	TURES	i "C			FI	INAL CO	JULER		ERAIU	KES "C		
SHIPMENT RELEASE (client use) INITIAL SHIPMENT RECEPTION (lab use only) FINAL SHIPMENT RECEPTION (lab use only) Released by: Date: Time: Received by; Date: Time: Received by; Date: Time: Received by; Date: Time: Time: Received by; Date: Time: Time	<u>ر تے ۔</u>	YES <u>·</u> NO	Winninen MB, Canada J	R213T4	4. 4			12,	8				<u> </u>					<u> </u>						
Date: Time. Received by A. Date: Time. Received by: Date: Time. Received by: Date: Time.	Released by:	SHIPMENT RELEASE (client us	ie)	Papaiword bur	INITIAL SHIPMEN	IT RECEPTION	(lab use only)	Time		Dagei			FINAL	SHIP	MEN	REC	EPTR	UN (la	o use	only)	— т	Fimer		<u></u>
	Released by.		i ime:	Received by	A	Date: IVINI	0 3 2022	K (t af	rteceive V	o by:			i		-						i une:		
REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION WHITE - LABORATORY COPY YELLOW - CLIENT COPY	REFER TO BAC	K PAGE FOR ALS LOCATIONS AND SAMPL	ING INFORMATION	\ <u>\</u>	WH	ITE - LABORATO	RY COPY YE	LLOW -	CLIEN	T COPY				•				, 					AUG 2020	FRON

REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION WHITE - LABORATORY COPY YELLOW - CLIENT COPY Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy. 1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

COC Number: 20 -

Canada Toll Free: 1 800 668 9878

Page of

Report To	Contact and company name below will a	ppear on the final report	1	Reports / F	Recipients		<u> </u>		Turnar	ound Ti	ime (TA	AT) Re	quested			T	-								
Company:	GHD Ltd. (GHDL100)		Select Report Fo	ormat: 🔄 PDF	EXCEL () E	DD (DIGITAL)	Rou	tine [R] if	received	by 3pm	M-F - r	no surch	arges app	γk		1									
Contact:	Kory Ozgun		Merge QC/QCI	Reports with COA	🗌 YES 📃 N	0] N/A	🗍 4 d	aγ [P4] if ι	eceived t	γ3pm ∦	M-F - 21	0% rusi	n surcharg	je minim	num										
Phone:	519-884-0510		Compare Resul	Its to Criteria on Report	- provide details belo	ow if box checked	⊇ 3d	aγ [P3] if	received	by 3pm	M-F - 2	25% rus	h surchar	ge minin	num	AFF	FIX ALS	3 BAR	CODE USE O	LABEI niv)	LHEN	٢E			
	Company address below will appear on the	final report	Select Distributi	on: EMAIL	MAIL 🗌	FAX	H ² 0	aγ[P2]rf av[E]iffn	received b	oy.jpm v.3nm. №	M-r - 5 1-F - 10	50% rus 10% rus	n surchar h surchar	ge minin de minin	ກບກາ ການກາ			U							
Street:	455 Phillip St.		Email 1 or Fax	kory.ozgun@ghd.o	com		Sап	e day [E2] if recei	ved by 1	0am M-	-S - 20)% rush s	urcharge	e. Addition	rial .									
City/Province:	Waterloo, ON		Email 2	See SSOW/PO			rout	ine tests	y co rusii	1034000		.Kerias,	saladory	ionolays											
Postal Code:	N2L 3X2	·	Email 3				D and	ate and T	lme Req	ulred fo	r all E&I	P TATS			d,	<u>ส์-ส</u> าท	л-уу К	h.mn	атиря	m					
Invoice To	Same as Report To 🔄 YES	NO NO		Invoice R	ecipients				For te	sts that c	can not b	e perfe	med acco	ding to t	the TAT re	quested	, you will	i be conf	lacted.						
	Copy of Invoice with Report YES	NO NO	Select Invoice D)istribution: 1 EM	MAIL] MAIL	FAX							Analy	sis Re	quest										
Company:	GHD Ltd. (GHDL100)		Email 1 or Fax	Invoicing-Canada(@ghd.com		S		Indical	e Filtere	d (F), P	reserve	d (P) or F	iltered a	ind Prese	rved (F/	P) belov	v		8	es)				
Contact:			Email 2				Ξ										\square				۳	not			
	Project Information		N OI	l and Gas Require	d Fields (client	use)	Ā		·			, i								٦	Ξl	66			
ALS Account #	# / Quote #: WT2022GHDL1	000060 (Planned Event)	AFE/Cost Center:		PO#		15											1		키		s) (s			
Job #:	12572192-20.22		Major/Minor Code:		Routing Code:		Ī								Σ	₽ 	Å								
PO/AFE:	735-002833		Requisitioner:	•			L L L													Z	ВI	Ę			
LSD:	- <u></u>	· · · · · · · · · · · · · · · · · · ·	Location:				ĪŌ	bed		1 ·										ω ω	S1	H			
ALS Lab Wo	rk Order # (lab use only):		ALS Contact:	Rick H	Sampler:									dme		PLE	NDED	ECTE							
ALS Sample #	Sample Identificati	on and/or Coordinates		Date	Time		18	rota L					-					P P	E P	δ		SP			
(lab use only)	(This description w	II appear on the report)		(dd-mmm-yy)	(hh:mm)	Sample Type	ĪŽ	Σi Ωi										Ë.	Ē	S	<u>ũ</u>	รเ			
and the second second	EQ Pond Discharge			·		Water		R							·				1						
		Environm	ental Divisi	on				- T								T									
		Winnipeg								1						Τ									
		Work Or	der Reference			+						1				+									
		- WP	22004.	/5						+				÷		†					-+				
	·····	<u> </u>		+						+						+	$\left\{ -\right\}$			-+					
			アドレート	1111			-			+				<u> </u>		╂	+ +	 		-		<u> </u>			
	· · · · · · · · · · · · · · · · · · ·															<u> </u>	\vdash								
	· · · · · · · · · · · · · · · · · · ·		0 LE 134 CO 🖬																$ \blacksquare$	\square					
									1		ļ					1									
			allungu. 1922	1111																					
	1 ·····	Telephone : +	1 204 255 9720			· · · ·										1						•			
	· · · · · · · · · · · · · · · · · · ·				+	•								+		1									
		Notor / Specify	Limite for recult of	valuation by colort	ing from dron do					1	SAM	PLE F	RECEIP		AILS (I	ab use	i only)	ł		<u> </u>	<u> </u>				
Drinking	g Water (DW) Samples ¹ (client use)	Notes / Specity	Eminis for result e	ixcel COC only)	ing from drop-do	WIDOW	Cooli	ng Meth	od:	NON	E	ICE	☐ ICE	PACKS	F	ROZEN		<u> </u>	OLING	INITIA	TED				
Are samples tak	ken from a Regulated DW System?					· · · · · ·	Subn	hission (Comme	nts ider	ntified	on Sa	mple Re	ceipt I	Notificat	ion:		YES		NO					
1	YES 🍹 NO						Coole	er Custo	dy Seal	s Intac	t: 🦿	T YE	5] N//	A Sa	ample C	ustody	Seals	Intaci	t:] YES	יב	VA.			
Are samples for	r human consumption/ use?	Please send to ALS Wi	innipeg ASAP for	analysis (Short Hol	d Time) Address	: 1329 Niakwa	kwa INIITIAL COOLER TEMPERATURES °C FINAL COOLER TEMPERATU				JRES °C	<u> </u>													
	YES 🔄 NO	Road East, Unit 12	D212T4		•							·			ج* '										
	SHIPMENT RELEASE (client u	se)		INITIAL SHIPMEN	IT RECEPTION	(lab use only)	<u> </u>				ł	FINAL	SHIPM	ENT P	ECEPT	NON (iab us	e only)						
Released by:	Date:	Time:	Received by	A	Date: MAY	U 3 2022	Time	- F	Receive	d by:			T)ate:			_			Time:		_			
	K PACE FOR ALS LOCATIONS AND SALES			<u>· r</u> .			6.	206110	CORY							<u> </u>					AUG 201	20 5 20			
REFER TO DAU	IN FAGE FOR ALS LOCATIONS AND SAMPI	LING INFORMATION		, WH		RIUUPT YE	LLUW -		COPT																

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy.

1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

Appendix D Analytical Data Verification Memo

Technical Memorandum

February 02, 2023

То	Meghan O'Brien	Tel	+1 519 884 0510
Copy to		Email	Stephanie.berton@ghd.com
From	Stephanie Berton/an/3	Ref. No.	12572192
Subject	Analytical Data Verification Surface Water Sampling Events Clean Harbors Canada Inc. Sarnia, Ontario March and May 2022		

1. Introduction

The following document details an analytical data verification of results for surface water samples collected at the Clean Harbors Canada Inc. site in Sarnia, Ontario in March and May 2022. Samples were submitted to ALS Canada Ltd. (ALS) located in Waterloo, Ontario. A sample collection and analysis summary is presented in Table 1. A summary of the analytical methodology is presented in Table 2.

Standard GHD report deliverables were submitted by the laboratory. The final results and supporting quality assurance/quality control (QA/QC) data were assessed. Evaluation of the data was based on information obtained from the chain of custody forms, finished report forms, method blank data, duplicate data, recovery data from laboratory control samples (LCS), surrogate spikes and matrix spikes (MS).

The QA/QC criteria by which these data have been assessed are outlined in the analytical methods referenced in Table 2 and applicable guidance from the documents entitled:

- 1. "USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review", United States Environmental Protection Agency (USEPA) 540/R-99-008, September 2016.
- 2. "USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review", USEPA 540/R-94-013, September 2016.

Items 1 and 2 will subsequently be referred to as the "Guidelines" in this Memorandum.

2. Sample Holding Time and Preservation

The sample holding time criteria for the analyses are summarized in Table 2. Sample chain of custody documents and analytical reports were used to determine sample holding times. All samples were prepared and analyzed within the required holding times.

Most samples were properly preserved and delivered on ice and received by the laboratory at the required temperature (<10°C). Samples collected on May 3, 2022 arrived at the laboratory on the day of sampling and did not have time to achieve a temperature of <10°C. This is acceptable since the cooling process had been initiated.

→ The Power of Commitment

3. Laboratory Method Blank Analyses

Method blanks are prepared from a purified matrix and analyzed with investigative samples to determine the existence and magnitude of sample contamination introduced during the analytical procedures.

For this study, laboratory method blanks were analyzed at a minimum frequency of 1 per 20 investigative samples and/or 1 per analytical batch.

Most method blank results were non-detect, indicating that laboratory contamination was not a factor for this investigation. Alkalinity and conductivity were detected in some of the method blanks. Associated sample concentrations were greater than ten times the blank values and were not qualified.

4. Surrogate Spike Recoveries

In accordance with the methods employed, all samples, blanks, and QC samples analyzed for organics are spiked with surrogate compounds prior to sample extraction and/or analysis. Surrogate recoveries provide a means to evaluate the effects of laboratory performance on individual sample matrices.

All samples submitted for volatile organic compound (VOC), and semi-volatile organic compound (SVOC) determinations were spiked with the appropriate number of surrogate compounds prior to sample analysis.

Surrogate recoveries were assessed against laboratory (method) control limits. Most surrogate recoveries were within the laboratory control limits. Each individual surrogate compound is expected to meet the laboratory control limits with the exception of SVOC analyses. According to the "Guidelines" for SVOC analyses, up to one outlying surrogate in the acid extractable fraction is acceptable as long as the recovery is at least 10 percent. No qualifications required on this basis.

5. Laboratory Control Sample Analyses

LCS are prepared and analyzed as samples to assess the analytical efficiencies of the methods employed, independent of sample matrix effects.

For this study, LCS were analyzed at a minimum frequency of 1 per 20 investigative samples and/or 1 per analytical batch.

Organic Analyses

The LCS contained all compounds of interest. Most LCS recoveries were within the laboratory control limits, demonstrating acceptable analytical accuracy. Non detect results associated with high LCS recoveries were not qualified. The indicated high bias would not impact the data.

Inorganic Analyses

The LCS contained all analytes of interest. LCS recoveries were assessed per the "Guidelines". All LCS recoveries were within the control limits, demonstrating acceptable analytical accuracy.

6. Matrix Spike Analyses

To evaluate the effects of sample matrices on the extraction or digestion process, measurement procedures, and accuracy of a particular analysis, samples are spiked with a known concentration of the analyte of concern

→ The Power of Commitment

and analyzed as MS samples. If the original sample concentration is significantly greater than the spike concentration, the recovery is not assessed.

The MS samples were spiked with the analytes of interest, and the results were evaluated using the "Guidelines". All percent recoveries were within the control limits, demonstrating acceptable analytical accuracy.

7. Duplicate Sample Analyses

Analytical precision is evaluated based on the analysis of laboratory duplicate samples. For this study, duplicate samples were prepared and analyzed by the laboratory. The laboratory performed additional site-specific duplicate analyses internally. The relative percent differences (RPDs) associated with these duplicate samples must be less than 20 percent for water samples. If the reported concentration in either the investigative sample or its duplicate is less than five times the reporting limit (RL), the evaluation criteria is a difference of one times the RL value for water samples. All duplicate analyses performed were acceptable, demonstrating acceptable analytical precision.

8. Conclusion

Based on the assessment detailed in the foregoing, the data are acceptable without qualification.

Regards

Stephanie Berton Data Management – Data Validator

→ The Power of Commitment

Table 1

Sample Collection and Analysis Summary Surface Water Sampling Events Clean Harbors Canada Inc. Sarnia, Ontario March and May 2022

				-	Analysis/Parameters																				
Lab Report #	Sample Identification	Location	Matrix	Collection Date (mm/dd/yyyy)	VOCs	SVOCS	Metals	Mercury	Hexavalent Chromium	Hardness	Hd	Ammonia-N	Un-ionized ammonia-N	Anions (Br, Cl, F, NO3-N, NO2-N, SO4)	Alkalinity, total	Conductivity	Total Dissolved Solids	Total Suspended Solids	Cyanide, total	Total Phosphorus	Total Kjeldahl Nitrogen	Chemical Oxygen Demand	Dissolved Organic Carbon	Phenols	Microtox
L2694108 L2694108 L2694108	POND A EAST POND EQ POND DISCHARGE POND D WEST POND	East Pond EQ Pond West Pond	Surface Water Surface Water Surface Water	03/22/2022 03/22/2022 03/22/2022	X X X	X X X	X X X	X X X	X X X	- - -	X X X	X X X	X X X	X X X	X X X	X X X	X X X	X X X	X X X	X X X	X X X	X X X	X X X	X X X	- - -
WT2203261 WT2203261 WT2203261	Pond A EQ Pond Pond D	East Pond EQ Pond West Pond	Surface Water Surface Water Surface Water	05/02/2022 05/02/2022 05/02/2022	X X X	X X X	X X X	X X X	X X X	X X X	X X X	X X X	X X X	X X X	X X X	X X X	X X X	X X X	X X X	X X X	X X X	X X X	X X X	X X X	- - -
WP2200475	EQ Pond Discharge Microtox	EQ Pond	Surface Water	05/03/2022	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	х
WT2203263 WT2203263	STN6 STN6A	STN6 STN6A	Surface Water Surface Water	05/03/2022 05/03/2022	-	-	X X	X X	x x	X X	x x	x x	X X	X X	X X	x x	x x	x x	X X	x x	X X	X X	X X	x x	-

Notes: "-" - Not applicable VOCs - Volatile Organic Compound SVOCs - Semi-Volatile Organic Compound N - Nitrogen Br - Bromide F - Fluoride CI - Chloride NO3-N - Nitriate-Nitrogen NO3-N - Nitrate-Nitrogen SO4 - Sulphate

Table 2

Analytical Method and Holding Time Criteria Surface Water Sampling Events Clean Harbors Canada Inc. Sarnia, Ontario March and May 2022

		Holding Time Criteria
Parameters	Methodology ⁽¹⁾	Water
Volatile Organic Compounds	SW846 8260	14 days
Semi-volatile Organic Compounds	SW846 8270	14 days
Metals	SW846 6020/EPA 200.8	60 days
Mercury	EPA 1631	28 days
Hexavalent Chromium	SW846 7199	28 days
Hardness	SM 2340B	60 days
рН	SM 4500H	28 days
Ammonia-N	EPA 350.1	28 days
Un-ionized ammonia-N	Calculation	NA
Anions (Nitrite-N, Nitrate-N)	EPA 300.1	3 days
Anions (Chloride, Bromide, Fluoride, Sulphate)	EPA 300.1	28 days
Alkalinity	EPA 310.1	14 days
Conductivity	SM 2510	28 days
Total Dissolved Solids	SM 2540C	7 days
Total Suspended Solids	SM 2540D	7 days
Cyanide, total	SM 4500 CN-E	14 days
Total Phosphorus	SM4500P-F	28 days
Total Kjeldahl Nitrogen	SM 4500 NORGA	28 days
Chemical Oxygen Demand	SM 5220D	28 days
Dissolved Organic Carbon (lab filtered)	SM 5310B	3 days
Phenols	SW846 79066	28 days
Microtox	Env. Canada EPS 1/RM//24 (Nov 1992)	3 days

Notes:

⁽¹⁾ Methods referenced from the following:

SW846 - "Test Method for Evaluating Solid Waste Physical/Chemical Methods", EPA, November 1986 with promulgated updates

SM - Standard Methods for the Examination of Water and Wastewater", 21st Ed., APHA, September 2005 EPA - "Methods for Chemical Analysis of Water and Wastes", EPA 600/4 79 020, Revised

N - Nitrogen

NA - Not applicable

EPS - Environmental Protection Series

ghd.com

