Clean Harbors Canada, Ltd.

Annual Runoff and Industrial Wastewater Report

ANNUAL RUNOFF and INDUSTRIAL WASTEWATER REPORT – 2022

1. Introduction

Approval 10348-03-01 Section 4.3: Runoff and Industrial Wastewater requires Clean Harbors to monitor the runoff control system, as required in TABLE 4.3-D and TABLE 4.3-E. Section 4.3.19 requires Clean Harbors to submit the Annual Runoff and Industrial Wastewater Report in TABLE 4.3-D to the Director. The minimum contents of the Annual Runoff and Industrial Wastewater Report are described in Section 4.3.20 with an additional requirement outlined in Section 4.3.22. These monitoring and reporting requirements are summarized in Table A.

Table A Concordance with the *Environmental Protection and Enhancement Act*Approval No 10348-03-01, Section 4.3: Runoff and Industrial Wastewater

Approval	Requirement	Location
Section Number		
4.3.19	The Annual Runoff and Industrial Wastewater Report	
	shall include, at a minimum, all the following	
	information:	
4.3.19(a)	An annual summary assessment of the monitoring	Section 2,
	results relative to the limits in TABLE 4.3-B;	Appendices A, B &
		С
4.3.19(b)	An annual summary assessment of the monitoring	Section 3
	results relative to the limits in TABLE 4.3-C;	
4.3.19(c)(i)	An annual summary assessment of the performance of	Section 4
	the: runoff control system,	
4.3.19(c)(ii)	An annual summary assessment of the performance of	Section 5
	the: pollution abatement equipment, and	
4.3.19(c)(iii)	An annual summary assessment of the performance of	Section 6
	the: monitoring equipment;	
4.3.19(d)(i)	An annual summary of management and disposal of the:	Section 7
	industrial wastewaters as per 4.3.7, and	
4.3.19(d)(ii)	An annual summary of management and disposal of the:	Section 8
	specified runoff as per 4.3.7;	
4.3.19(e)	An annual summary and evaluation of management and	Section 9
	disposal of runoff in general;	
4.3.19(f)	An annual summary of the results pursuant to 4.3.22;	Section 10, Tables 1
		& 2, Appendix D
4.3.19(g)	An annual summary of runoff contraventions reported	Section 11
	pursuant to 2.1.1; and	
4.3.19(h)	Any other information as required in writing by the	Section 12
	Director.	

2. Assessment of Surface Water Detention Pond Monitoring Results

Pond B received surface water from the landfill facility in 2022. Pond C collects water from the non-regulated maintenance and parking area adjacent to the landfill.

Ponds B and C were sampled April 11, 2022. The results were received from ALS Labs on April 19th. The results from Pond B did not meet discharge criteria so only Pond C, which met the criteria, was discharged from April 23rd to April 25th.

Pond C was sampled May 5th. The results for Pond C were received from ALS Labs on May 19th. Discharge commenced May 20th and concluded May 26th. Pond B was not sampled or discharged in May.

Pond B was sampled on July 4th. The results for Pond B were received from ALS Labs on July 11th. Discharge commenced July 13 and concluded July 26th. Pond C was not sampled or discharged in July.

A comparison of the Pond B monitoring results for each sampling/discharge event and the discharge criteria is shown in the Table below. The analytical reports can be found in Appendices A and C.

Limit	April 19	July 4
	*	<u>-</u>
6.0 - 9.5	8.01	8.19
50	60	35
2500	1170	732
25	30.6	3.8
5	0.244	0.0218
250	69.3	37.3
200	277	188
500	604	348
No visible	No visible sheen	No
sheen		visible
		sheen
50% or	Pass	Pass
greater		
survival		
	Pass	Pass
	50 2500 25 5 5 250 200 500 No visible sheen 50% or greater	50 60 2500 1170 25 30.6 5 0.244 250 69.3 200 277 500 604 No visible sheen No visible sheen 50% or greater survival Pass

A comparison of the Pond C monitoring results for each discharge event and the discharge criteria is shown in the Table below. The analytical reports can be found in Appendices A and B.

Parameter	Limit	April 19	May 5
рН	6.0 - 9.5	7.97	8.34
COD, mg/L	50	42	43
Total	2500	440	739
Dissolved			
Solids,			
mg/L			
Total	25	8.2	7.8
Suspended			
Solids,			
mg/L			
Ammonia,	5	0.0186	0.0224
Total			
Dissolved			
(as N) mg/L			
Chloride,	250	52	57
mg/L			
Sodium,	200	91.6	170
mg/L			
Sulphate,	500	167	356
mg/L			
Oil or other	No visible	No visible	No Visible
substances	sheen	sheen	Sheen
Rainbow	50% or	Pass	Pass
Trout	greater		
	survival		
Daphnia		Pass	Pass
Magna			

3. Assessment of Tank Farm Bermed Area Monitoring Results

No liquid from the tank farm bermed area was discharged to surface in 2022.

4. Assessment of the performance of the run-off control system.

The run-off control system functioned as designed in 2022 There were no issues with the performance and operation of the run-off control system.

5. Assessment of the performance of the pollution abatement equipment The pollution abatement equipment functioned as designed in 2022. There were no issues with the performance and operation of the pollution abatement systems.

6. Assessment of the performance of the monitoring equipment The monitoring equipment functioned as designed in 2022. There were no issues with the performance and operation of the monitoring equipment.

7. Summary of the management and disposal of industrial wastewaters

Industrial wastewaters from the operation of the Hazardous Waste/Recyclable Storage and Processing Facility (HWRSP) were solidified and landfilled.

8. Summary of the management and disposal of specified runoff In 2021 no runoff exceeded the limits for the parameters listed in TABLE 4.3-B or required disposal before the results of the parameters in TABLE 4.3-B were available. Water from the tank farm bermed area was solidified and landfilled.

9. Summary and evaluation of the management and disposal of runoff Pond B and Pond C water that met the criteria of TABLE 4.3-B was discharged to surface as required by Sections 4.3.5 and 4.3.6.

The monthly discharge volumes are provided in the Table below.

	April 23 - 25	May 20 - 26	July 13 - 26
Pond B	0	0	14391 m ³
Pond C	1940 m ³	5483 m ³	

10. Summary of the results pursuant to 4.3.22

In 2022 Clean Harbors sampled Ponds B and C as per TABLE 4.3-E. Ponds B and C were sampled October 2nd (Appendix D).

The October analytical results are summarized in Tables 1 and 2 the following pages. A copy of the complete analytical reports included in Appendix D.

11. Summary of runoff contraventions reported pursuant to 2.1.1 No runoff contraventions pursuant to 2.1.1 occurred in 2022.

12. Any other information required by the Director

The Director has not required any additional information.

Table 1: Pond B – Annual Monitoring Summary

Parameter	Result	Parameter	Result
рН	8.54	Electrical conductivity	1320 uS/cm
COD	48 mg/L	DOC	18.6 mg/L
Total Dissolved Solids	933 mg/L	Total Suspended Solids	21.6 mg/L
Fluoride, dissolved	1.32 mg/L	Cyanide, (weak acid dissociable)	<0.005 mg/L
Phenols	<0.001 mg/L	Total chlorinated phenols	All analyzed chlorophenols were less than detection limit
Polychlorinated biphenyls, total	<1.0 ug/L	Total organic halogens	<20 ug/L
Petroleum Hydrocarbons Fraction F1 (C6-C10)	<0.10 mg/L	Petroleum Hydrocarbons Fraction F2 (C10-C16)	<0.10 mg/L
Benzene	<0.00050 mg/L	Toluene	<0.00050 mg/L
Ethylbenzene	<0.00050 mg/L	Xylenes (total)	<0.0005 mg/L
Ammonia nitrogen	0.0399 mg/L	Total Kjeldahl nitrogen	1.59 mg/L
Nitrate nitrogen	0.022 mg/L	Nitrite nitrogen	<0.10 mg/L
Total phosphorous	0.0614 mg/L	Dissolved phosphorous	0.0390 mg/L
Calcium	44.5 mg/L	Magnesium	23.8 mg/L
Sodium	230 mg/L	Potassium	8.38 mg/L
Carbonate	6.1 mg/L	Bicarbonate	233 mg/L
Chloride	42.4 mg/L	Sulfate	478 mg/L
Aluminum, dissolved	0.0136 mg/L	Antimony, dissolved	0.00064 mg/L
Arsenic, dissolved	0.00102 mg/L	Barium, dissolved	0.0584 mg/l
Boron, dissolved	0.102 mg/L	Cadmium, dissolved	0.0000734 mg/L
Chromium, total	0.00316 mg/L	Chromium, dissolved (+6)	<0.00050 mg/L
Cobalt, dissolved	0.00023 mg/L	Copper, dissolved	0.0107 mg/L
Lead, dissolved	0.000052 mg/L	Manganese, dissolved	0.0121 mg/L
Mercury, total	<0.0000061 mg/L	Molybdenum, dissolved	0.156 mg/L
Nickel, dissolved	0.0105 mg/L	Selenium, dissolved	0.000665 mg/L
Silver, dissolved	<0.000010 mg/L	Thallium, dissolved	0.00001 mg/L
Tin, dissolved	<0.00010 mg/L	Uranium, dissolved	0.00623 mg/L
Zinc, dissolved	0.0021 mg/L		_

Table 2: Pond C – Annual Monitoring Summary

Parameter	Result	Parameter	Result
рН	8.37	Electrical conductivity	1380 uS/cm
COD	40 mg/L	DOC	17.0 mg/L
Total Dissolved Solids	905 mg/L	Total Suspended Solids	19.0 mg/L
Fluoride, dissolved	0.861 mg/L	Cyanide, (weak acid dissociable)	<0.005 mg/L
Phenols	<0.0010 mg/L	Total chlorinated phenols	All analyzed chlorophenols were less than detection limit
Polychlorinated biphenyls, total	<1.0 ug/L	Total organic halogens	20 ug/L
Petroleum Hydrocarbons Fraction F1 (C6-c10)	<0.10 mg/L	Petroleum Hydrocarbons Fraction F2 (C10-C16)	<0.10 mg/L
Benzene	<0.00050 mg/L	Toluene	<0.00050 mg/L
Ethylbenzene	0.00050 mg/L	Xylenes (total)	<0.00050 mg/L
Ammonia nitrogen	0.0225 mg/L	Total Kjeldahl nitrogen	2.32 mg/L
Nitrate nitrogen	<0.020 mg/L	Nitrite nitrogen	<0.010 mg/L
Total phosphorous	0.117 mg/L	Dissolved phosphorous	0.0250 mg/L
Calcium	49.7 mg/L	Magnesium	20.9 mg/L
Sodium	233 mg/L	Potassium	6.81 mg/L
Carbonate	2.2 mg/L	Bicarbonate	188 mg/L
Chloride	72.8 mg/L	Sulfate	502 mg/L
Aluminum, dissolved	0.0703 mg/L	Antimony, dissolved	0.00070 mg/L
Arsenic, dissolved	0.00205 mg/L	Barium, dissolved	0.0536 mg/l
Boron, dissolved	0.084 mg/L	Cadmium, dissolved	0.0000432 mg/L
Chromium, total	0.00104 mg/L	Chromium, dissolved (+6)	<0.0005 mg/L
Cobalt, dissolved	0.00013 mg/L	Copper, dissolved	0.00432 mg/L
Lead, dissolved	0.000097 mg/L	Manganese, dissolved	0.00223 mg/L
Mercury, total	0.0000053 mg/L	Molybdenum, dissolved	0.115 mg/L
Nickel, dissolved	0.0125 mg/L	Selenium, dissolved	0.000481 mg/L
Silver, dissolved	<0.00001 mg/L	Thallium, dissolved	<0.00001 mg/L
Tin, dissolved	<0.00010 mg/L	Uranium, dissolved	0.00454 mg/L
Zinc, dissolved	0.0032 mg/L		

Appendix A Pond B and Pond C Analytical Report April 2022

CERTIFICATE OF ANALYSIS

Work Order : **EO2202394**

Client : Clean Harbors Environmental Services, Inc.

Contact : Todd Webb

Address : 9808 12 Avenue SW

Edmonton AB Canada T6X 0J5

Telephone : 780 663 2513
Project : Pond B+C
PO : EO2202394

C-O-C number : 20-966657

Sampler : TD

Site : Table 4.3B

Quote number : Q82439 / Q82442

No. of samples received : 2
No. of samples analysed : 2

Page : 1 of 4

Laboratory : Edmonton - Environmental

Account Manager : Pamela Toledo

Address : 9450 - 17 Avenue NW

Edmonton AB Canada T6N 1M9

Telephone : +1 780 413 5227
Date Samples Received : 11-Apr-2022 14:45

Date Analysis Commenced : 11-Apr-2022

Issue Date : 19-Apr-2022 15:06

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department	
Alex Drake	Lab Analyst	Inorganics, Edmonton, Alberta	
Austin Wasylyshyn	Lab Analyst	Metals, Edmonton, Alberta	
Dan Nguyen	Team Leader - Inorganics	Inorganics, Edmonton, Alberta	
Geoff Berg	Lab Analyst	Organics, Edmonton, Alberta	
Kieran Tordoff	Account Manager	External Subcontracting, Calgary, Alberta	
Kira Sampley	Lab Analyst	Inorganics, Edmonton, Alberta	
Muzammil Ali	Lab Analyst	Inorganics, Edmonton, Alberta	
Parker Sgarbossa	Laboratory Analyst	Inorganics, Calgary, Alberta	

Page : 2 of 4 Work Order : EO2202394

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B+C

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
mg/L	milligrams per litre
pH units	pH units

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Page : 3 of 4 Work Order : EO2202394

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B+C

Analytical Results

Sub-Matrix: Water			Cli	ient sample ID	Pond B	Pond C	 	
(Matrix: Water)								
			Client samp	ling date / time	11-Apr-2022 11:30	11-Apr-2022 11:00	 	
Analyte	CAS Number	Method	LOR	Unit	EO2202394-001	EO2202394-002	 	
					Result	Result	 	
Physical Tests								
рН		E108	0.10	pH units	8.01	7.97	 	
solids, total dissolved [TDS]		E162	10	mg/L	1170	440	 	
solids, total suspended [TSS]		E160	3.0	mg/L	30.6	8.2	 	
Anions and Nutrients								
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.244	0.0186	 	
chloride	16887-00-6	E235.CI	0.50	mg/L	69.3	52.0	 	
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	604	167	 	
Bioassays								
Daphnia magna LC50		DAP-LC50-48	-	-	See	See attached	 	
trout bioassay LC50		TRT-LC50-96	-	-	attached See attached	See attached	 	
Total Metals								
aluminum, total	7429-90-5	E420	0.0030	mg/L	0.952	0.248	 	
antimony, total	7440-36-0	E420	0.00010	mg/L	0.00061	0.00030	 	
arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00284	0.00127	 	
barium, total	7440-39-3	E420	0.00010	mg/L	0.0727	0.0407	 	
beryllium, total	7440-41-7	E420	0.000020	mg/L	0.000033	<0.000020	 	
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	 	
boron, total	7440-42-8	E420	0.010	mg/L	0.117	0.048	 	
cadmium, total	7440-43-9	E420	0.0000050	mg/L	0.000117	0.0000637	 	
calcium, total	7440-70-2	E420	0.050	mg/L	50.5	36.4	 	
cesium, total	7440-46-2	E420	0.000010	mg/L	0.000295	0.000187	 	
chromium, total	7440-47-3	E420	0.00050	mg/L	0.00388	0.00160	 	
cobalt, total	7440-48-4	E420	0.00010	mg/L	0.00146	0.00106	 	
copper, total	7440-50-8	E420	0.00050	mg/L	0.0166	0.00597	 	
iron, total	7439-89-6	E420	0.010	mg/L	1.19	0.632	 	
lead, total	7439-92-1	E420	0.000050	mg/L	0.00224	0.00203	 	
lithium, total	7439-93-2	E420	0.0010	mg/L	0.0634	0.0151	 	
magnesium, total	7439-95-4	E420	0.0050	mg/L	26.7	11.0	 	
manganese, total	7439-96-5	E420	0.00010	mg/L	0.254	0.442	 	
1 . 3	, 100 30-0	-	1	9.=				

Page : 4 of 4 Work Order : EO2202394

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B+C

Analytical Results

Sub-Matrix: Water			Cli	ient sample ID	Pond B	Pond C	 	
(Matrix: Water)								
			Client samp	ling date / time	11-Apr-2022 11:30	11-Apr-2022 11:00	 	
Analyte CA	AS Number	Method	LOR	Unit	EO2202394-001	EO2202394-002	 	
					Result	Result	 	
Total Metals								
-	7439-98-7	E420	0.000050	mg/L	0.149	0.0324	 	
nickel, total	7440-02-0	E420	0.00050	mg/L	0.0230	0.00902	 	
phosphorus, total	7723-14-0	E420	0.050	mg/L	0.104	0.075	 	
potassium, total	7440-09-7	E420	0.050	mg/L	7.22	3.43	 	
rubidium, total	7440-17-7	E420	0.00020	mg/L	0.00337	0.00124	 	
selenium, total	7782-49-2	E420	0.000050	mg/L	0.000858	0.000311	 	
silicon, total	7440-21-3	E420	0.10	mg/L	3.55	0.94	 	
silver, total	7440-22-4	E420	0.000010	mg/L	0.000041	0.000013	 	
sodium, total	7440-23-5	E420	0.050	mg/L	277	91.6	 	
strontium, total	7440-24-6	E420	0.00020	mg/L	0.566	0.257	 	
sulfur, total	7704-34-9	E420	0.50	mg/L	232	61.8	 	
tellurium, total	3494-80-9	E420	0.00020	mg/L	<0.00020	<0.00020	 	
thallium, total	7440-28-0	E420	0.000010	mg/L	0.000012	<0.000010	 	
thorium, total	7440-29-1	E420	0.00010	mg/L	0.00025	<0.00010	 	
tin, total	7440-31-5	E420	0.00010	mg/L	0.00034	<0.00010	 	
titanium, total	7440-32-6	E420	0.00030	mg/L	0.0142	0.00522	 	
tungsten, total	7440-33-7	E420	0.00010	mg/L	0.00255	0.00060	 	
uranium, total	7440-61-1	E420	0.000010	mg/L	0.00918	0.00106	 	
	7440-62-2	E420	0.00050	mg/L	0.214	0.00987	 	
· ·	7440-66-6	E420	0.0030	mg/L	0.0670	0.0291	 	
	7440-67-7	E420	0.00020	mg/L	0.00143	0.00039	 	
Aggregate Organics								
chemical oxygen demand [COD]		E559-L	10	mg/L	60	42	 	
oil & grease (visible sheen)		E566	-	-	Absent	Absent	 	

Please refer to the General Comments section for an explanation of any qualifiers detected.

Edmonton AB Canada T6X 0J5

QUALITY CONTROL INTERPRETIVE REPORT

Work Order EO2202394 Page : 1 of 8

Client Clean Harbors Environmental Services, Inc. Laboratory : Edmonton - Environmental

Contact · Todd Webb **Account Manager** · Pamela Toledo Address

: 9808 12 Avenue SW Address : 9450 - 17 Avenue NW

Edmonton, Alberta Canada T6N 1M9

Telephone : 780 663 2513 Telephone : +1 780 413 5227 **Project** : Pond B+C **Date Samples Received** : 11-Apr-2022 14:45 PO EO2202394 Issue Date : 19-Apr-2022 15:06

C-O-C number : 20-966657

Sampler · TD

Site : Table 4.3B Quote number : Q82439 / Q82442

No. of samples received : 2 No. of samples analysed : 2

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers

Outliers: Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers: Frequency of Quality Control Samples ■ No Quality Control Sample Frequency Outliers occur.		

Page : 3 of 8
Work Order : EO2202394

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B+C

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					Ev	aluation: 🗴 =	Holding time exce	edance ; 🔻	= Within	Holding Tim
Analyte Group	Method	Sampling Date	Ext	Extraction / Preparation				Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding Times		Eval
			Date	Rec	Actual			Rec	Actual	
Aggregate Organics : Chemical Oxygen Demand by Colourimetry (Low Level)										
Amber glass total (sulfuric acid)										
Pond B	E559-L	11-Apr-2022					12-Apr-2022	28 days	1 days	✓
Aggregate Organics : Chemical Oxygen Demand by Colourimetry (Low Level)										
Amber glass total (sulfuric acid)										
Pond C	E559-L	11-Apr-2022					12-Apr-2022	28 days	1 days	✓
Aggregate Organics : Oil & Grease by Visible Sheen										
Amber glass (hydrochloric acid)										
Pond B	E566	11-Apr-2022					14-Apr-2022	28 days	3 days	✓
Aggregate Organics : Oil & Grease by Visible Sheen										
Amber glass (hydrochloric acid)										
Pond C	E566	11-Apr-2022					14-Apr-2022	28 days	3 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
Pond B	E298	11-Apr-2022	13-Apr-2022				13-Apr-2022	28 days	2 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
Pond C	E298	11-Apr-2022	13-Apr-2022				13-Apr-2022	28 days	2 days	✓
Anions and Nutrients : Chloride in Water by IC										
HDPE										
Pond B	E235.CI	11-Apr-2022					11-Apr-2022	28 days	0 days	✓

Page : 4 of 8 Work Order : EO2202394

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B+C

Matrix: Water					Ev	/aluation: 🗴 =	Holding time exce	edance ; 🔹	/ = Withir	ι Holding Time
Analyte Group	Method	Sampling Date	Ext	raction / Pr	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation Date	Holding Rec	g Times Actual	Eval	Analysis Date	Holding Rec	7 Times Actual	Eval
Anions and Nutrients : Chloride in Water by IC			24.0							
HDPE										
Pond C	E235.CI	11-Apr-2022					11-Apr-2022	28 days	0 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE										
Pond B	E235.SO4	11-Apr-2022					11-Apr-2022	28 days	0 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE										
Pond C	E235.SO4	11-Apr-2022					11-Apr-2022	28 days	0 days	✓
Bioassays : Survival/LC50 Daphnia Magna 48 hours										
LDPE carboy										
Pond B	DAP-LC50-48	11-Apr-2022					19-Apr-2022	5 days	8 days	± EHT
Bioassays : Survival/LC50 Daphnia Magna 48 hours										
LDPE carboy										
Pond C	DAP-LC50-48	11-Apr-2022					19-Apr-2022	5 days	8 days	# EHT
Bioassays : Survival/LC50 Rainbow Trout (96 hours)										
LDPE carboy										
Pond B	TRT-LC50-96	11-Apr-2022					19-Apr-2022	5 days	8 days	# EHT
Bioassays : Survival/LC50 Rainbow Trout (96 hours)										
LDPE carboy										
Pond C	TRT-LC50-96	11-Apr-2022					19-Apr-2022	5 days	8 days	# EHT
Physical Tests : pH by Meter									1	
HDPE										
Pond B	E108	11-Apr-2022					12-Apr-2022	0.25 hrs	27 hrs	EHTR-FM
Physical Tests : pH by Meter										
HDPE	F100	144					40.4.00==			
Pond C	E108	11-Apr-2022					12-Apr-2022	0.25 hrs	27 hrs	EHTR-FM

Page : 5 of 8
Work Order : EO2202394

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B+C

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

Matrix: Water					EV	aluation: * =	Holding time exce	edance; v	/ = vvitnin	Holding 11
Analyte Group	Method	Sampling Date	Ex	traction / P	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : TDS by Gravimetry										
HDPE										
Pond B	E162	11-Apr-2022					12-Apr-2022	7 days	1 days	✓
Physical Tests : TDS by Gravimetry										
HDPE										
Pond C	E162	11-Apr-2022					12-Apr-2022	7 days	1 days	✓
Physical Tests : TSS by Gravimetry										
HDPE										
Pond B	E160	11-Apr-2022					12-Apr-2022	7 days	1 days	✓
Physical Tests : TSS by Gravimetry										
HDPE										
Pond C	E160	11-Apr-2022					12-Apr-2022	7 days	1 days	✓
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid)										
Pond B	E420	11-Apr-2022					12-Apr-2022	180 days	1 days	✓
Total Metals : Total Metals in Water by CRC ICPMS							l.		1	
HDPE total (nitric acid)										
Pond C	E420	11-Apr-2022					12-Apr-2022	180 days	1 days	✓

Legend & Qualifier Definitions

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended

EHT: Exceeded ALS recommended hold time prior to analysis.

Rec. HT: ALS recommended hold time (see units).

Page : 6 of 8 Work Order : EO2202394

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B+C

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Water		Evaluati	ion: × = QC frequ		ecification; ✓ = 0		
Quality Control Sample Type				ount		Frequency (%	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Ammonia by Fluorescence	E298	457340	1	20	5.0	5.0	✓
Chemical Oxygen Demand by Colourimetry (Low Level)	E559-L	456254	1	19	5.2	5.0	✓
Chloride in Water by IC	E235.CI	455807	1	9	11.1	5.0	✓
pH by Meter	E108	456259	1	20	5.0	5.0	✓
Sulfate in Water by IC	E235.SO4	455811	1	6	16.6	5.0	✓
TDS by Gravimetry	E162	456017	1	15	6.6	5.0	✓
Total Metals in Water by CRC ICPMS	E420	455999	1	20	5.0	5.0	✓
TSS by Gravimetry	E160	456015	2	31	6.4	5.0	✓
Laboratory Control Samples (LCS)							
Ammonia by Fluorescence	E298	457340	1	20	5.0	5.0	✓
Chemical Oxygen Demand by Colourimetry (Low Level)	E559-L	456254	1	19	5.2	5.0	✓
Chloride in Water by IC	E235.CI	455807	1	9	11.1	5.0	✓
pH by Meter	E108	456259	1	20	5.0	5.0	✓
Sulfate in Water by IC	E235.SO4	455811	1	6	16.6	5.0	✓
TDS by Gravimetry	E162	456017	1	15	6.6	5.0	✓
Total Metals in Water by CRC ICPMS	E420	455999	1	20	5.0	5.0	✓
TSS by Gravimetry	E160	456015	2	31	6.4	5.0	✓
Method Blanks (MB)							
Ammonia by Fluorescence	E298	457340	1	20	5.0	5.0	✓
Chemical Oxygen Demand by Colourimetry (Low Level)	E559-L	456254	1	19	5.2	5.0	✓
Chloride in Water by IC	E235.CI	455807	1	9	11.1	5.0	✓
Sulfate in Water by IC	E235.SO4	455811	1	6	16.6	5.0	✓
TDS by Gravimetry	E162	456017	1	15	6.6	5.0	✓
Total Metals in Water by CRC ICPMS	E420	455999	1	20	5.0	5.0	✓
TSS by Gravimetry	E160	456015	2	31	6.4	5.0	✓
Matrix Spikes (MS)							
Ammonia by Fluorescence	E298	457340	1	20	5.0	5.0	✓
Chemical Oxygen Demand by Colourimetry (Low Level)	E559-L	456254	1	19	5.2	5.0	✓
Chloride in Water by IC	E235.Cl	455807	1	9	11.1	5.0	✓
Sulfate in Water by IC	E235.SO4	455811	1	6	16.6	5.0	✓
Total Metals in Water by CRC ICPMS	E420	455999	1	20	5.0	5.0	1

Page : 7 of 8
Work Order : EO2202394

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B+C

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Survival/LC50 Daphnia Magna 48 hours	DAP-LC50-48	Water	EPS1/RM/14	See attached report.
	Nautilus Environmental (Calgary) - 10828 27 Street SE Calgary Alberta Canada T2Z			
pH by Meter	E108 Edmonton - Environmental	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally $20 \pm 5^{\circ}$ C). For high accuracy test results, pH should be measured in the field within the recommended 15 minute hold time.
TSS by Gravimetry	E160 Edmonton - Environmental	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, following by drying of the filter at 104 ± 1°C, with gravimetric measurement of the filtered solids. Samples containing very high dissolved solid content (i.e. seawaters, brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples.
TDS by Gravimetry	E162 Edmonton - Environmental	Water	APHA 2540 C (mod)	Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, with evaporation of the filtrate at 180 ± 2°C for 16 hours or to constant weight, with gravimetric measurement of the residue.
Chloride in Water by IC	E235.Cl Edmonton - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Sulfate in Water by IC	E235.SO4 Edmonton - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
Ammonia by Fluorescence	E298 Calgary - Environmental	Water	J. Environ. Monit., 2005, 7, 37-42 (mod)	Ammonia in water is analyzed by flow-injection analysis with fluorescence detection after reaction with orthophthaldialdehyde (OPA).
Total Metals in Water by CRC ICPMS	E420 Edmonton - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Chemical Oxygen Demand by Colourimetry (Low Level)	E559-L Edmonton - Environmental	Water	APHA 5220 D (mod)	Samples are analyzed using the closed reflux colourimetric method.

Page : 8 of 8
Work Order : EO2202394

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B+C

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Oil & Grease by Visible Sheen	E566 Edmonton - Environmental	Water	Alberta Energy Regulator, Drilling waste Management, Directive 050, July 2016	Use a qualitivative visual observation of rainbow sheen to determine the presence or absence of oil and grease on water.
Survival/LC50 Rainbow Trout (96 hours)	TRT-LC50-96 Nautilus Environmental (Calgary) - 10828 27 Street SE Calgary Alberta Canada T2Z 3V9	Water	EPS1/RM/13	See attached report.
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298 Calgary - Environmental	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.

QUALITY CONTROL REPORT

Work Order : **EO2202394** Page : 1 of 10

Client : Clean Harbors Environmental Services, Inc. Laboratory : Edmonton - Environmental

Contact : Todd Webb Account Manager : Pamela Toledo

: 9808 12 Avenue SW Address : 9450 - 17 Avenue NW

Edmonton, Alberta Canada T6N 1M9
Telephone ;+1 780 413 5227

 Telephone
 :780 663 2513
 Telephone
 :+1 780 413 5227

 Project
 :Pond B+C
 Date Samples Received
 :11-Apr-2022 14:45

O : EO2202394 Date Analysis Commenced : 11-Apr-2022

C-O-C number : 20-966657 Issue Date : 19-Apr-2022 15:06

Sampler : TD
Site : Table 4.3B

Quote number : Q82439 / Q82442

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits

Edmonton AB Canada T6X 0J5

• Matrix Spike (MS) Report; Recovery and Acceptance Limits

: 2

: 2

Reference Material (RM) Report; Recovery and Acceptance Limits

Method Blank (MB) Report; Recovery and Acceptance Limits

Laboratory Control Sample (LCS) Report; Recovery and Acceptance Limits

Signatories

No. of samples received

No. of samples analysed

Address

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department	
Alex Drake	Lab Analyst	Inorganics, Edmonton, Alberta	
Austin Wasylyshyn	Lab Analyst	Metals, Edmonton, Alberta	
Dan Nguyen	Team Leader - Inorganics	Inorganics, Edmonton, Alberta	
Geoff Berg	Lab Analyst	Organics, Edmonton, Alberta	
Kieran Tordoff	Account Manager	External Subcontracting, Calgary, Alberta	
Kira Sampley	Lab Analyst	Inorganics, Edmonton, Alberta	
Muzammil Ali	Lab Analyst	Inorganics, Edmonton, Alberta	
Parker Sgarbossa	Laboratory Analyst	Inorganics, Calgary, Alberta	

Page : 2 of 10 Work Order : EO2202394

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B+C

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Services number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percentage Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Page : 3 of 10 Work Order : EO2202394

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B+C

ALS

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test specific).

ub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
aboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Physical Tests (QC	Lot: 456014)										
EO2202284-012	Anonymous	solids, total suspended [TSS]		E160	3.0	mg/L	7.8	7.8	0	Diff <2x LOR	
hysical Tests (QC	Lot: 456015)										
EO2202394-002	Pond C	solids, total suspended [TSS]		E160	3.0	mg/L	8.2	9.2	1.0	Diff <2x LOR	
hysical Tests (QC	Lot: 456017)										
O2202284-016	Anonymous	solids, total dissolved [TDS]		E162	20	mg/L	662	652	1.52%	20%	
hysical Tests (QC	Lot: 456259)										
O2202389-001	Anonymous	рН		E108	0.10	pH units	7.23	7.13	1.39%	3%	
nions and Nutrien	ts (QC Lot: 455807)										
O2202389-002	Anonymous	chloride	16887-00-6	E235.CI	0.50	mg/L	22.5	22.5	0.00444%	20%	
nions and Nutrien	ts (QC Lot: 455811)										
O2202389-002	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	58.3	58.6	0.553%	20%	
nions and Nutrien	ts (QC Lot: 457340)										
CG2204143-001	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	<0.0050	<0.0050	0	Diff <2x LOR	
otal Metals (QC Lo	ot: 455999)										
O2202362-001	Anonymous	aluminum, total	7429-90-5	E420	0.0030	mg/L	0.376	0.374	0.312%	20%	
		antimony, total	7440-36-0	E420	0.00010	mg/L	0.00050	0.00049	0.000009	Diff <2x LOR	
		arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00079	0.00080	0.00001	Diff <2x LOR	
		barium, total	7440-39-3	E420	0.00010	mg/L	0.0686	0.0718	4.44%	20%	
		beryllium, total	7440-41-7	E420	0.000020	mg/L	<0.000020	<0.000020	0	Diff <2x LOR	
		bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, total	7440-42-8	E420	0.010	mg/L	0.020	0.020	0.0004	Diff <2x LOR	
		cadmium, total	7440-43-9	E420	0.0000050	mg/L	0.0000389	0.0000398	0.0000009	Diff <2x LOR	
		calcium, total	7440-70-2	E420	0.050	mg/L	22.4	22.2	1.14%	20%	
		cesium, total	7440-46-2	E420	0.000010	mg/L	0.000035	0.000034	0.0000009	Diff <2x LOR	
		chromium, total	7440-47-3	E420	0.00050	mg/L	0.00106	0.00110	0.00005	Diff <2x LOR	
		cobalt, total	7440-48-4	E420	0.00010	mg/L	0.00082	0.00078	0.00004	Diff <2x LOR	
		copper, total	7440-50-8	E420	0.00050	mg/L	0.00613	0.00610	0.625%	20%	
		iron, total	7439-89-6	E420	0.010	mg/L	0.580	0.575	0.868%	20%	
		lead, total	7439-92-1	E420	0.000050	mg/L	0.000642	0.000625	2.73%	20%	
		lithium, total	7439-93-2	E420	0.0010	mg/L	0.0029	0.0030	0.00010	Diff <2x LOR	
		magnesium, total	7439-95-4	E420	0.0050	mg/L	1.89	1.88	0.728%	20%	

Page : 4 of 10 Work Order : EO2202394

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B+C

ub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
aboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Total Metals (QC Lo	ot: 455999) - continued										
EO2202362-001	Anonymous	manganese, total	7439-96-5	E420	0.00010	mg/L	0.150	0.150	0.0371%	20%	
		molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00389	0.00376	3.43%	20%	
		nickel, total	7440-02-0	E420	0.00050	mg/L	0.0222	0.0226	1.44%	20%	
		phosphorus, total	7723-14-0	E420	0.050	mg/L	0.058	0.068	0.010	Diff <2x LOR	
		potassium, total	7440-09-7	E420	0.050	mg/L	2.38	2.36	0.876%	20%	
		rubidium, total	7440-17-7	E420	0.00020	mg/L	0.00148	0.00144	0.00004	Diff <2x LOR	
		selenium, total	7782-49-2	E420	0.000050	mg/L	0.000174	0.000183	0.000009	Diff <2x LOR	
		silicon, total	7440-21-3	E420	0.10	mg/L	2.16	2.16	0.0638%	20%	
		silver, total	7440-22-4	E420	0.000010	mg/L	0.000028	0.000027	0.000002	Diff <2x LOR	
		sodium, total	7440-23-5	E420	0.050	mg/L	59.4	57.5	3.26%	20%	
		strontium, total	7440-24-6	E420	0.00020	mg/L	0.0744	0.0720	3.15%	20%	
		sulfur, total	7704-34-9	E420	0.50	mg/L	2.57	2.49	0.08	Diff <2x LOR	
		tellurium, total	13494-80-9	E420	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		thorium, total	7440-29-1	E420	0.00010	mg/L	0.00011	<0.00010	0.00001	Diff <2x LOR	
		tin, total	7440-31-5	E420	0.00010	mg/L	0.00011	0.00011	0.000002	Diff <2x LOR	
		titanium, total	7440-32-6	E420	0.00030	mg/L	0.00906	0.00892	1.55%	20%	
		tungsten, total	7440-33-7	E420	0.00010	mg/L	0.00292	0.00258	12.3%	20%	
		uranium, total	7440-61-1	E420	0.000010	mg/L	0.000966	0.000963	0.301%	20%	
		vanadium, total	7440-62-2	E420	0.00050	mg/L	0.00197	0.00198	0.00001	Diff <2x LOR	
		zinc, total	7440-66-6	E420	0.0030	mg/L	0.0515	0.0501	2.68%	20%	
		zirconium, total	7440-67-7	E420	0.00020	mg/L	0.00061	0.00049	0.00012	Diff <2x LOR	
Aggregate Organics	(QC Lot: 456254)										
EO2202349-006	Anonymous	chemical oxygen demand [COD]		E559-L	100	mg/L	938	950	12	Diff <2x LOR	

Page : 5 of 10 Work Order : EO2202394

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B+C

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Water

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 456014)						
solids, total suspended [TSS]		E160	3	mg/L	<3.0	
Physical Tests (QCLot: 456015)						
solids, total suspended [TSS]		E160	3	mg/L	<3.0	
Physical Tests (QCLot: 456017)						
solids, total dissolved [TDS]		E162	10	mg/L	<10	
Anions and Nutrients (QCLot: 455807)						
chloride	16887-00-6	E235.CI	0.5	mg/L	<0.50	
Anions and Nutrients (QCLot: 455811)						
sulfate (as SO4)	14808-79-8	E235.SO4	0.3	mg/L	<0.30	
Anions and Nutrients (QCLot: 457340)						
ammonia, total (as N)	7664-41-7	E298	0.005	mg/L	<0.0050	
Total Metals (QCLot: 455999)						
aluminum, total	7429-90-5	E420	0.003	mg/L	<0.0030	
antimony, total	7440-36-0	E420	0.0001	mg/L	<0.00010	
arsenic, total	7440-38-2	E420	0.0001	mg/L	<0.00010	
parium, total	7440-39-3	E420	0.0001	mg/L	<0.00010	
peryllium, total	7440-41-7	E420	0.00002	mg/L	<0.000020	
oismuth, total	7440-69-9	E420	0.00005	mg/L	<0.000050	
poron, total	7440-42-8	E420	0.01	mg/L	<0.010	
cadmium, total	7440-43-9	E420	0.000005	mg/L	<0.000050	
calcium, total	7440-70-2	E420	0.05	mg/L	<0.050	
cesium, total	7440-46-2	E420	0.00001	mg/L	<0.000010	
chromium, total	7440-47-3	E420	0.0005	mg/L	<0.00050	
obalt, total	7440-48-4	E420	0.0001	mg/L	<0.00010	
copper, total	7440-50-8	E420	0.0005	mg/L	<0.00050	
ron, total	7439-89-6	E420	0.01	mg/L	<0.010	
ead, total	7439-92-1	E420	0.00005	mg/L	<0.000050	
ithium, total	7439-93-2	E420	0.001	mg/L	<0.0010	
nagnesium, total	7439-95-4	E420	0.005	mg/L	<0.0050	
nanganese, total	7439-96-5	E420	0.0001	mg/L	<0.00010	
molybdenum, total	7439-98-7	E420	0.00005	mg/L	<0.000050	
nickel, total	7440-02-0	E420	0.0005	mg/L	<0.00050	
phosphorus, total	7723-14-0	F420	0.05	mg/L	<0.050	

Page : 6 of 10 Work Order : EO2202394

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B+C

Sub-Matrix: Water

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Total Metals (QCLot: 455999) - conti	nued					
potassium, total	7440-09-7	E420	0.05	mg/L	<0.050	
rubidium, total	7440-17-7	E420	0.0002	mg/L	<0.00020	
selenium, total	7782-49-2	E420	0.00005	mg/L	<0.000050	
silicon, total	7440-21-3	E420	0.1	mg/L	<0.10	
silver, total	7440-22-4	E420	0.00001	mg/L	<0.000010	
sodium, total	7440-23-5	E420	0.05	mg/L	<0.050	
strontium, total	7440-24-6	E420	0.0002	mg/L	<0.00020	
sulfur, total	7704-34-9	E420	0.5	mg/L	<0.50	
tellurium, total	13494-80-9	E420	0.0002	mg/L	<0.00020	
thallium, total	7440-28-0	E420	0.00001	mg/L	<0.000010	
thorium, total	7440-29-1	E420	0.0001	mg/L	<0.00010	
tin, total	7440-31-5	E420	0.0001	mg/L	<0.00010	
titanium, total	7440-32-6	E420	0.0003	mg/L	<0.00030	
tungsten, total	7440-33-7	E420	0.0001	mg/L	<0.00010	
uranium, total	7440-61-1	E420	0.00001	mg/L	<0.000010	
vanadium, total	7440-62-2	E420	0.0005	mg/L	<0.00050	
zinc, total	7440-66-6	E420	0.003	mg/L	<0.0030	
zirconium, total	7440-67-7	E420	0.0002	mg/L	<0.00020	
Aggregate Organics (QCLot: 456254)						
chemical oxygen demand [COD]		E559-L	10	mg/L	<10	

Page : 7 of 10 Work Order : EO2202394

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B+C

ALS

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water						Laboratory Co.	ntrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Physical Tests (QCLot: 456014)									
solids, total suspended [TSS]		E160	3	mg/L	150 mg/L	101	85.0	115	
Physical Tests (QCLot: 456015)									
solids, total suspended [TSS]		E160	3	mg/L	150 mg/L	94.3	85.0	115	
Physical Tests (QCLot: 456017)									
solids, total dissolved [TDS]		E162	10	mg/L	1000 mg/L	98.7	85.0	115	
Physical Tests (QCLot: 456259)									
рН		E108		pH units	6 pH units	102	97.0	103	
Anions and Nutrients (QCLot: 455807)									
chloride	16887-00-6	E235.CI	0.5	mg/L	100 mg/L	101	90.0	110	
Anions and Nutrients (QCLot: 455811)									
sulfate (as SO4)	14808-79-8	E235.SO4	0.3	mg/L	100 mg/L	102	90.0	110	
Anions and Nutrients (QCLot: 457340)									
ammonia, total (as N)	7664-41-7	E298	0.005	mg/L	0.2 mg/L	96.0	85.0	115	
Total Metals (QCLot: 455999)									1
aluminum, total	7429-90-5		0.003	mg/L	2 mg/L	105	80.0	120	
antimony, total	7440-36-0		0.0001	mg/L	1 mg/L	110	80.0	120	
arsenic, total	7440-38-2		0.0001	mg/L	1 mg/L	104	80.0	120	
barium, total	7440-39-3		0.0001	mg/L	0.25 mg/L	107	80.0	120	
beryllium, total	7440-41-7		0.00002	mg/L	0.1 mg/L	98.9	80.0	120	
bismuth, total	7440-69-9		0.00005	mg/L	1 mg/L	101	80.0	120	
boron, total	7440-42-8		0.01	mg/L	1 mg/L	103	80.0	120	
cadmium, total	7440-43-9		0.000005	mg/L	0.1 mg/L	98.1	80.0	120	
calcium, total	7440-70-2		0.05	mg/L	50 mg/L	97.7	80.0	120	
cesium, total	7440-46-2		0.00001	mg/L	0.05 mg/L	102	80.0	120	
chromium, total	7440-47-3		0.0005	mg/L	0.25 mg/L	103	80.0	120	
cobalt, total	7440-48-4		0.0001	mg/L	0.25 mg/L	101	80.0	120	
copper, total	7440-50-8		0.0005	mg/L	0.25 mg/L	103	80.0	120	
iron, total	7439-89-6		0.01	mg/L	1 mg/L	100	80.0	120	
lead, total	7439-92-1		0.00005	mg/L	0.5 mg/L	101	80.0	120	
lithium, total	7439-93-2		0.001	mg/L	0.25 mg/L	98.0	80.0	120	
magnesium, total	7439-95-4		0.005	mg/L	50 mg/L	106	80.0	120	
manganese, total	7439-96-5	E420	0.0001	mg/L	0.25 mg/L	105	80.0	120	

Page : 8 of 10 Work Order : EO2202394

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B+C

	p-Matrix: Water						Laboratory Control Sample (LCS) Report						
						Recovery	Limits (%)						
CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier					
ed													
7439-98-7	E420	0.00005	mg/L	0.25 mg/L	98.3	80.0	120						
7440-02-0	E420	0.0005	mg/L	0.5 mg/L	104	80.0	120						
7723-14-0	E420	0.05	mg/L	10 mg/L	105	80.0	120						
7440-09-7	E420	0.05	mg/L	50 mg/L	102	80.0	120						
7440-17-7	E420	0.0002	mg/L	0.1 mg/L	106	80.0	120						
7782-49-2	E420	0.00005	mg/L	1 mg/L	102	80.0	120						
7440-21-3	E420	0.1	mg/L	10 mg/L	104	80.0	120						
7440-22-4	E420	0.00001	mg/L	0.1 mg/L	95.7	80.0	120						
7440-23-5	E420	0.05	mg/L	50 mg/L	99.7	80.0	120						
7440-24-6	E420	0.0002	mg/L	0.25 mg/L	95.3	80.0	120						
7704-34-9	E420	0.5	mg/L	50 mg/L	104	80.0	120						
13494-80-9	E420	0.0002	mg/L	0.1 mg/L	98.8	80.0	120						
7440-28-0	E420	0.00001	mg/L	1 mg/L	104	80.0	120						
7440-29-1	E420	0.0001	mg/L	0.1 mg/L	97.0	80.0	120						
7440-31-5	E420	0.0001	mg/L	0.5 mg/L	98.9	80.0	120						
7440-32-6	E420	0.0003	mg/L	0.25 mg/L	100	80.0	120						
7440-33-7	E420	0.0001	mg/L	0.1 mg/L	101	80.0	120						
7440-61-1	E420	0.00001	mg/L	0.005 mg/L	106	80.0	120						
7440-62-2	E420	0.0005	mg/L	0.5 mg/L	104	80.0	120						
7440-66-6	E420	0.003	mg/L	0.5 mg/L	96.9	80.0	120						
7440-67-7	E420	0.0002	mg/L	0.1 mg/L	92.6	80.0	120						
	E559-L	10	mg/L	100 mg/L	98.3	85.0	115						
	7440-02-0 7723-14-0 7440-09-7 7440-17-7 7782-49-2 7440-21-3 7440-23-5 7440-24-6 7704-34-9 13494-80-9 7440-31-5 7440-32-6 7440-33-7 7440-61-1 7440-62-2 7440-66-6 7440-67-7	7439-98-7 E420 E420 F420 F420	7439-98-7 E420 0.00005 7440-02-0 E420 0.0005 7723-14-0 E420 0.05 7440-09-7 E420 0.05 7440-17-7 E420 0.0002 7782-49-2 E420 0.00005 7440-21-3 E420 0.00001 7440-23-5 E420 0.05 7440-24-6 E420 0.0002 7704-34-9 E420 0.5 13494-80-9 E420 0.0002 7440-28-0 E420 0.0001 7440-31-5 E420 0.0001 7440-31-5 E420 0.0001 7440-61-1 E420 0.0001 7440-62-2 E420 0.0001 7440-66-6 E420 0.0005 7440-66-6 E420 0.0005 7440-67-7 E420 0.0002	7439-98-7 E420 0.00005 mg/L 7440-02-0 E420 0.0005 mg/L 7723-14-0 E420 0.05 mg/L 7440-09-7 E420 0.05 mg/L 7440-17-7 E420 0.0002 mg/L 7782-49-2 E420 0.00005 mg/L 7440-21-3 E420 0.1 mg/L 7440-22-4 E420 0.0001 mg/L 7440-23-5 E420 0.05 mg/L 7440-24-6 E420 0.0002 mg/L 7704-34-9 E420 0.0002 mg/L 7440-28-0 E420 0.00001 mg/L 7440-29-1 E420 0.0001 mg/L 7440-31-5 E420 0.0001 mg/L 7440-32-6 E420 0.0001 mg/L 7440-61-1 E420 0.0001 mg/L 7440-66-6 E420 0.0005 mg/L 7440-66-6 E420 0.0005 mg/L 7440-67-7 E420 0.0002 mg/L	7439-98-7 E420 0.00005 mg/L 0.25 mg/L 7440-02-0 E420 0.0005 mg/L 0.5 mg/L 7723-14-0 E420 0.05 mg/L 10 mg/L 7440-09-7 E420 0.05 mg/L 50 mg/L 7440-17-7 E420 0.0002 mg/L 0.1 mg/L 7782-49-2 E420 0.00005 mg/L 1 mg/L 7440-21-3 E420 0.1 mg/L 0.1 mg/L 7440-22-4 E420 0.00001 mg/L 0.1 mg/L 7440-23-5 E420 0.05 mg/L 50 mg/L 7440-24-6 E420 0.0002 mg/L 0.25 mg/L 7704-34-9 E420 0.5 mg/L 0.1 mg/L 7440-28-0 E420 0.0002 mg/L 0.1 mg/L 7440-29-1 E420 0.0001 mg/L 0.1 mg/L 7440-31-5 E420 0.0001 mg/L 0.25 mg/L 7440-32-6 E420 0.0001 m	7439-98-7 E420 0.00005 mg/L 0.25 mg/L 98.3 7440-02-0 E420 0.0005 mg/L 0.5 mg/L 104 7723-14-0 E420 0.05 mg/L 10 mg/L 105 7440-09-7 E420 0.05 mg/L 50 mg/L 102 7440-17-7 E420 0.0002 mg/L 0.1 mg/L 106 7782-49-2 E420 0.00005 mg/L 1 mg/L 102 7440-21-3 E420 0.00005 mg/L 10 mg/L 104 7440-22-4 E420 0.00001 mg/L 0.1 mg/L 95.7 7440-23-5 E420 0.05 mg/L 0.25 mg/L 95.3 7704-34-9 E420 0.0002 mg/L 0.25 mg/L 95.3 7704-34-9 E420 0.0002 mg/L 0.1 mg/L 98.8 7440-28-0 E420 0.0001 mg/L 0.1 mg/L 98.9 7440-28-1 E420 0.0001 mg/L 0.5 mg/L 98.9 7440-31-5 E420 0.0001 mg/L <td>7439-98-7 E420 0.00005 mg/L 0.25 mg/L 98.3 80.0 7440-02-0 E420 0.0005 mg/L 0.5 mg/L 104 80.0 7723-14-0 E420 0.05 mg/L 10 mg/L 105 80.0 7440-09-7 E420 0.05 mg/L 50 mg/L 102 80.0 7440-17-7 E420 0.0002 mg/L 0.1 mg/L 106 80.0 7782-49-2 E420 0.00005 mg/L 1 mg/L 102 80.0 7440-21-3 E420 0.00005 mg/L 10 mg/L 104 80.0 7440-22-4 E420 0.0001 mg/L 0.1 mg/L 95.7 80.0 7440-23-5 E420 0.05 mg/L 50 mg/L 99.7 80.0 7440-24-6 E420 0.0002 mg/L 0.25 mg/L 95.3 80.0 740-24-6 E420 0.5 mg/L 0.1 mg/L 98.8 80.0 7440-28-0</td> <td>7439-98-7 E420 0.00005 mg/L 0.25 mg/L 98.3 80.0 120 7440-02-0 E420 0.0005 mg/L 0.5 mg/L 104 80.0 120 7723-14-0 E420 0.05 mg/L 10 mg/L 105 80.0 120 7440-07-7 E420 0.05 mg/L 50 mg/L 102 80.0 120 7440-17-7 E420 0.0002 mg/L 0.1 mg/L 106 80.0 120 7440-21-3 E420 0.00005 mg/L 1 mg/L 102 80.0 120 7440-22-4 E420 0.1 mg/L 10 mg/L 104 80.0 120 7440-23-5 E420 0.0001 mg/L 0.1 mg/L 95.7 80.0 120 7440-24-6 E420 0.0002 mg/L 0.25 mg/L 95.3 80.0 120 7440-24-6 E420 0.0002 mg/L 0.1 mg/L 98.8 80.0 120</td>	7439-98-7 E420 0.00005 mg/L 0.25 mg/L 98.3 80.0 7440-02-0 E420 0.0005 mg/L 0.5 mg/L 104 80.0 7723-14-0 E420 0.05 mg/L 10 mg/L 105 80.0 7440-09-7 E420 0.05 mg/L 50 mg/L 102 80.0 7440-17-7 E420 0.0002 mg/L 0.1 mg/L 106 80.0 7782-49-2 E420 0.00005 mg/L 1 mg/L 102 80.0 7440-21-3 E420 0.00005 mg/L 10 mg/L 104 80.0 7440-22-4 E420 0.0001 mg/L 0.1 mg/L 95.7 80.0 7440-23-5 E420 0.05 mg/L 50 mg/L 99.7 80.0 7440-24-6 E420 0.0002 mg/L 0.25 mg/L 95.3 80.0 740-24-6 E420 0.5 mg/L 0.1 mg/L 98.8 80.0 7440-28-0	7439-98-7 E420 0.00005 mg/L 0.25 mg/L 98.3 80.0 120 7440-02-0 E420 0.0005 mg/L 0.5 mg/L 104 80.0 120 7723-14-0 E420 0.05 mg/L 10 mg/L 105 80.0 120 7440-07-7 E420 0.05 mg/L 50 mg/L 102 80.0 120 7440-17-7 E420 0.0002 mg/L 0.1 mg/L 106 80.0 120 7440-21-3 E420 0.00005 mg/L 1 mg/L 102 80.0 120 7440-22-4 E420 0.1 mg/L 10 mg/L 104 80.0 120 7440-23-5 E420 0.0001 mg/L 0.1 mg/L 95.7 80.0 120 7440-24-6 E420 0.0002 mg/L 0.25 mg/L 95.3 80.0 120 7440-24-6 E420 0.0002 mg/L 0.1 mg/L 98.8 80.0 120					

Page : 9 of 10 Work Order : EO2202394

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B+C

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Out Matrix Mark		. , .			Matrix Spike (MS) Depart					
Sub-Matrix: Water					Matrix Spike (MS) Report Spike Recovery (%) Recovery Limits (%)					
	Olicust - comple ID		040 November	88-4bd	Spi		Recovery (%)		· · · ·	0
_aboratory sample D	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie
Anions and Nutr	ients (QCLot: 4558	307)								
EO2202389-002	Anonymous	chloride	16887-00-6	E235.CI	94.6 mg/L	100 mg/L	94.6	75.0	125	
Anions and Nutr	ients (QCLot: 4558	311)								
EO2202389-002	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	91.8 mg/L	100 mg/L	91.8	75.0	125	
Anions and Nutr	ients (QCLot: 4573	340)								
CG2204143-002	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.0994 mg/L	0.1 mg/L	99.4	75.0	125	
Total Metals (QC	CLot: 455999)									
EO2202363-001	Anonymous	aluminum, total	7429-90-5	E420	0.192 mg/L	0.2 mg/L	96.3	70.0	130	
		antimony, total	7440-36-0	E420	0.0202 mg/L	0.02 mg/L	101	70.0	130	
		arsenic, total	7440-38-2	E420	0.0195 mg/L	0.02 mg/L	97.6	70.0	130	
		barium, total	7440-39-3	E420	ND mg/L	0.02 mg/L	ND	70.0	130	
		beryllium, total	7440-41-7	E420	0.0397 mg/L	0.04 mg/L	99.2	70.0	130	
		bismuth, total	7440-69-9	E420	0.00981 mg/L	0.01 mg/L	98.1	70.0	130	
		boron, total	7440-42-8	E420	0.107 mg/L	0.1 mg/L	107	70.0	130	
		cadmium, total	7440-43-9	E420	0.00390 mg/L	0.004 mg/L	97.4	70.0	130	
		calcium, total	7440-70-2	E420	ND mg/L	4 mg/L	ND	70.0	130	
		cesium, total	7440-46-2	E420	0.00984 mg/L	0.01 mg/L	98.4	70.0	130	
		chromium, total	7440-47-3	E420	0.0383 mg/L	0.04 mg/L	95.7	70.0	130	
		cobalt, total	7440-48-4	E420	0.0193 mg/L	0.02 mg/L	96.6	70.0	130	
		copper, total	7440-50-8	E420	0.0189 mg/L	0.02 mg/L	94.6	70.0	130	
		iron, total	7439-89-6	E420	1.88 mg/L	2 mg/L	93.8	70.0	130	
		lead, total	7439-92-1	E420	0.0190 mg/L	0.02 mg/L	95.0	70.0	130	
		lithium, total	7439-93-2	E420	0.0955 mg/L	0.1 mg/L	95.5	70.0	130	
		magnesium, total	7439-95-4	E420	ND mg/L	1 mg/L	ND	70.0	130	
		manganese, total	7439-96-5	E420	ND mg/L	0.02 mg/L	ND	70.0	130	
		molybdenum, total	7439-98-7	E420	0.0189 mg/L	0.02 mg/L	94.4	70.0	130	
		nickel, total	7440-02-0	E420	0.0395 mg/L	0.04 mg/L	98.7	70.0	130	
		phosphorus, total	7723-14-0	E420	10.4 mg/L	10 mg/L	104	70.0	130	
		potassium, total	7440-09-7	E420	3.75 mg/L	4 mg/L	93.8	70.0	130	
		rubidium, total	7440-17-7	E420	0.0197 mg/L	0.02 mg/L	98.6	70.0	130	
		selenium, total	7782-49-2	E420	0.0391 mg/L	0.04 mg/L	97.7	70.0	130	
	I	silicon, total	7440-21-3	E420	9.39 mg/L	10 mg/L	93.9	70.0	130	

Page : 10 of 10 Work Order : EO2202394

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B+C

Sub-Matrix: Water				Matrix Spike (MS) Report						
				Spike		Recovery (%)	Recovery Limits (%)			
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Total Metals (QCLot: 455999) - continued										
EO2202363-001	Anonymous	silver, total	7440-22-4	E420	0.00386 mg/L	0.004 mg/L	96.4	70.0	130	
		sodium, total	7440-23-5	E420	ND mg/L	2 mg/L	ND	70.0	130	
		strontium, total	7440-24-6	E420	ND mg/L	0.02 mg/L	ND	70.0	130	
		sulfur, total	7704-34-9	E420	19.2 mg/L	20 mg/L	96.3	70.0	130	
		tellurium, total	13494-80-9	E420	0.0370 mg/L	0.04 mg/L	92.5	70.0	130	
		thallium, total	7440-28-0	E420	0.00382 mg/L	0.004 mg/L	95.5	70.0	130	
		thorium, total	7440-29-1	E420	0.0204 mg/L	0.02 mg/L	102	70.0	130	
		tin, total	7440-31-5	E420	0.0195 mg/L	0.02 mg/L	97.6	70.0	130	
		titanium, total	7440-32-6	E420	0.0391 mg/L	0.04 mg/L	97.7	70.0	130	
		tungsten, total	7440-33-7	E420	0.0192 mg/L	0.02 mg/L	96.1	70.0	130	
		uranium, total	7440-61-1	E420	0.00407 mg/L	0.004 mg/L	102	70.0	130	
		vanadium, total	7440-62-2	E420	0.0972 mg/L	0.1 mg/L	97.2	70.0	130	
		zinc, total	7440-66-6	E420	0.356 mg/L	0.4 mg/L	88.9	70.0	130	
		zirconium, total	7440-67-7	E420	0.0392 mg/L	0.04 mg/L	98.0	70.0	130	
Aggregate Organics (QCLot: 456254)										
EO2202349-007	Anonymous	chemical oxygen demand [COD]		E559-L	ND mg/L	100 mg/L	ND	75.0	125	

Acute Toxicity Test Results

Samples collected April 11, 2022

Final Report

April 19, 2022

Submitted to: ALS Environmental

Edmonton, AB

SAMPLE INFORMATION

	Dates					
Sample ID/ Internal ID	Collected	Received	Rainbow trout test initiation	<i>Daphnia</i> <i>magna</i> test initiation	Receipt temperature	
EO2202394-001 Pond B/	11-Apr-22	12-Apr-22	13-Apr-22	13-Apr-22	14.8°C	
2122-1886-01	at 1130h	at 1600h	at 1535h	at 1455h		
EO2202394-002 Pond C/	11-Apr-22	12-Apr-22	13-Apr-22	13-Apr-22	15.1°C	
2122-1886-02	at 1100h	at 1600h	at 1540h	at 1500h		

TEST TYPES

- Rainbow trout 96-h LC50 test
- Daphnia magna 48-h LC50, EC50 test

RESULTS

Toxicity test results

Sample ID	LC50/EC50 (% v/v)				
Sample ID —	Rainbow trout	Daphnia magna			
	LC50	LC50	EC50		
EO2202394-001 Pond B	>100	>100	>100		
EO2202394-002 Pond C	>100	>100	>100		

LC = Lethal Concentration, EC= Effect Concentration

QA/QC

QA/QC summary	Rainbow trout	Daphnia magna	
Reference toxicant LC50 (95% CL)	3.9 (3.5-4.4) g/L KCl ¹	6.2 (5.9-6.5) g/L NaCl ²	
Reference toxicant historical mean (2 SD Range)	3.3 (2.5-4.5) g/L KCl	6.5 (5.5-7.7) g/L NaCl	
Reference toxicant CV	9.7%	5.7%	
Organism health history	Acceptable	Acceptable	
Protocol deviations	None	None	
Water quality range deviations	None	None	
Control performance	Acceptable	Acceptable	
Test performance	Valid	Valid	

¹ Test date, April 11, 2022; ² Test Date April 11, 2022

Reference: 2122-1886

LC = Lethal Concentration; CL = Confidence Limit, SD = Standard Deviation; CV = Coefficient of Variation

Report By:

Courtney Hewitt, BSc

Biologist

Reviewed By:

Tamara Pomeroy, BSc

Laboratory and Quality Manager

This report has been prepared by Nautilus Environmental Company Inc. based on data and/or samples provided by our client and the results of this study are for their sole benefit. Any reliance on the data by a third party is at the sole and exclusive risk of that party. The results presented here relate only to the samples tested.

APPENDIX A – Summary of test conditions

Table 1. Summary of test conditions: 96-h rainbow trout (*Oncorhynchus mykiss*) survival test.

Test species Oncorhynchus mykiss

Organism source Fish hatchery
Organism age Juvenile
Test type Static
Test duration 96 hours

Test vessel 5 gallon glass aquariums

Test volume 10 - 20 L, depending on size of fish

Test solution depth Minimum 15 cm

Test concentrations Five concentrations, plus laboratory control

Test replicates 1 per treatment
Number of organisms 10 per replicate

Control/dilution water De-chlorinated City of Calgary tap water

Test solution renewal None
Test temperature $15 \pm 1^{\circ}$ C
Feeding None

Light intensity 100 to 500 lux

Photoperiod 16 hours light/8 hours dark

Aeration 6.5 ±1 mL/min/L

pH, conductivity, dissolved oxygen and temperature were measured at test initiation and test completion;

Test Measurements salinity measured at test initiation; evaluated for

· · · · ·

survival daily

Test protocol Environment Canada (2000), EPS 1/RM/13, with 2007 &

2016 amendments

Statistical software None

Test endpoints 96-hour LC50
Test acceptability criteria for controls Survival \geq 90%

Reference toxicant Potassium chloride (KCI)

Table 2. Summary of test conditions: 48-h Daphnia magna survival test.

Test species Daphnia magna

Organism source In-house culture

Organism age <24 hours

Test type Static

Test duration 48 hours

Test vessel 385 mL plastic vessels

Test volume 150 mL

Test concentrations Five concentrations, plus laboratory control

Test replicates 1 per treatment

Number of organisms 10 per replicate

De-chlorinated City of Calgary tap water amended

Control/dilution water with 4 mg/L KCl and with B12 (2 μg/L) and Na₂SeO₄

 $(2 \mu g Se/L)$

Test solution renewal None
Test temperature $20 \pm 2^{\circ}C$

Feeding None

Light intensity 400 to 800 lux

Photoperiod 16 hours light/8 hours dark

Aeration None

Test measurements

pH, conductivity, dissolved oxygen and temperature

measured at test initiation and completion; salinity

and hardness measured at test initiation in

undiluted sample; evaluated daily for survival

Test protocol Environment Canada (2000), EPS 1/RM/14

Statistical software None

Test endpoints 48-h LC50

Test acceptability criteria for controls Survival ≥ 90%

Reference toxicant Sodium chloride (NaCl)

APPENDIX B – Toxicity test data

DILITITION

Trout Bench Sheet

Method	TRD	Client	ALS106	Reference	2122-1886-01		Chamber	2
Test Log							Sample Infor	mation
						Daily Data		
Day		Date	Time	Initial	Chem, Cart		Initial pH:	8.0
0	202	2-04-13	1535*	MAF/CC	7	WIM	Initial EC (uS/o	
1	202	2-04-14	0830	dec	T	12.1		m). 1699
2		2-04-15	0905			more	Salinity (ppt):	
3		2-04-16		NA	-	mere		
4			0900	NA		LW.		
4_	202	2-04-17	MOD	W/CCM		Vertin		N
Preaeration DO(mg/L) o Temp (°C) of	e adjusted to 6. time f 100%	0 hours		1 hour	1.5 hours	2 hours	DO in mg/L (saturation)** 6.2 mg/L - 8.9 mg 6.1 mg/L - 8.8 mg 6.0 mg/L - 8.6 mg **corrected for alt	/L at 14°C /L at 15°C /L at 16°C
Conc	CIL	0	1 12	25	50	100		
				nH (units) (range: 5.5-8.5)			
Day 0	75	71	7.6	pir (drints) (ange. 3.3-6.3)	750		
Day 4	G M	0.10	0.0	7.6	TVI	7.7		
- Luy I	Dec	041	50	501	6.2	18.2		
				EC /	uS/cm)			
Day 0	481	KCK	11-0	7117	I O I I I	11 0-		
Day 4	500		000	TTO	0 64	1,643		
, .	500	073	003	+75	776	65	/	
			DO (ma/l	11/70 1000/				
Day 0	80	21 0	O (mg/)		aturation at te			
Day 4	8.7	0.1	87	8.9	8.9	8.9		
, .	0.0	8,6	0.6	8.6	0.6	8.6		
			des	and a second		10045		
D 0	C.C.		Te	mperature ("C) (range: 14-16	'C)		
Day 0	19	14	14	14	19	14		
Day 4	16	lb	l b	112	16	110		
			Numbe	r Alive (In bra	ckets number s	tressed)		
Day 0	10	10	10	10	10	10		
Day 1			10	10	10	10		
Day 2	10	10	10	10	10	10		
Day 3	10	10	10	10	10	-		
Day 4	10	10	10	10	14	10	-	
,	Validity Crite	ria: must be <	10% mortality a	mel/min streets	11111111	10		
	Unless others	ise noted bob	avior is considere	ma/or stresse	d benavior in t	ne control		
	Officas Otherw	ise noted, ben	avior is considere	ea to be norm	iai			
Control Orga	nism Data					Tast Osses		
Control	Length	Weight				rest Organis	m Information	
Fish	(cm)	(g)			5	Batch	2022022470	1
		(3,				Datti	_20220224TR	
1	33	60	Loading Density	((a/L):	0.2	Source	T41- 4	
2	2.7	0.3	(must be ≤0.5 g/L)	(9/1).		Source	<u>Troutlodge</u>	100
3	73	6.3	(mascae 30.5 g/L)					
4	30	-			7 1	Tank #	9	
5		0:3	Mean Length (c	m):	3.0		21	1
	3.0	0.3			07 70	Days Held at	15± 2°C	21
6	100	2:0	Length Range (d	cm):	2.4-55	must be ≥14 da	ays)	
7	2.7	510						
8	3.1	210	Mean Weight (g	j):	G.3	Percent stock	mortality	0
9	3.2	00	(Must be ≥0.3g)				est, must be ≤2%)	.0.
10	3.7-	0.3			9674	adya prior to te	-3t, must be 5276)	
		-	ı Weight Range: (a).	0.3-04	Tast Values - (15	
						Test Volume (L) ===	18
omments :								
								1
		Reviewed By:	\$\$		D	ate Reviewed:	202210	1118

Trout Bench Sheet

Method	TRD	_Client	ALS106	Reference	2122-1	1886-02	Chamber	2
Test Log	ry —		,				Sample Inform	mation
	_		~-			Daily Data		0.6
Day 0		Date	Time	Initial	Chem. Cart	Review	Initial pH:	8,0
1		2-04-13	0830	MAF/CC	+	win	Initial EC (µS/c	m): 706
2		2-04-14 2-04-15		1(WE	Salinity (ppt):	_ 2_
3		2-04-16	09 10	NA		mar	-	
4		2-04-17	0900	NA		N	_	910
4	202	2-04-17	Natarit	Dalecian	Liver dead order	lim	l.	
Preaeration ti	adjusted to 6.5 me	5 +/- 1 mL/min/l 0 hours		when the test with the state of	1.5 hours	2 hours	DO in mg/L (saturation)** 62 mg/L - 8.9 mg	
DO(mg/L) of		9.9	9.6	8.8			6.1 mg/L - 8.8 mg	/L at 15°C
Temp (°C) of	100%	15				///	6.0 mg/L - 8.6 mg	
							**corrected for all	itude
Test Chemist	ry and Biolog	У						
Conc	CTL	6	12	25	50	100		
	1,17			111				
				pH (units) (ra	ange: 5.5-8.5)			
Day 0	74	7.5	7.5	7.5	7.6	7.9		
Day 4	8.1	8	8.1	8-1	8.1	7.9		
						1 - 1	-	
				EC (u	S/cm)			
Day 0	482	493	503	530	582	687		
Day 4	492	507	520	549	605	715		
						7 1.2-	•	
			DO (mg/	L) (70-100% sa	aturation at te	st temp.)		
Day 0	8.9	8.9	8.9	8,9	9.9	8.8		
Day 4	8.6	8-6	8.8	8.8	28	8.6		
•					975	0.0		
			Te	emperature (°C	(range: 14-16	'C)		
Day 0	14	14	14	14	14	15		
Day 4	16	16	15	15	15	15		
							-	
			Numbe	er Alive (In brad	kets number st	tressed)		
Day 0	10	10	10	10	10	10		
Day 1	10	10	10	(0)	10	10		
Day 2	10	10	10	10	10	10		
Day 3	10	10	10	10	10	10		
Day 4	10	10	ľ	10	10	17		
,		eria: must be ≤	10% mortality	and/or stresse	d behavior in the	ne control		
		vise noted, beha	•					
		,						
Control Orga	nism Data					Test Organis	m Information	
Control	Length	Weight						
Fish	(cm)	(g)		972		Batch	20220224TR	
					_			• 2
1	55	OM	Loading Densi	tv (a/L):	0 2	Source	Troutlodge	
2	2.3	D.3	(must be ≤0.5 q/L		-		uativage	.
3	0.3	22		,	- 0	Tank #	9	
4	30	En	Mean Length (.cm).	29	Tunk "	2	50 T
5	710	0.3	incan congan	(011).		Days Held at	15± 2°C	21
6	3 1	0.35	Length Range	(cm)·	25.10	(must be ≥14 d		
7	23	5.0	Length Range	(City.	20-00	(must be 214 u	ays)	
8	80	0.2	Mean Weight	(a):	6.3	Percent stock	mortality	0
9	3.0	0,5	(Must be ≥0.3q)	(9).	0.0	1	•	
10	3.0		(Must be 20.3g)			(7 days prior to t	est, must be ≤2%)	
10	7.1	6.3	Weight Range	· (a):	52-0.4	T4 1/-1:	(1)	10
			weight Kange	. (9).	0.1	Test Volume	(L)	18
Comments :						l		
Comments:								1
		Reviewed By:	SS		г	Date Reviewed	1: 202210	NUNS
							ZUCCIU	1110

Daphnia Bench Sheet

Method	DAD			Client	ALS106		Reference	7127	-1284	10
Test Log								Sample In	formation	
Day	Da	ate	Time	Technician	Chem. Cart	Daily Dat	a Review	Initial pH:		2:0
0	2022/		1455	EP/CH	2	MAS		Initial EC ((S/cm):	Laa
1	2022/0		1000	Con		W I		Salinity (pr		0
2	2022/		DELID!	mar	7	1141	1	i	,	
		- 4	00-10	11111						
Lab Code	CTL	6	12	25	50	100				
		, ,		23		100				
day				pH (uni	ts) (range: 6.	0-8 5)				
0	01	Q I	21	01	Q 1	0.5)				
2	82	23	3.7	00	8 7	3	-			
_	00	The nH of the	cample was no	ot adjusted prior	to test setting	uplass pated	in the comme	nate bolow		
		the pri of the	sample was no	ot aujusteu prioi	EC (uS/cm)		in the comme	sura neiow		
0	U20	FUA	100	201		1571	F-0			
2	2180	OPC	608	+56	1043	2100	UP .			
2	210	20	611	166	LOV &	1540				
				DO (m=/1) (40 4000/			8		
0	- C	- 0	- 0	DO (mg/L) (40-100% sa	turation at	test temp	.)		
0 2	7.9	3.9	7 .9	7.9	7.9	8-1				,
2		1:7		7.7	77					
				_						
•				Temperatu	re (°C) (range	e: 18-22 °C)		·	
0	20	20	20	20	20	19				
2	21	21	21	21	7.	21				
					Numbe	r Alive				
					(l, immo	bile)				
0	10	10	10	10	10	10				
1	10	10	10	10	10	Q				
2	10	10	10	10	10	10				
Validity Criteria: must be ≤ 10% mortality and/or abnormal behavior in the control										
Notes: Immobile; daphnid can't swim after 60 sec. even if antenna still move										
				, behaviour i						
Culture				,						
	C5		lar(s) morta	lity 7 days p	rior to test (r	nust he <2	5%)	0%		
i cang jai			Jan (3) 11101 ta	inty / days pi	ioi to test (i	11031 DC 32	370)	01	. :	
QA (previou	is month)						Control V	alidity Crit	oria	_\
	t brood (≤12	dave)	a					ortality at		O
	mber of youn		(>15 your	-\ -	21		(must be s		+0 110u13 -	
	eatments ran						(ITIUST DE 3	1070)		l
I vvere test tr	eatments ran	domized of	i test tray!	(Yes) / N	0					1
Sample										
	-fl:	:		10.9	Tananasah	- (°C) -f	mala mriar	+0 00rotion		18
DO (mg/L) (of sample pric	or to aeratic	on:	10.9	Temperatur				_	
DO % of sar	mple prior to	aeration:		7	Is aeration r	equired (<	40% or >10	00%)?	Yes or No	
Duration of	aeration (37.	5 +/- 12 5 n	nl/min/l):	20000	Filtered with	110um sc	reen prior t	o testina	Yes or No) -
	ng CaCO ₃ /L) o			~V10101	Is hardness			_		Yes or No
ı		100		6 0		-	required (-25 my Ca	CO3/ L):	. 03 01 110
Hardness of	f sample after	adjustmen	t (must be l	between 25 -	- 30 mg CaC(U ₃ /L)		•00		
Alkalinity of	100% sample	e (mg CaCC) ₃ /L):							
		. 3								
Dilution W	ater			1	DO Levels (40-100%	aturation)	- corrected	for altitud	le -
1 1 1	preparation d	ate	1.04/11		3.3 to 8.2 m				mg/L at 21	
	f dilution water		010	0	3.2 to 8.1 m				mg/L at 22	
, idi di idaa 01	anddon wate	(mg/ L/		8	3.2 to 7.9 m			5.5 (0 7.0)	9, - 4, -2	-
Commente	/Observatior	ıc.		4	J.E (0 1.7 III	3/ - 41 20 (
Comments	CD3CI VALIDI	13.								
,	lavious d D	66		Date	e Reviewed:	2021	millio			
К	leviewed By:			Date	e neviewed:		04/18	201		

Daphnia Bench Sheet

Method	DAD	Cl	ient	ALS106		Reference	2127-	1886-(12
Day 0 1 2	Date 2022/04/13 2022/04/14 2022/04/15		echnician P/CH SC	Chem. Cart	Daily Dat	a Review	Sample Intial pH: Initial EC (µ Salinity (pp	ıS/cm):	8.0 7.06
Lab Code	CTL 6	12	25	50	100				
day 0 2	8.1 8.1	the sample was not a	pH (uni	ts) (range: 6.	0-8.5)	in the comme	ents below		
0 2	467 486	50 5	523	\$75	668				
0 2	79 79	1 7.9 1 7.7	0 (mg/L) (4 7 . 9 7 . 7	40-100% sar	turation at	test temp	.)		
0 2	20 20	20 9	emperatur 2	re (°C) (range	2: 18-22 °C;				
0 1 2	Notes: Ir	10 Criteria: must be sommobile; daphnid therwise noted, b	l can't swir	n after 60 se	abnormal bec. even if a	ntenna still			
Average nu	<u>c5</u>	Jar(s) mortality		ior to test (n		5%) Control V	O /- alidity Crite nortality at 4		0
DO % of sa Duration of Hardness (I Hardness o	of sample prior to aer mple prior to aeration f aeration (37.5 +/- 12. mg CaCO ₃ /L) of 100% f sample after adjustm f 100% sample (mg Ca	: (17 5 mL/min/L): 2 : 8 1 nent (must be be	nim 0	Temperatur Is aeration r Filtered with Is hardness 30 mg CaCo	required (< n 110um sc adjustment	40% or >10 reen prior	00%)? to testing	Yes or No	
Hardness o	fater preparation date f dilution water (mg/L) /Observations:	1: 04/II		DO Levels (3.3 to 8.2 m 3.2 to 8.1 m 3.2 to 7.9 m	ig/L at 18°0 ig/L at 19°0		3.1 to 7.7 r 3.0 to 7.6 r	ng/L at 21	°C
[Reviewed By:	<u> </u>	Date	Reviewed:	2022	104118			

APPENDIX C – Chain-of-custody form

Destination Lab: Nautilus Environmental

(Calgary)

Address: 10828 27 Street SE Calgary AB Canada

T2Z 3V9

Work Order Number: EO2202394

Original Receipt Date/Time

Instructions Received

11/04/2022 14:45

Relinquished By

Date/Time

Received By

Date/Time

Receipt Temp

Return as Indicated: Results: ALSEDClientServices@alsglobal.com Invoice: ALSEDClientServices@alsglobal.com Electronic Data: ALSEDClientServices@alsglobal.com

Attention: Pamela Toledo

ALS Sample ID	Client ID	Matrix	Container Type	Test Codes	Method Description	Due Date	Sampling Date and Time	Remarks
EO2202394-001	Pond B	Water	LDPE carboy			15-04-2022	11/04/2022 11:30	
EO2202394-001	Pond B	Water	LDPE carboy			15-04-2022	11/04/2022 11:30	
EO2202394-001	Pond B	Water	LDPE carboy			15-04-2022	11/04/2022 11:30	
EO2202394-001	Pond B	Water	LDPE carboy			15-04-2022	11/04/2022 11:30	
EO2202394-002	Pond C	Water	LDPE carboy			15-04-2022	11/04/2022 11:00	,
EO2202394-002	Pond C	Water	LDPE carboy			15-04-2022	11/04/2022 11:00	
EO2202394-002	Pond C	Water	LDPE carboy			15-04-2022	11/04/2022 11:00	
EO2202394-002	Pond C	Water	LDPE carboy			15-04-2022	11/04/2022 11:00	
EO2202394-001	Pond B	Water	LDPE carboy	DAP-LC50-48	Survival/LC50 Daphnia Magna 48 hours	15-04-2022	11/04/2022 11:30	14.8%
EO2202394-002	Pond C 02.	Water	LDPE carboy	DAP-LC50-48	Survival/LC50 Daphnia Magna 48 hours	15-04-2022	11/04/2022 11:00	15.100
EO2202394-001	Pond B	Water	LDPE carboy	TRT-LC50-96	Survival/LC50 Rainbow Trout (96 hours)	15-04-2022	11/04/2022 11:30	
EO2202394-002	Pond C	Water	LDPE carboy	TRT-LC50-96	Survival/LC50 Rainbow Trout (96 hours)	15-04-2022	11/04/2022 11:00	

2122-1866 2022/04/12 16:00 oc Jazos 8x10Lpails, 4x1Lbottles NoS/NoB Good Condition

END OF REPORT

www.aisglobal.com

Canada Toll Free: 1 800 668 9878

		ACC MAILING	Of Minho
		, ,	ن
		-)
	((
	(5	2
-	C)	2
	())
	(5	1
	-	-	

	Time:		Date:	Received by:	Recei	2:24 R	2022	ARO /11/		13:00 Neceived W	2002	April 11/2022	amo	A. C.
		ALS use only)	FINAL SHIPMENT RECEPTION (ALS use only)			!		RECEPTION (ALS	INITIAL SHIPMENT RECEPTION (ALS use only)		se)	SHIPMENT RELEASE (client use)		Released hy:
2	- 0	The Control of the Co				6.1				rush analysis	Please		YES NO	Y
NW	Sak [stody Seals Intact: YES	□ N/A Sample Cu	Cooler Custody Seals Infact: YES	ustody Se	Cooler C				Quok Q 82442	Quok (use?		Are samples for I
	ON O	□ YES [Submission Comments identified on Sample Receipt Notification:	ents identified on	on Comm	Submiss	5	ia (attacke	4.38 + Dapa	Please analyze as per Table 4.38 + Daphia (attacked	Please and	JW System?	Are samples taken from a Regulated DW System?	Are samples taken
0	COOLING INITIATED		ICE THE PACKS PROZEN	□ NONE □	Method:	Cooling Method:			cel COC only)	(Exc				Are complex tok-
		se only)	SAMPLE RECEIPT DETAILS (ALS use only)	SAM			How	from drop-down be	aluation by selecting	Notes / Specify Limits for result evaluation by selecting from drop-down below	No	ples¹ (client use)	Drinking Water (DW) Samples¹ (client use)	Drinkir
										The second second				
	= -,		900											
1		780 413 5227	Telephone: +1 780 413 5227											
1		かんなす 一下書												
1	10	200												
											=			
	-													
	+	20239	EO2											
		Work Order Reference	Work Order					-	27. 145.11					
	Т		Environmen		1	0	water	ゴェラウ	11-405-77				Donad C	
	1	tal Division	- ironmental Division		(2	Johan	130	22-104-B				Pond 15	
_	- Al	-		24	Dag	_	Sample Type	(hh:mm)	(dd-mmm-yy)	aport)	(This description will appear on the report)	(This description		(ALS use only)
-	_			the	hni	_		Time	Dato		Sample Identification and/or Coordinates	Sample Identifica		Al S Sample &
DED S	PLES			, acch	ia Mo	BER	M	Sampler: Todd		ALS Contact: Pamela Toledo	62394	ALS Lab Work Order # (ALS use only): & 2262394	rk Order# (ALS us	ALS Lab Wo
_	_			L Let	you					Location:	0		able 4.38	LSD:
_	_			Na li	4	C				Requisitioner:				PO / AFE:
_	_			TY.	181	ON		Routing Code:		Major/Minor Code:	-		Pand 8+C	Job #:
_	_			tes		TA		PO#		AFE/Cost Center:	4.3B)	Q 8242/Table		ALS Account # / Quote #.
_				+		IN	8)	Fields (client us	Oil and Gas Required Fields (client use)	20		Project Information		
_						ER		6		Email 2			Robbi 6	Contact:
-		z/P) halow	Indicate Filtered (F), Preserved (P) or Filtered and Preserved (F/P) below	Indicate Filtered (F).		s	port con	Manage Com	and in a Pak	Email 1 or Fax		ors Canada	Dear Harbors	Company:
			Analysis Request	1			FAX	AIL MAIL	tribution: BMAIL	Select Invoice Distribution:	YES NO		Copy of Invoice with Report	
		to confirm availability.	For all tests with rush TATs requested, please contact your AM to confirm availability.	For all tests with r				cipients	Invoice Recipients		YES NO		Same as Report To	Invoice To
-	nichn	neutry Milnin an	TATS: dd-	Date and Time Required for all E&P TATs:	te and Time	Da		1		Email 3			TOB 440	Postal Code:
			may apply to rush requests on weekends, statutory holidays and non-routine tests	requests on weekends,	apply to rush	□ may a	COM	tran harbors.	who stan a dentartors com	Email 2			100	City/Province:
			Light fectored by 10m M-F- 100% rush surcharge minimum Same day (EZ) If received by 10m M-S- 200% rush surcharge. Additional fees	received by 10am M-S	day (EZ) if	-	SW.	lenharbars.a	Email 1 or Fax WCGO: todd @ Clember 5:00	Email 1 or Fax 🚺	Road 173	390, SOIH Ray Road	PO Box 390	Street:
	(ALS use only)	(ALS ut	2 day [P2] if received by 3pm M-F - 50% rush surcharge minimum	eived by 3pm M-F - 5	[P2] If rec	2 day	АX	☐ MAIL ☐ FAX	I: BMAIL	Select Distribution:	final report	Company address below will appear on the final report	Company address	
HERE	ODE LABEL	AFFIX ALS BARCODE LABEL HERE	3 day [P3] if received by 3pm M-F - 25% rush surcharge minimum	eived by 3pm M-F - 2	[P3] if rec	3 day	ox checked	ovide details below if I	Compare Results to Criteria on Report - provide details below if box checked	☐ Compare Results	3	663-2513	780 663	Phone:
			day [P4] If received by 3pm M-F- 20% rish surcharge apply	4 day [P4] if received by 3pm M-F- 20% rush surcharges apply	[P4] if rece		T) N/A		orts with COA	Merge QC/QCI	מר	to Star Vuha	Told (.)	Contact:
			n surcharnes apply	pived by 3pm M-F - r	ne [R] if rec	Routi	T EDD (DIGITAL)	- 1		Select Report Format:		Harbor (anda	Clean Har	Company:
	1000		AT) Requested	Turnaround Time (TAT) Requested	Т			ecipients	Reports / Recipients	ort	appear on the final repo	Contact and company name below will appear on the final report	Contact a	Report To

REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION

WHITE - LABORATORY COPY

YELLOW - CLIENT COPY

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy.

1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

TABLE 4.3-B: RUNOFF LIMITS FOR SURFACE WATER DETENTION POND

PARAMETER	LIMITS Maximum unless otherwise indicated
pH	6.0 - 9.5 pH units
COD	50 mg/L
TDS	2500 mg/L
TSS	25 mg/L
Ammonia (expressed as Nitrogen)	5 mg/L
Chloride	250 mg/L
Sodium	200 mg/L
Sulphate	500 mg/L
Oil or other substances	Not present in amounts sufficient to create a visible film or sheen
96-Hour Multiple Concentration Acute Lethality Test Using Rainbow Trout (Oncorhynchus mykiss)	50% or greater survival

48 hr Static Acute Lethality test using Daphnia Magna

Appendix B Pond C Analytical Report May 2022

CERTIFICATE OF ANALYSIS (GUIDELINE EVALUATION)

Work Order : **EO2203075**

Client : Clean Harbors Environmental Services, Inc.

Contact : Todd Webb

Address : PO Box 390, 50114 Rame Road 173

AB Canada T0B4A0

Telephone : 780 663 2513
Project : Pond C MAY 5

PO : 224602 C-O-C number : ----Sampler : ----

Site : TABLE 4.3B

Quote number : Q82439 / Q82442

No. of samples received : 1
No. of samples analysed : 1

Page : 1 of 3

Laboratory : Edmonton - Environmental

Account Manager : Pamela Toledo

Address : 9450 - 17 Avenue NW

Edmonton, Alberta Canada T6N 1M9

 Telephone
 : +1 780 413 5227

 Date Samples Received
 : 05-May-2022 15:47

 Date Analysis Commenced
 : 05-May-2022

 Issue Date
 : 26-May-2022 18:17

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Guideline Comparison

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Alex Drake	Lab Analyst	Inorganics, Edmonton, Alberta
Angeli Marzan	Lab Analyst	Inorganics, Edmonton, Alberta
Austin Wasylyshyn	Lab Analyst	Metals, Edmonton, Alberta
Dan Nguyen	Team Leader - Inorganics	Inorganics, Edmonton, Alberta
Geoff Berg	Lab Analyst	Organics, Edmonton, Alberta
Muzammil Ali	Lab Analyst	Inorganics, Edmonton, Alberta
Pamela Toledo	Account Manager	External Subcontracting, Calgary, Alberta
Shruti Mudliar	Lab Analyst	Inorganics, Edmonton, Alberta

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information. Guidelines are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.

Key: LOR: Limit of Reporting (detection limit).

Unit Description

>: greater than.

<: less than.

Red shading is applied where the result is greater than the Guideline Upper Limit or the result is lower than the Guideline Lower Limit.

For drinking water samples, Red shading is applied where the result for E.coli, fecal or total coliforms is greater than or equal to the Guideline Upper Limit.

Page : 3 of 3
Work Order : EO2203075

Client : Clean Harbors Environmental Services, Inc.

Project : Pond C MAY 5

No Breaches Found

CERTIFICATE OF ANALYSIS

Work Order : **EO2203075**

Client : Clean Harbors Environmental Services, Inc.

Contact : Todd Webb

Address : PO Box 390, 50114 Rame Road 173

AB Canada T0B4A0

Telephone : 780 663 2513
Project : Pond C MAY 5

PO : 224602 C-O-C number : ----

Sampler · ___

Site : TABLE 4.3B

Quote number : Q82439 / Q82442

No. of samples received : 1
No. of samples analysed : 1

Page : 1 of 4

Laboratory : Edmonton - Environmental

Account Manager : Pamela Toledo

Address : 9450 - 17 Avenue NW

Edmonton AB Canada T6N 1M9

Telephone : +1 780 413 5227

Date Samples Received : 05-May-2022 15:47

Date Analysis Commenced : 05-May-2022

Issue Date : 26-May-2022 18:17

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Alex Drake	Lab Analyst	Inorganics, Edmonton, Alberta
Angeli Marzan	Lab Analyst	Inorganics, Edmonton, Alberta
Austin Wasylyshyn	Lab Analyst	Metals, Edmonton, Alberta
Dan Nguyen	Team Leader - Inorganics	Inorganics, Edmonton, Alberta
Geoff Berg	Lab Analyst	Organics, Edmonton, Alberta
Muzammil Ali	Lab Analyst	Inorganics, Edmonton, Alberta
Pamela Toledo	Account Manager	External Subcontracting, Calgary, Alberta
Shruti Mudliar	Lab Analyst	Inorganics, Edmonton, Alberta

Page : 2 of 4

Work Order : EO2203075

Client : Clean Harbors Environmental Services, Inc.

Project : Pond C MAY 5

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
mg/L	milligrams per litre
pH units	pH units

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Page : 3 of 4
Work Order : EO2203075

Client : Clean Harbors Environmental Services, Inc.

Project : Pond C MAY 5

Analytical Results

Sub-Matrix: Water		CI	ient sample ID	Pond C	 	
(Matrix: Water)						
		Client samp	ling date / time	05-May-2022 13:15	 	
Analyte CAS Number	Method	LOR	Unit	EO2203075-001	 	
				Result	 	
Physical Tests						
pH		0.10	pH units	8.34	 	
solids, total dissolved [TDS]	E162	10	mg/L	739	 	
solids, total suspended [TSS]	E160	3.0	mg/L	7.8	 	
Anions and Nutrients						
ammonia, total (as N) 7664-41-7		0.0050	mg/L	0.0224	 	
chloride 16887-00-6	E235.CI	0.50	mg/L	57.0	 	
sulfate (as SO4) 14808-79-8	E235.SO4	0.30	mg/L	356	 	
Bioassays						
Daphnia magna LC50	DAP-LC50-48	-	-	See	 	
10. 115	TDT 050 00			attached		
trout bioassay LC50	TRT-LC50-96	-	-	See	 	
Total Metals				attached		
aluminum, total 7429-90-5	E420	0.0030	mg/L	0.0374	 	
antimony, total 7440-36-0		0.00010	mg/L	0.00044	 	
arsenic, total 7440-38-2		0.00010	mg/L	0.00132	 	
barium, total 7440-39-3		0.00010	mg/L	0.0420	 	
beryllium, total 7440-41-7		0.000020	mg/L	<0.000020	 	
bismuth, total 7440-69-9		0.000050	mg/L	<0.000050	 	
boron, total 7440-42-8		0.010	mg/L	0.073	 	
cadmium, total 7440-43-9		0.0000050	mg/L	0.0000382	 	
calcium, total 7440-70-2		0.050	mg/L	40.3	 	
cesium, total 7440-46-2		0.000010	mg/L	0.000052	 	
chromium, total 7440-47-3		0.00050	mg/L	0.00067	 	
cobalt, total 7440-48-4		0.00010	mg/L	0.00026	 	
copper, total 7440-50-8		0.00050	mg/L	0.00690	 	
iron, total 7439-89-6		0.010	mg/L	0.043	 	
lead, total 7439-92-1	E420	0.000050	mg/L	0.000141	 	
lithium, total 7439-93-2		0.0000		0.0313	 	
		0.0010	mg/L	15.7		
magnesium, total 7439-95-4		0.0050	mg/L	0.00777	 	
manganese, total 7439-96-5	E420	0.00010	mg/L	0.00777	 	

Page : 4 of 4
Work Order : EO2203075

Client : Clean Harbors Environmental Services, Inc.

Project : Pond C MAY 5

ALS

Analytical Results

Sub-Matrix: Water			Cli	ient sample ID	Pond C	 	
(Matrix: Water)							
			Client samp	ling date / time	05-May-2022 13:15	 	
Analyte	CAS Number	Method	LOR	Unit	EO2203075-001	 	
					Result	 	
Total Metals							
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.0890	 	
nickel, total	7440-02-0	E420	0.00050	mg/L	0.0114	 	
phosphorus, total	7723-14-0	E420	0.050	mg/L	<0.050	 	
potassium, total	7440-09-7	E420	0.050	mg/L	4.94	 	
rubidium, total	7440-17-7	E420	0.00020	mg/L	0.00144	 	
selenium, total	7782-49-2	E420	0.000050	mg/L	0.000452	 	
silicon, total	7440-21-3	E420	0.10	mg/L	0.90	 	
silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	 	
sodium, total	7440-23-5	E420	0.050	mg/L	170	 	
strontium, total	7440-24-6	E420	0.00020	mg/L	0.395	 	
sulfur, total	7704-34-9	E420	0.50	mg/L	121	 	
tellurium, total	13494-80-9	E420	0.00020	mg/L	<0.00020	 	
thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	 	
thorium, total	7440-29-1	E420	0.00010	mg/L	<0.00010	 	
tin, total	7440-31-5	E420	0.00010	mg/L	0.00010	 	
titanium, total	7440-32-6	E420	0.00030	mg/L	0.00064	 	
tungsten, total	7440-33-7	E420	0.00010	mg/L	0.00098	 	
uranium, total	7440-61-1	E420	0.000010	mg/L	0.00359	 	
vanadium, total	7440-62-2	E420	0.00050	mg/L	0.0624	 	
zinc, total	7440-66-6	E420	0.0030	mg/L	0.0090	 	
zirconium, total	7440-67-7	E420	0.00020	mg/L	0.00027	 	
Aggregate Organics							
chemical oxygen demand [COD]		E559-L	10	mg/L	43	 	
oil & grease (visible sheen)		E566	-	-	Absent	 	

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : EO2203075

Client : Clean Harbors Environmental Services, Inc.

Contact : Todd Webb

Address : PO Box 390, 50114 Rame Road 173

AB Canada T0B4A0

Telephone : 780 663 2513
Project : Pond C MAY 5

PO : 224602

C-O-C number : ---- : ----

Site : TABLE 4.3B

Quote number : Q82439 / Q82442

No. of samples received : 1
No. of samples analysed : 1

Page : 1 of 7

Laboratory : Edmonton - Environmental

Account Manager : Pamela Toledo

Address : 9450 - 17 Avenue NW

Edmonton, Alberta Canada T6N 1M9

Telephone : +1 780 413 5227

Date Samples Received : 05-May-2022 15:47

Issue Date : 26-May-2022 18:18

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

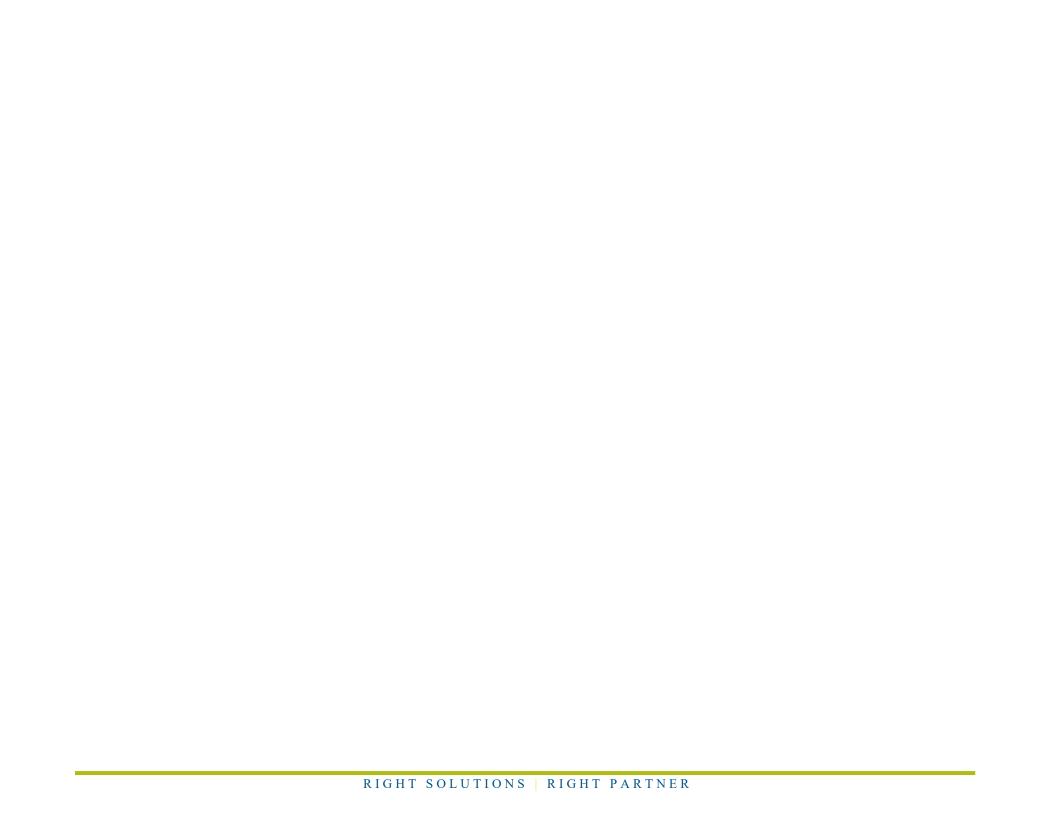
Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers

Outliers: Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples


• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers: Frequency of Quality Control Samples

• No Quality Control Sample Frequency Outliers occur.

Page : 3 of 7
Work Order : EO2203075

Client : Clean Harbors Environmental Services, Inc.

Project : Pond C MAY 5

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					E	valuation: ≭ =	Holding time exce	edance ; 🛚	= Within	Holding Tim
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Aggregate Organics : Chemical Oxygen Demand by Colourimetry (Low Level)										
Amber glass total (sulfuric acid)										
Pond C	E559-L	05-May-2022					10-May-2022	28 days	5 days	✓
Aggregate Organics : Oil & Grease by Visible Sheen										
Amber glass (hydrochloric acid)										
Pond C	E566	05-May-2022					10-May-2022	28 days	5 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
Pond C	E298	05-May-2022	05-May-2022				06-May-2022	28 days	1 days	✓
Anions and Nutrients : Chloride in Water by IC										
HDPE										
Pond C	E235.CI	05-May-2022					05-May-2022	28 days	0 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE										
Pond C	E235.SO4	05-May-2022					05-May-2022	28 days	0 days	✓
Bioassays : Survival/LC50 Daphnia Magna 48 hours										
HDPE										
Pond C	DAP-LC50-48	05-May-2022					26-May-2022	5 days	21 days	*
										EHT
Bioassays : Survival/LC50 Rainbow Trout (96 hours)										
LDPE carboy										
Pond C	TRT-LC50-96	05-May-2022					26-May-2022	5 days	21 days	*
										EHT

Page : 4 of 7
Work Order : EO2203075

Client : Clean Harbors Environmental Services, Inc.

Project : Pond C MAY 5

Matrix: Water					E	/aluation: × =	Holding time excee	edance ; •	✓ = Within	Holding Tin
Analyte Group	Method	Sampling Date	Ex	traction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation Holding Times		Eval	Analysis Date	Holding Times		Eval	
			Date	Rec	Actual			Rec	Actual	
Physical Tests : pH by Meter										
HDPE										
Pond C	E108	05-May-2022					05-May-2022	0.25	3 hrs	*
								hrs		EHTR-FM
Physical Tests : TDS by Gravimetry										
HDPE										
Pond C	E162	05-May-2022					11-May-2022	7 days	6 days	✓
Physical Tests : TSS by Gravimetry										
HDPE										
Pond C	E160	05-May-2022					10-May-2022	7 days	5 days	✓
Total Metals : Total Metals in Water by CRC ICPMS					<u> </u>					
HDPE										
Pond C	E420	05-May-2022					09-May-2022	180	4 days	✓
								days		

Legend & Qualifier Definitions

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended

EHT: Exceeded ALS recommended hold time prior to analysis.

Rec. HT: ALS recommended hold time (see units).

Page : 5 of 7
Work Order : EO2203075

Client : Clean Harbors Environmental Services, Inc.

Project : Pond C MAY 5

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Water		Evaluati	on: × = QC freque	ency outside spe	ecification; ✓ = 0	QC frequency wi	thin specificatio
Quality Control Sample Type				ount		Frequency (%	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Ammonia by Fluorescence	E298	478724	1	20	5.0	5.0	✓
Chemical Oxygen Demand by Colourimetry (Low Level)	E559-L	482670	1	18	5.5	5.0	✓
Chloride in Water by IC	E235.CI	478576	1	20	5.0	5.0	✓
pH by Meter	E108	478642	1	9	11.1	5.0	✓
Sulfate in Water by IC	E235.SO4	478575	1	20	5.0	5.0	✓
TDS by Gravimetry	E162	483753	1	15	6.6	5.0	✓
Total Metals in Water by CRC ICPMS	E420	481444	1	19	5.2	5.0	✓
TSS by Gravimetry	E160	483119	1	20	5.0	5.0	✓
Laboratory Control Samples (LCS)							
Ammonia by Fluorescence	E298	478724	1	20	5.0	5.0	✓
Chemical Oxygen Demand by Colourimetry (Low Level)	E559-L	482670	1	18	5.5	5.0	✓
Chloride in Water by IC	E235.CI	478576	1	20	5.0	5.0	✓
pH by Meter	E108	478642	1	9	11.1	5.0	✓
Sulfate in Water by IC	E235.SO4	478575	1	20	5.0	5.0	✓
TDS by Gravimetry	E162	483753	1	15	6.6	5.0	✓
Total Metals in Water by CRC ICPMS	E420	481444	1	19	5.2	5.0	✓
TSS by Gravimetry	E160	483119	1	20	5.0	5.0	✓
Method Blanks (MB)							
Ammonia by Fluorescence	E298	478724	1	20	5.0	5.0	✓
Chemical Oxygen Demand by Colourimetry (Low Level)	E559-L	482670	1	18	5.5	5.0	✓
Chloride in Water by IC	E235.CI	478576	1	20	5.0	5.0	✓
Sulfate in Water by IC	E235.SO4	478575	1	20	5.0	5.0	✓
TDS by Gravimetry	E162	483753	1	15	6.6	5.0	✓
Total Metals in Water by CRC ICPMS	E420	481444	1	19	5.2	5.0	✓
TSS by Gravimetry	E160	483119	1	20	5.0	5.0	✓
Matrix Spikes (MS)							
Ammonia by Fluorescence	E298	478724	1	20	5.0	5.0	✓
Chemical Oxygen Demand by Colourimetry (Low Level)	E559-L	482670	1	18	5.5	5.0	✓
Chloride in Water by IC	E235.CI	478576	1	20	5.0	5.0	✓
Sulfate in Water by IC	E235.SO4	478575	1	20	5.0	5.0	✓
Total Metals in Water by CRC ICPMS	E420	481444	1	19	5.2	5.0	1

Page : 6 of 7
Work Order : EO2203075

Client : Clean Harbors Environmental Services, Inc.

Project : Pond C MAY 5

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Survival/LC50 Daphnia Magna 48 hours	DAP-LC50-48	Water	EPS1/RM/14	See attached report.
	Nautilus Environmental (Calgary) - 10828 27 Street SE Calgary Alberta Canada T2Z 3V9			
pH by Meter	E108 Edmonton - Environmental	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally $20 \pm 5^{\circ}$ C). For high accuracy test results, pH should be measured in the field within the recommended 15 minute hold time.
TSS by Gravimetry	E160 Edmonton - Environmental	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, following by drying of the filter at 104 ± 1°C, with gravimetric measurement of the filtered solids. Samples containing very high dissolved solid content (i.e. seawaters, brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples.
TDS by Gravimetry	E162 Edmonton - Environmental	Water	APHA 2540 C (mod)	Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, with evaporation of the filtrate at $180 \pm 2^{\circ}$ C for 16 hours or to constant weight, with gravimetric measurement of the residue.
Chloride in Water by IC	E235.CI Edmonton - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Sulfate in Water by IC	E235.SO4 Edmonton - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Ammonia by Fluorescence	E298 Edmonton - Environmental	Water	J. Environ. Monit., 2005, 7, 37-42 (mod)	Ammonia in water is analyzed by flow-injection analysis with fluorescence detection after reaction with orthophthaldialdehyde (OPA).
Total Metals in Water by CRC ICPMS	Edmonton - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Chemical Oxygen Demand by Colourimetry (Low Level)	E559-L Edmonton - Environmental	Water	APHA 5220 D (mod)	Samples are analyzed using the closed reflux colourimetric method.

 Page
 : 7 of 7

 Work Order
 : EO2203075

Client : Clean Harbors Environmental Services, Inc.

Project : Pond C MAY 5

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Oil & Grease by Visible Sheen	E566 Edmonton - Environmental	Water	Alberta Energy Regulator, Drilling waste Management, Directive 050, July 2016	Use a qualitivative visual observation of rainbow sheen to determine the presence or absence of oil and grease on water.
Survival/LC50 Rainbow Trout (96 hours)	TRT-LC50-96 Nautilus Environmental (Calgary) - 10828 27 Street SE Calgary Alberta Canada T2Z 3V9	Water	EPS1/RM/13	See attached report.
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
	Edmonton - Environmental			

QUALITY CONTROL REPORT

Work Order : **EO2203075**

Client : Clean Harbors Environmental Services, Inc.

Contact : Todd Webb

Address : PO Box 390, 50114 Rame Road 173

AB Canada T0B4A0

Telephone : 780 663 2513

Project : Pond C MAY 5

PO : 224602

Sampler :---

Site : TABLE 4.3B

Quote number : Q82439 / Q82442

No. of samples received : 1
No. of samples analysed : 1

Page : 1 of 10

Laboratory : Edmonton - Environmental

Account Manager : Pamela Toledo

Address : 9450 - 17 Avenue NW

Edmonton, Alberta Canada T6N 1M9

Telephone :+1 780 413 5227

Date Samples Received :05-May-2022 15:47

Date Analysis Commenced : 05-May-2022

Issue Date : 26-May-2022 18:17

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives

- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

C-O-C number

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Alex Drake	Lab Analyst	Edmonton Inorganics, Edmonton, Alberta
Angeli Marzan	Lab Analyst	Edmonton Inorganics, Edmonton, Alberta
Austin Wasylyshyn	Lab Analyst	Edmonton Metals, Edmonton, Alberta
Dan Nguyen	Team Leader - Inorganics	Edmonton Inorganics, Edmonton, Alberta
Geoff Berg	Lab Analyst	Edmonton Organics, Edmonton, Alberta
Muzammil Ali	Lab Analyst	Edmonton Inorganics, Edmonton, Alberta
Pamela Toledo	Account Manager	Nautilus Environmental (Calgary) External Subcontracting, Calgary, Alberta
Shruti Mudliar	Lab Analyst	Edmonton Inorganics, Edmonton, Alberta

Page : 2 of 10 Work Order : EO2203075

Client : Clean Harbors Environmental Services, Inc.

Project : Pond C MAY 5

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Page : 3 of 10
Work Order : EO2203075

Client : Clean Harbors Environmental Services, Inc.

Project : Pond C MAY 5

ALS

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

ub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
aboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Physical Tests (QC	Lot: 478642)										
EO2203054-001	Anonymous	pH		E108	0.10	pH units	8.00	8.00	0.00%	3%	
Physical Tests (QC	Lot: 483119)										
EO2203075-001	Pond C	solids, total suspended [TSS]		E160	3.0	mg/L	7.8	6.8	1.0	Diff <2x LOR	
Physical Tests (QC	Lot: 483753)										
EO2203071-001	Anonymous	solids, total dissolved [TDS]		E162	20	mg/L	2700	2710	0.555%	20%	
nions and Nutrien	ts (QC Lot: 478575)										
O2203048-010	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	94.0	95.0	1.16%	20%	
nions and Nutrien	ts (QC Lot: 478576)										
EO2203048-010	Anonymous	chloride	16887-00-6	E235.CI	0.50	mg/L	31.8	32.0	0.806%	20%	
nions and Nutrien	ts (QC Lot: 478724)										
C2200856-006	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.0496	0.0499	0.0003	Diff <2x LOR	
otal Metals (QC Lo	ot: 481444)										
O2202995-005	Anonymous	antimony, total	7440-36-0	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00092	0.00096	0.00004	Diff <2x LOR	
		barium, total	7440-39-3	E420	0.00010	mg/L	0.00323	0.00337	4.21%	20%	
		beryllium, total	7440-41-7	E420	0.000020	mg/L	<0.000020	<0.000020	0	Diff <2x LOR	
		bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, total	7440-42-8	E420	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		cadmium, total	7440-43-9	E420	0.0000050	mg/L	0.0000303	0.0000264	0.0000039	Diff <2x LOR	
		calcium, total	7440-70-2	E420	0.050	mg/L	1.12	1.16	3.57%	20%	
		cesium, total	7440-46-2	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		chromium, total	7440-47-3	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		cobalt, total	7440-48-4	E420	0.00010	mg/L	0.00048	0.00050	0.00001	Diff <2x LOR	
		copper, total	7440-50-8	E420	0.00050	mg/L	0.0202	0.0234	14.9%	20%	
		lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	0.000068	0.000018	Diff <2x LOR	
		lithium, total	7439-93-2	E420	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
		magnesium, total	7439-95-4	E420	0.0050	mg/L	0.520	0.560	7.34%	20%	
		manganese, total	7439-96-5	E420	0.00010	mg/L	0.0130	0.0140	6.90%	20%	
		molybdenum, total	7439-98-7	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		nickel, total	7440-02-0	E420	0.00050	mg/L	0.00064	0.00068	0.00004	Diff <2x LOR	
		phosphorus, total	7723-14-0	E420	0.050	mg/L	1.32	1.45	9.39%	20%	

Page : 4 of 10 Work Order : EO2203075

Client : Clean Harbors Environmental Services, Inc.

Project : Pond C MAY 5

Sub-Matrix: Water							Labora	tory Duplicate (D	JP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Total Metals (QC Lo	ot: 481444) - continued										
EO2202995-005	Anonymous	potassium, total	7440-09-7	E420	0.050	mg/L	1.85	1.94	4.84%	20%	
		rubidium, total	7440-17-7	E420	0.00020	mg/L	0.00152	0.00163	0.00011	Diff <2x LOR	
		selenium, total	7782-49-2	E420	0.000050	mg/L	0.000064	0.000058	0.000005	Diff <2x LOR	
		silicon, total	7440-21-3	E420	0.10	mg/L	0.10	0.12	0.02	Diff <2x LOR	
		silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, total	7440-23-5	E420	0.050	mg/L	3.46	3.53	2.04%	20%	
		strontium, total	7440-24-6	E420	0.00020	mg/L	0.00406	0.00420	3.41%	20%	
		sulfur, total	7704-34-9	E420	0.50	mg/L	0.83	0.75	0.08	Diff <2x LOR	
		tellurium, total	13494-80-9	E420	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		thallium, total	7440-28-0	E420	0.000010	mg/L	0.000012	0.000011	0.0000009	Diff <2x LOR	
		thorium, total	7440-29-1	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		tin, total	7440-31-5	E420	0.00010	mg/L	0.00050	0.00054	0.00004	Diff <2x LOR	
		tungsten, total	7440-33-7	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		uranium, total	7440-61-1	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		zinc, total	7440-66-6	E420	0.0030	mg/L	0.0403	0.0434	7.36%	20%	
		zirconium, total	7440-67-7	E420	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
Aggregate Organics	s (QC Lot: 482670)										
EO2203001-001	Anonymous	chemical oxygen demand [COD]		E559-L	10	mg/L	147	148	0.360%	20%	

Page : 5 of 10
Work Order : EO2203075

Client : Clean Harbors Environmental Services, Inc.

Project : Pond C MAY 5

ALS

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Water

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 483119)				Nesun	
colids, total suspended [TSS]	E160	3	mg/L	<3.0	
Physical Tests (QCLot: 483753)					
solids, total dissolved [TDS]	E162	10	mg/L	<10	
Anions and Nutrients (QCLot: 478575					
sulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	<0.30	
Anions and Nutrients (QCLot: 478576					
hloride	16887-00-6 E235.CI	0.5	mg/L	<0.50	
Anions and Nutrients (QCLot: 478724)				
ammonia, total (as N)	7664-41-7 E298	0.005	mg/L	<0.0050	
Total Metals (QCLot: 481444)					
aluminum, total	7429-90-5 E420	0.003	mg/L	<0.0030	
antimony, total	7440-36-0 E420	0.0001	mg/L	<0.00010	
arsenic, total	7440-38-2 E420	0.0001	mg/L	<0.00010	
parium, total	7440-39-3 E420	0.0001	mg/L	<0.00010	
eryllium, total	7440-41-7 E420	0.00002	mg/L	<0.000020	
sismuth, total	7440-69-9 E420	0.00005	mg/L	<0.000050	
oron, total	7440-42-8 E420	0.01	mg/L	<0.010	
admium, total	7440-43-9 E420	0.000005	mg/L	<0.0000050	
alcium, total	7440-70-2 E420	0.05	mg/L	<0.050	
esium, total	7440-46-2 E420	0.00001	mg/L	<0.000010	
chromium, total	7440-47-3 E420	0.0005	mg/L	<0.00050	
obalt, total	7440-48-4 E420	0.0001	mg/L	<0.00010	
copper, total	7440-50-8 E420	0.0005	mg/L	<0.00050	
ron, total	7439-89-6 E420	0.01	mg/L	<0.010	
ead, total	7439-92-1 E420	0.00005	mg/L	<0.000050	
thium, total	7439-93-2 E420	0.001	mg/L	<0.0010	
nagnesium, total	7439-95-4 E420	0.005	mg/L	<0.0050	
nanganese, total	7439-96-5 E420	0.0001	mg/L	<0.00010	
nolybdenum, total	7439-98-7 E420	0.00005	mg/L	<0.000050	
nickel, total	7440-02-0 E420	0.0005	mg/L	<0.00050	
phosphorus, total	7723-14-0 E420	0.05	mg/L	<0.050	
potassium, total	7440-09-7 E420	0.05	mg/L	<0.050	
ubidium, total	7440-17-7 E420	0.0002	mg/L	<0.00020	

 Page
 : 6 of 10

 Work Order
 : EO2203075

Client : Clean Harbors Environmental Services, Inc.

Project : Pond C MAY 5

Sub-Matrix: Water

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Total Metals (QCLot: 481444) - c	continued					
selenium, total	7782-49-2	E420	0.00005	mg/L	<0.000050	
silicon, total	7440-21-3	E420	0.1	mg/L	<0.10	
silver, total	7440-22-4	E420	0.00001	mg/L	<0.000010	
sodium, total	7440-23-5	E420	0.05	mg/L	<0.050	
strontium, total	7440-24-6	E420	0.0002	mg/L	<0.00020	
sulfur, total	7704-34-9	E420	0.5	mg/L	<0.50	
tellurium, total	13494-80-9	E420	0.0002	mg/L	<0.00020	
thallium, total	7440-28-0	E420	0.00001	mg/L	<0.000010	
thorium, total	7440-29-1	E420	0.0001	mg/L	<0.00010	
tin, total	7440-31-5	E420	0.0001	mg/L	<0.00010	
titanium, total	7440-32-6	E420	0.0003	mg/L	<0.00030	
tungsten, total	7440-33-7	E420	0.0001	mg/L	<0.00010	
uranium, total	7440-61-1	E420	0.00001	mg/L	<0.000010	
vanadium, total	7440-62-2	E420	0.0005	mg/L	<0.00050	
zinc, total	7440-66-6	E420	0.003	mg/L	<0.0030	
zirconium, total	7440-67-7	E420	0.0002	mg/L	<0.00020	
Aggregate Organics (QCLot: 482						
chemical oxygen demand [COD]		E559-L	10	mg/L	<10	

Page : 7 of 10
Work Order : EO2203075

Client : Clean Harbors Environmental Services, Inc.

Project : Pond C MAY 5

ALS

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water					Laboratory Co	ntrol Sample (LCS)	Report	
				Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number Method	LOR	Unit	Concentration	LCS	Low	High	Qualifie
Physical Tests (QCLot: 478642)								
pH	E108		pH units	6 pH units	101	97.0	103	
Physical Tests (QCLot: 483119)								
solids, total suspended [TSS]	E160	3	mg/L	150 mg/L	97.5	85.0	115	
Physical Tests (QCLot: 483753)								
solids, total dissolved [TDS]	E162	10	mg/L	1000 mg/L	98.9	85.0	115	
Anions and Nutrients (QCLot: 478575)								
sulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	100 mg/L	104	90.0	110	
Anions and Nutrients (QCLot: 478576)								
chloride	16887-00-6 E235.CI	0.5	mg/L	100 mg/L	99.9	90.0	110	
Anions and Nutrients (QCLot: 478724)								
ammonia, total (as N)	7664-41-7 E298	0.005	mg/L	0.2 mg/L	93.0	85.0	115	
Fotal Metals (QCLot: 481444)								
aluminum, total	7429-90-5 E420	0.003	mg/L	2 mg/L	100	80.0	120	
antimony, total	7440-36-0 E420	0.0001	mg/L	1 mg/L	97.4	80.0	120	
arsenic, total	7440-38-2 E420	0.0001	mg/L	1 mg/L	93.5	80.0	120	
parium, total	7440-39-3 E420	0.0001	mg/L	0.25 mg/L	100	80.0	120	
peryllium, total	7440-41-7 E420	0.00002	mg/L	0.1 mg/L	97.2	80.0	120	
pismuth, total	7440-69-9 E420	0.00005	mg/L	1 mg/L	97.2	80.0	120	
poron, total	7440-42-8 E420	0.01	mg/L	1 mg/L	91.0	80.0	120	
cadmium, total	7440-43-9 E420	0.000005	mg/L	0.1 mg/L	97.0	80.0	120	
calcium, total	7440-70-2 E420	0.05	mg/L	50 mg/L	99.2	80.0	120	
esium, total	7440-46-2 E420	0.00001	mg/L	0.05 mg/L	96.9	80.0	120	
chromium, total	7440-47-3 E420	0.0005	mg/L	0.25 mg/L	99.4	80.0	120	
cobalt, total	7440-48-4 E420	0.0001	mg/L	0.25 mg/L	98.6	80.0	120	
copper, total	7440-50-8 E420	0.0005	mg/L	0.25 mg/L	98.7	80.0	120	
ron, total	7439-89-6 E420	0.01	mg/L	1 mg/L	98.7	80.0	120	
ead, total	7439-92-1 E420	0.00005	mg/L	0.5 mg/L	99.8	80.0	120	
thium, total	7439-93-2 E420	0.001	mg/L	0.25 mg/L	101	80.0	120	
nagnesium, total	7439-95-4 E420	0.005	mg/L	50 mg/L	96.3	80.0	120	
manganese, total	7439-96-5 E420	0.0001	mg/L	0.25 mg/L	101	80.0	120	
nolybdenum, total	7439-98-7 E420	0.00005	mg/L	0.25 mg/L	96.7	80.0	120	
nickel, total	7440-02-0 E420	0.0005	mg/L	0.5 mg/L	96.7	80.0	120	

 Page
 : 8 of 10

 Work Order
 : EO2203075

Client : Clean Harbors Environmental Services, Inc.

Project : Pond C MAY 5

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report						
					Spike	Recovery (%)	Recovery Limits (%)				
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier		
Total Metals (QCLot: 481444) - continued											
phosphorus, total	7723-14-0	E420	0.05	mg/L	10 mg/L	98.5	80.0	120			
potassium, total	7440-09-7	E420	0.05	mg/L	50 mg/L	101	80.0	120			
rubidium, total	7440-17-7	E420	0.0002	mg/L	0.1 mg/L	99.8	80.0	120			
selenium, total	7782-49-2	E420	0.00005	mg/L	1 mg/L	92.7	80.0	120			
silicon, total	7440-21-3	E420	0.1	mg/L	10 mg/L	95.8	80.0	120			
silver, total	7440-22-4	E420	0.00001	mg/L	0.1 mg/L	93.1	80.0	120			
sodium, total	7440-23-5	E420	0.05	mg/L	50 mg/L	101	80.0	120			
strontium, total	7440-24-6	E420	0.0002	mg/L	0.25 mg/L	103	80.0	120			
sulfur, total	7704-34-9	E420	0.5	mg/L	50 mg/L	88.3	80.0	120			
tellurium, total	13494-80-9	E420	0.0002	mg/L	0.1 mg/L	89.7	80.0	120			
thallium, total	7440-28-0	E420	0.00001	mg/L	1 mg/L	98.8	80.0	120			
thorium, total	7440-29-1	E420	0.0001	mg/L	0.1 mg/L	95.3	80.0	120			
tin, total	7440-31-5	E420	0.0001	mg/L	0.5 mg/L	91.7	80.0	120			
titanium, total	7440-32-6	E420	0.0003	mg/L	0.25 mg/L	93.5	80.0	120			
tungsten, total	7440-33-7	E420	0.0001	mg/L	0.1 mg/L	95.5	80.0	120			
uranium, total	7440-61-1	E420	0.00001	mg/L	0.005 mg/L	99.1	80.0	120			
vanadium, total	7440-62-2	E420	0.0005	mg/L	0.5 mg/L	99.4	80.0	120			
zinc, total	7440-66-6	E420	0.003	mg/L	0.5 mg/L	97.9	80.0	120			
zirconium, total	7440-67-7	E420	0.0002	mg/L	0.1 mg/L	94.3	80.0	120			
Aggregate Organics (QCLot: 482670)											
chemical oxygen demand [COD]		E559-L	10	mg/L	100 mg/L	96.4	85.0	115			

Page : 9 of 10 Work Order : EO2203075

Client : Clean Harbors Environmental Services, Inc.

Project : Pond C MAY 5

ALS

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water					Matrix Spike (MS) Report						
					Spi	Spike		Recovery Limits (%)			
aboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie	
	ents (QCLot: 478575))									
EO2203048-010	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	91.2 mg/L	100 mg/L	91.2	75.0	125		
nions and Nutri	ents (QCLot: 478576	5)									
EO2203048-010	Anonymous	chloride	16887-00-6	E235.CI	92.6 mg/L	100 mg/L	92.6	75.0	125		
nions and Nutri	ents (QCLot: 478724)									
C2200856-006	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.0890 mg/L	0.1 mg/L	89.0	75.0	125		
otal Metals (QC	Lot: 481444)										
EO2202995-006	Anonymous	aluminum, total	7429-90-5	E420	0.191 mg/L	0.2 mg/L	95.4	70.0	130		
		antimony, total	7440-36-0	E420	0.0210 mg/L	0.02 mg/L	105	70.0	130		
		arsenic, total	7440-38-2	E420	0.0200 mg/L	0.02 mg/L	99.9	70.0	130		
		barium, total	7440-39-3	E420	0.0198 mg/L	0.02 mg/L	98.8	70.0	130		
		beryllium, total	7440-41-7	E420	0.0422 mg/L	0.04 mg/L	105	70.0	130		
		bismuth, total	7440-69-9	E420	0.0107 mg/L	0.01 mg/L	107	70.0	130		
		boron, total	7440-42-8	E420	0.108 mg/L	0.1 mg/L	108	70.0	130		
		cadmium, total	7440-43-9	E420	0.00392 mg/L	0.004 mg/L	98.0	70.0	130		
		calcium, total	7440-70-2	E420	3.88 mg/L	4 mg/L	97.0	70.0	130		
		cesium, total	7440-46-2	E420	0.00999 mg/L	0.01 mg/L	99.9	70.0	130		
		chromium, total	7440-47-3	E420	0.0397 mg/L	0.04 mg/L	99.2	70.0	130		
		cobalt, total	7440-48-4	E420	0.0197 mg/L	0.02 mg/L	98.3	70.0	130		
		copper, total	7440-50-8	E420	0.0190 mg/L	0.02 mg/L	94.8	70.0	130		
		iron, total	7439-89-6	E420	1.98 mg/L	2 mg/L	99.1	70.0	130		
		lead, total	7439-92-1	E420	0.0212 mg/L	0.02 mg/L	106	70.0	130		
		lithium, total	7439-93-2	E420	0.103 mg/L	0.1 mg/L	103	70.0	130		
		magnesium, total	7439-95-4	E420	0.906 mg/L	1 mg/L	90.6	70.0	130		
		manganese, total	7439-96-5	E420	0.0195 mg/L	0.02 mg/L	97.5	70.0	130		
		molybdenum, total	7439-98-7	E420	0.0215 mg/L	0.02 mg/L	107	70.0	130		
		nickel, total	7440-02-0	E420	0.0382 mg/L	0.04 mg/L	95.6	70.0	130		
		phosphorus, total	7723-14-0	E420	9.80 mg/L	10 mg/L	98.0	70.0	130		
		potassium, total	7440-09-7	E420	3.68 mg/L	4 mg/L	92.1	70.0	130		
		rubidium, total	7440-17-7	E420	0.0192 mg/L	0.02 mg/L	96.2	70.0	130		
		selenium, total	7782-49-2	E420	0.0427 mg/L	0.04 mg/L	107	70.0	130		
		silicon, total	7440-21-3	E420	9.42 mg/L	10 mg/L	94.2	70.0	130		
		silver, total	7440-22-4	E420	0.00407 mg/L	0.004 mg/L	102	70.0	130		

Page : 10 of 10 Work Order : EO2203075

Client : Clean Harbors Environmental Services, Inc.

Project : Pond C MAY 5

Sub-Matrix: Water					Matrix Spike (MS) Report							
					Spi	ke	Recovery (%) Recovery Limits (%)		Limits (%)			
Laboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier		
Total Metals (QCLot: 481444) - continued												
EO2202995-006	Anonymous	sodium, total	7440-23-5	E420	1.80 mg/L	2 mg/L	89.8	70.0	130			
		strontium, total	7440-24-6	E420	0.0210 mg/L	0.02 mg/L	105	70.0	130			
		sulfur, total	7704-34-9	E420	19.5 mg/L	20 mg/L	97.4	70.0	130			
		tellurium, total	13494-80-9	E420	0.0423 mg/L	0.04 mg/L	106	70.0	130			
		thallium, total	7440-28-0	E420	0.00412 mg/L	0.004 mg/L	103	70.0	130			
		tin, total	7440-31-5	E420	0.0200 mg/L	0.02 mg/L	100	70.0	130			
		titanium, total	7440-32-6	E420	0.0386 mg/L	0.04 mg/L	96.5	70.0	130			
		tungsten, total	7440-33-7	E420	0.0214 mg/L	0.02 mg/L	107	70.0	130			
		uranium, total	7440-61-1	E420	0.00412 mg/L	0.004 mg/L	103	70.0	130			
		vanadium, total	7440-62-2	E420	0.0978 mg/L	0.1 mg/L	97.8	70.0	130			
		zinc, total	7440-66-6	E420	0.374 mg/L	0.4 mg/L	93.5	70.0	130			
		zirconium, total	7440-67-7	E420	0.0429 mg/L	0.04 mg/L	107	70.0	130			
Aggregate Organ	ics (QCLot: 482670)											
EO2203013-001	Anonymous	chemical oxygen demand [COD]		E559-L	ND mg/L	100 mg/L	ND	75.0	125			

Acute Toxicity Test Results

Sample collected May 5, 2022

Final Report

May 26, 2022

Submitted to: ALS Environmental

Edmonton, AB

SAMPLE INFORMATION

		Da	tes		
Sample ID/ Internal ID	Collected	Received	Rainbow trout test initiation	it test magna test temp iation initiation ny-22 at 6-May-22 at	Receipt temperature
EO2203075-001	5-May-22 at	6-May-22 at	6-May-22 at	6-May-22 at	16.6°C
2122-2120	1315h	0920h	1505h	1600h	10.0 C

TEST TYPES

- Rainbow trout 96-h LC50 test
- Daphnia magna 48-h LC50, EC50 test

RESULTS

Toxicity test results

Samula ID	LC50/E	C50 (% v/v)	
Sample ID -	Rainbow trout	Daphnio	n magna
	LC50	LC50	EC50
EO2203075-001	>100	>100	>100

LC = Lethal Concentration, EC= Effect Concentration

QA/QC

QA/QC summary	Rainbow trout	Daphnia magna
Reference toxicant LC50 (95% CL)	3.4 (3.0-3.9) g/L KCl ¹	6.3 (5.9 - 6.6) g/L NaCl ²
Reference toxicant historical mean (2 SD Range)	3.3 (2.5-4.4) g/L KCl	6.5 (5.6 - 7.6) g/L NaCl
Reference toxicant CV	9.4%	5.2%
Organism health history	Acceptable	Acceptable
Protocol deviations	None	None
Water quality range deviations	None	None
Control performance	Acceptable	Acceptable
Test performance	Valid	Valid

¹Test date, May 5, 2022; ²Test Date May 10, 2022

Reference: 2122-2120

LC = Lethal Concentration; CL = Confidence Limit, SD = Standard Deviation; CV = Coefficient of Variation

Report By:

Jacklyn Poole, BSc

Reference: 2122-2120

Laboratory and Quality Manager

Reviewed By:

Tamara Pomeroy, BSc

Laboratory and Quality Manager

This report has been prepared by Nautilus Environmental Company Inc. based on data and/or samples provided by our client and the results of this study are for their sole benefit. Any reliance on the data by a third party is at the sole and exclusive risk of that party. The results presented here relate only to the samples tested.

APPENDIX A – Summary of test conditions

Table 1. Summary of test conditions: 96-h rainbow trout (*Oncorhynchus mykiss*) survival test.

Test species Oncorhynchus mykiss

Organism source Fish hatchery
Organism age Juvenile
Test type Static
Test duration 96 hours

Test vessel 5 gallon glass aquariums

Test volume 10 - 20 L, depending on size of fish

Test solution depth Minimum 15 cm

Test concentrations Five concentrations, plus laboratory control

Test replicates 1 per treatment
Number of organisms 10 per replicate

Control/dilution water De-chlorinated City of Calgary tap water

Test solution renewal None Test temperature $15 \pm 1^{\circ}\text{C}$ Feeding None

Light intensity 100 to 500 lux

Photoperiod 16 hours light/8 hours dark

Aeration 6.5 ±1 mL/min/L

pH, conductivity, dissolved oxygen and temperature were measured at test initiation and test completion;

Test Measurements salinity measured at test initiation; evaluated for

survival daily

Test protocol Environment Canada (2000), EPS 1/RM/13, with 2007 &

2016 amendments

Statistical software None

Test endpoints 96-hour LC50
Test acceptability criteria for controls Survival \geq 90%

Reference toxicant Potassium chloride (KCI)

Table 2. Summary of test conditions: 48-h Daphnia magna survival test.

Test species Daphnia magna

Organism source In-house culture

Organism age <24 hours

Test type Static

Test duration 48 hours

Test vessel 385 mL plastic vessels

Test volume 150 mL

Test concentrations Five concentrations, plus laboratory control

Test replicates 1 per treatment

Number of organisms 10 per replicate

De-chlorinated City of Calgary tap water amended

Control/dilution water with 4 mg/L KCl and with B12 (2 µg/L) and Na₂SeO₄

(2 µg Se/L)

Test solution renewal None
Test temperature $20 \pm 2^{\circ}$ C
Feeding None

Light intensity 400 to 800 lux

Photoperiod 16 hours light/8 hours dark

Aeration None

Test measurements

pH, conductivity, dissolved oxygen and temperature

measured at test initiation and completion; salinity

and hardness measured at test initiation in

undiluted sample; evaluated daily for survival

Test protocol Environment Canada (2000), EPS 1/RM/14

Statistical software None

Test endpoints 48-h LC50

Test acceptability criteria for controls Survival $\geq 90\%$

Reference toxicant Sodium chloride (NaCl)

APPENDIX B – Toxicity test data

Trout Bench Sheet

Method	TRD	Client	ALS106	Reference	2122-2120		_Chamber	3
Test Log							Sample Inform	nation
				T .		Daily Data	Jumpie illion	nation
Day		Date	Time	Initial	Chem. Cart	Review	Initial pH:	24
0	202	2/05/06	1505	EP/NA	1	MAF	Initial EC (µS/c	m): 1152
1	202	2/05/07	09100	CH	-	merc	Salinity (ppt):	1133
2		2/05/08	0830	DM	-	36	- Sammey (ppt).	
3		2/05/09	0900	KOVAN		300	+	
4		2/05/10	-	KO/AE			4	ï
		2,03,10	Note: * time	when the test v	use londed with	C C	L	
	e adjusted to 6.		/L (yes/no			(11151)	DO in mg/L (7 saturation)**	
Preaeration		0 hours	0.5 hours	1 hour	1.5 hours	2 hours	6.2 mg/L - 8.9 mg/	/Lat 14°C
DO(mg/L) of		8.6	8.6				6.1 mg/L - 8.8 mg/	/L at 15°C
Temp (°C) of	100%	16					6.0 mg/L - 8.6 mg/	'L at 16'C
1221050005							**corrected for alti	tude
	stry and Biolog							
Conc.	CTL	6,3	12.5	25	50	100		
				pH (units) (ra	inge: 5.5-8.5)			
Day 0	8.0	8.	8.1	8.7	8.3	8.3		
Day 4	3.1	8.1	Bel	9.1	901	9.1		
	9							
				EC (u	S/cm)			
Day 0	438	481	518	612	778	1104		
Day 4	440	490	517	GIV	791	1094		
	7 10	1.00				1011	-	
			DO (mg/	L) (70-100% sa	turation at te	st temp.)		
Day 0	8.8	8.8	8.8	2.6	8,6	8.6		
Day 4	25	9.6	9.3	3.9	3.6	8:6		
,	-0.00	0.66	000	011	0.00	0.6		
			Te	emperature (°C)	(range: 14-16	CV.		
Day 0	15	15	15	16	14-10	16		
Day 4	10	16	15	1 20	10	10		
•		140			16	16		
			Numbe	er Alive (In brac	kate number il	roccod)		
Day 0	10	10	10	10	10	10	r	
Day 1	10	111	10	10	10	1/5		
Day 2	10	18	10	1	17	10		
Day 3	16	10		100	18	10(1)		
Day 4		100	(6)	10	10	1017		
Day 4	Validity Crito	view mount has a	100	10	10	10(1)	II	
	Unless other	ria: must be s	10% mortality	and/or stressed	behavior in the	ne control		
	omess otherw	rise noted, bena	avior is consider	ed to be norma	al			
Control Orga	nism Data							
Control	Length	Weight				rest Organisi	n Information	
Fish	(cm)					D-+-h	2022044270	
11311	(CIII)	(g)				Batch	20220413TR	
1	3.5		Loading Densit	n. (~ (l.).	0.2			
2		0.5			U . Z	Source	Smoky Trout Fa	arm
3		0.2	(must be ≤0.5 g/L)			II		
4	3.0	0.3			2 \	Tank #	10	
	3.3	0.3	Mean Length (cm):	J. 1			
5	301	0.3		γ	2 20	Days Held at 1	15± 2℃	23
6	3.9	000	Length Range ((cm): 🔼 🚶	3-20	(must be ≥14 da	ys)	
7	ವ್ಯಂ	0.2			0 7			
8	3.1	4-0	Mean Weight (g):	$C \cdot O$	Percent stock	mortality	0.33
9	3.00	0.3	(Must be ≥0.3g)	_		(7 days prior to te	st, must be <2%)	
10	3-8	0.6		6.5	2-06			- 1
			Weight Range:	(g):	00	Test Volume (I	_)	18
• 1000 1000 1000							-	
Comments:								
			n i h	V.			THE RESIDENCE	as Issue
		Reviewed By:	MC)	D	ate Reviewed:	2022/0	5/18
							-	-

Daphnia Bench Sheet

Method	DAD	3		Client	ALS106	e	Reference	2122	2120	
Test Log								Sample In	formation	
Day		ate	Time	Technician	Chem. Cart	Daily Dat		Initial pH:		84
0	2022/		1600	AEIVIM	2	R	_	Initial EC (1153
1	2022/		0810	MAF	-	EP		Salinity (pp	ot):	
2	2022/	05/08	2000	7		200				
II ah Cada	CTI		10			100				
Lab Code	CTL	6	12	25	50	100				
day				pH (uni	ts) (range: 6					
0 2	+9	7.8	78	_+.8	70	84				
2	360	8.1	6.1	811	(1)	10		l		
	02	The pH of the	sample was no	ot adjusted prior		unless noted	in the comme	ents below		
0	P.V 3	Lu 2.2	IIV.		EC (uS/cm)	-7 .				
0	700	110	490	507	743	1010				
2	MA	1 M-1 3	213	590	747	LAKY				
				DO (mg/L) (40-100% sa	turation at	test temp	.)		
0	FA	チ・チ	FIE	ナ、エ	7.7	7.1				
2	30	7.9	79	7.9	75	25				
				Temperatu	re (°C) (range	- 18-22 °C)			
0	00	71	71	7/	o (c) (lung	7 \	<u> </u>			
2	100	No.	10	15	7	70				
		1/1	1.00	IZI	120	VCI				
					Numbe (I, immo					
0	10	10	10	10	10	10		r		
1	10	16	IÀ	10	16	10				
2	10	NO.	10	10	(D)	ID				
		Validity Cri	teria: must b	e ≤ 10% mor			pehavior in	the control		
				nid can't swir						
				l, behaviour i						
Culture	9 40 97 8 1			,				ne we to		
Young jar	wed by		Jar(s) morta	ility 7 days pi	rior to test (r	nust be ≤2	5%)	10%		
3,			. (-)	,,_ p.			,	10/1		
QA (previo	us month)						Control V	alidity Crit	eria	
	t brood (≤12	davs)	7		승규 보다			ortality at		0
Average nu	mber of your	na produce	(>15 young	(a)	22		(must be ≤			
	reatments rai			Yes / N		6	(., .,		
				G						
Sample										
	of sample pri	or to aeratio	on:	93	Temperatur	e (°C) of sa	mple prior	to aeration		21
	mple prior to	5	1201	<u> </u>	Is aeration r				Veg or No	
1	aeration (37		14.2.4	20mm	Filtered with			the second secon	Yes or No) ~
Hardness (r	ng CaCO ₃ /L)	of 100%:	13Tmin	34	Is hardness	adjustmen	t required (<25 mg Ca	CO ₃ /L)?	Yes or No
Hardness o	f sample afte	r adjustmen	t (must be	between 25	30 mg CaC	O ₂ /L)				
	f 100% sampl			ooren and market the second		avaente		18		
Carrentilly O	i 100 /o Saiiipi	e (mg Cacc	73/L):							
Dilution W	ator			Si	DO Levels	(40.1000/	cotupotia-V	corrocte	for altitud	10
		lato	1100 10	V						
	preparation d f dilution wat		01010	V	3.3 to 8.2 m			3.1 to 7.7		
i iai uness 0	i diiddoll wat	er (mg/L)	150		3.2 to 8.1 m			3.0 to 7.6	my/L at 22	
Commont	/Obsan-=#:-				3.2 to 7.9 m	19/L at 20°0				
Comments	/Observatio	ns:								
									_	
F	Reviewed By:	M		Date	e Reviewed:	2017	105/18			
	- 3							•		

APPENDIX C – Chain-of-custody form

Relinquished By

Destination Lab:

Nautilus Environmental

(Calgary)

Address:

10828 27 Street SE Calgary AB Canada

T2Z 3V9

Work Order Number: EO2203075

Original Receipt Date/Time

Instructions Received

05/05/2022 15:47

Date/Time Received By Date/Time Receipt Temp

Return as Indicated: Results: ALSEDClientServices@alsglobal.com

Invoice: ALSEDClientServices@alsglobal.com

Electronic Data: ALSEDClientServices@alsglobal.com

Attention: Pamela Toledo

ALS Sample ID	Client ID	Matrix	Container Type	Test Codes	Method Description	Due Date	Sampling Date and Time	Remarks
EO2203075-001	Pond C	Water	LDPE carboy	TRT-LC50-96	Survival/LC50 Rainbow Trout (96 hours)	12-05-2022	05/05/2022 13:15	
EO2203075-001	Pond C	Water	LDPE carboy			12-05-2022	05/05/2022 13:15	
EO2203075-001	Pond C	Water	LDPE carboy			12-05-2022	05/05/2022 13:15	
EO2203075-001	Pond C	Water	LDPE carboy			12-05-2022	05/05/2022 13:15	
EO2203075-001	Pond C	Water	HDPE	DAP-LC50-48	Survival/LC50 Daphnia Magna 48 hours	12-05-2022	05/05/2022 13:15	
EO2203075-001	Pond C	Water	HDPE			12-05-2022	05/05/2022 13:15	

2122-2120 2022/05/05 04:20 Jozoo Jozoo Jozos S 4x10 pails, 2x11 bottles Nos/NoI Good Cond

END OF REPORT

Canada Toll Free: 1 800 668 9878

www.alsglobal.com

AUG 2020 FRON		VT COPY	YELLOW - CLIENT COPY	WHITE - PROPERTION COPY YELL	WHITE -		FORMATION	REFER YOUNCK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION	REFER VOUCK
	I me:	Received by: Date:	42:27	au/5/2027		Received by	5 7000 Hime:	Total Neby Date: May S	Religased by
	1	FINAL SHIPI		INITIAL SHIPMENT RECEPTION (ALS use only)	INITIAL SHIPMENT RE			SHIPMENT RELEASE (client use)	
No. of		+	CE:	//				ES O NO	□ YES
	780 413 5227	MPERA I		I		01770	Chore Cx	Are samples for human consumption/ use?	Are samples for h
□ N/A		Cooler Custody Seals Intact:	Cooler	James 1-24 London Line (Oct mount)	NT ACIL DE		Likest Vinder as Les	YES O NO	
1		ments identified on S	Submis	who ator	42R+0		Ologio Andre	Are samples taken from a Regulated DW System?	Are samples take
8		Cooling Method: None Dice	Cooling	m drop-down below	Notes / Specify Limits for result evaluation by selecting from drop-down below (Excel COC only)	cify Limits for result (E	Notes / Spec	Drinking Water (DW) Samples¹ (client use)	Drinkin
H									
	EO2203075	O							The second
+	3	Edmonton	1						
	Environmental Division	Environm							THE STREET
-	-								THE REAL PROPERTY.
-									The second
-			1						
+			1						THE REAL PROPERTY AND ADDRESS OF THE PERTY ADDRESS OF TH
+			1						The second second
-		<	1					8.00	
				31:5	12			Prod	
	SAI	Ta Paph	NUI	Time Sample Type (hh:mm)	Date (dd-mmm-yy)		Sample Identification and/or Coordinates (This description will appear on the report)	Sample Identificatio (This description will	ALS Sample # (ALS use only)
PECT	ИPL	ble inia Marke	_	Sampler:	Thiedo Sa	ALS Contact:	The second second	ALS Lab Work Order# (ALS use only):	ALS Lab Wor
	ES	A:3			_	- 1	TO MAN TO SERVICE STATE OF THE PERSON SERVICE STATE OF THE		
	0	B B	_			Location:		Table 4.3B	LSD:
	N	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	_			Requisitioner:			PO / AFE:
	но	Bland	01	Routing Code:	Ro	Major/Minor Code:		9	Job #: 0
)LE	lay	IT/)#	PO#	AFE/Cost Center:	Table 4.3 (S)	1382442 /-	ALS Account # / Quote #.
-)		AIN	elds (client use)	Oil and Gas Required Fields (client use)	0		D	
			IEI		U 4	Email 2		-	Contact:
_	(F/P) below	Indicate Filtered (F), Preserved (P) or Filtered and Preserved (F/P) below	RS	a clanharby s.com	a pading. Pobbi P	Email 1 or Fax		Clean Harbors Canada	Company:
		Analysis Request		☐ MAIL ☐ FAX	istribution: MAIL	Select Invoice Distribution:	No	Copy of Invoice with Report	
	NM to confirm availability.	For all tests with rush TATs requested, please contact your AM to confirm availability.		ients	Invoice Recipients		□ No	☐ YES	Invoice To
	whether the Actual Actual	Date and Time Required for all E&P TATs:			(Email 3		TOB 4A0	Postal Code:
	THE REAL PROPERTY.	rapply to rush requests on weekends, statutory holidays and non-routine tests	[may	cleanharbors, com	Vuha. stan () c	Email 2		AB	City/Province:
		Same day [EZ] If received by 10am M-S - 200% rush surcharge. Additional fees	San S	Email 1 or Fax webb, tood @ clean harbors, com	webb, took a	Email 1 or Fax	e Road 173	Pb Box 390, S0114 Range Road	Street:
		2 day [F2] If received by Spin M-F - 30% rush surcharge minimum		☐ MAIL ☐ FAX	☐ EMAIL	Select Distribution:	al report	ill ap	
LHERE	AFFIX ALS BARCODE LABEL HERE (ALS use only)	3 day [P3] if received by 3pm M-F - 25% rush surcharge minimum		le details below if box checked	pro	☐ Compare Resu	1513	780	Phone:
		4 day [P4] if received by 3pm M-F- 20% rush surcharge minimum			orts with COA	Merge QC/QC		John (Contact:
		Routine [R] if received by 3pm M-F - no surcharges apply	☐ Ro⊔	PEXCEL (BD (DIGITAL)	Pop	Select Report Format:	200	Close Harmers Canada	Company:
		Turnaround Time (TAT) Requested		pients	Reports / Recipients		ear on the final report	Contact and company name below will appear on the final report	Report To

1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form. REFER VOLOK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION

WHITE - LOT GRATORY COPY YELLOW - CLIENT COPY
Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Term's and Conditions as specified on the back page of the white - report copy.

TABLE 4.3-B: RUNOFF LIMITS FOR SURFACE WATER DETENTION POND

PARAMETER	LIMITS Maximum unless otherwise indicated
pH	6.0 - 9.5 pH units
COD	50 mg/L
TDS	2500 mg/L
TSS	25 mg/L
Ammonia (expressed as Nitrogen)	5 mg/L
Chloride	250 mg/L
Sodium	200 mg/L
Sulphate	500 mg/L
Oil or other substances	Not present in amounts sufficient to create a visible film or sheen
96-Hour Multiple Concentration Acute Lethality Test Using Rainbow Trout (Oncorhynchus mykiss)	50% or greater survival

48 hr Static Acute Lethality test using Daphnic Magna

Appendix C
Pond B
Analytical Report
July 2022

CERTIFICATE OF ANALYSIS

Page **Work Order** : EO2205135 : 1 of 4

Client Laboratory : Clean Harbors Environmental : Edmonton - Environmental

Services, Inc.

Contact **Account Manager** : Pamela Toledo : Todd Webb

> Address : PO Box 390, 50114 Rame Road 173 : 9450 - 17 Avenue NW AB Canada T0B4A0

Edmonton AB Canada T6N 1M9 Telephone : +1 780 413 5227

Telephone : 780 663 2513 **Project** : Pond B July 4 **Date Samples Received** : 04-Jul-2022 17:45 PO

Date Analysis : 05-Jul-2022

Commenced Issue Date

C-O-C number : 11-Jul-2022 16:15 : TW

Site : Table 4.3B Quote number Q82439 / Q82442

No. of samples received : 1 No. of samples analysed : 1

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

Address

Sampler

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Amanda Powell	Account Manager	External Subcontracting, Edmonton, Alberta
Angeli Marzan	Lab Analyst	Inorganics, Edmonton, Alberta
Austin Wasylyshyn	Lab Analyst	Metals, Edmonton, Alberta
Jessica Maitland	Lab Assistant	Inorganics, Edmonton, Alberta
Muzammil Ali	Lab Analyst	Inorganics, Edmonton, Alberta
Ping Yeung	Team Leader - Inorganics	Inorganics, Edmonton, Alberta
Sobhithan Pillay		Inorganics, Edmonton, Alberta
Yan Zhang	Lab Analyst	Organics, Edmonton, Alberta

Page : 2 of 4
Work Order : EO2205135

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B July 4

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
mg/L	milligrams per litre
pH units	pH units

>: greater than.

<: less than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Page : 3 of 4
Work Order : EO2205135

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B July 4

Analytical Results

EO2205135-001

Sub-Matrix: Water Client sample ID: Pond B

(Matrix: Water) Client sampling date / time: 04-Jul-2022 12:00

Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot
Physical Tests							240	
рН		8.19	0.10	pH units	E108	05-Jul-2022	06-Jul-2022	550116
solids, total dissolved [TDS]		732	20	mg/L	E162	-	05-Jul-2022	549719
solids, total suspended [TSS]		3.8	3.0	mg/L	E160	-	05-Jul-2022	549456
Anions and Nutrients								
ammonia, total (as N)	7664-41-7	0.0218	0.0050	mg/L	E298	05-Jul-2022	05-Jul-2022	550328
chloride	16887-00-6	37.3	0.50	mg/L	E235.CI	05-Jul-2022	06-Jul-2022	550402
sulfate (as SO4)	14808-79-8	348	0.30	mg/L	E235.SO4	05-Jul-2022	06-Jul-2022	550401
Bioassays								
trout bioassay LC50		See attached	-	-	TRT-LC50-96	-	11-Jul-2022	-
Total Metals		allached						
aluminum, total	7429-90-5	0.565	0.0030	mg/L	E420	05-Jul-2022	05-Jul-2022	549716
antimony, total	7440-36-0	0.00056	0.00010	mg/L	E420	05-Jul-2022	05-Jul-2022	549716
arsenic, total	7440-38-2	0.00259	0.00010	mg/L	E420	05-Jul-2022	05-Jul-2022	549716
barium, total	7440-39-3	0.0758	0.00010	mg/L	E420	05-Jul-2022	05-Jul-2022	549716
beryllium, total	7440-41-7	0.000034	0.000020	mg/L	E420	05-Jul-2022	05-Jul-2022	549716
bismuth, total	7440-69-9	<0.000050	0.000050	mg/L	E420	05-Jul-2022	05-Jul-2022	549716
boron, total	7440-42-8	0.088	0.010	mg/L	E420	05-Jul-2022	05-Jul-2022	549716
cadmium, total	7440-43-9	0.0000596	0.0000050	mg/L	E420	05-Jul-2022	05-Jul-2022	549716
calcium, total	7440-70-2	38.3	0.050	mg/L	E420	05-Jul-2022	05-Jul-2022	549716
cesium, total	7440-46-2	0.000082	0.000010	mg/L	E420	05-Jul-2022	05-Jul-2022	549716
chromium, total	7440-47-3	0.00126	0.00050	mg/L	E420	05-Jul-2022	05-Jul-2022	549716
cobalt, total	7440-48-4	0.00055	0.00010	mg/L	E420	05-Jul-2022	05-Jul-2022	549716
copper, total	7440-50-8	0.0126	0.00050	mg/L	E420	05-Jul-2022	05-Jul-2022	549716
iron, total	7439-89-6	0.762	0.010	mg/L	E420	05-Jul-2022	05-Jul-2022	549716
lead, total	7439-92-1	0.000742	0.000050	mg/L	E420	05-Jul-2022	05-Jul-2022	549716
lithium, total	7439-93-2	0.0398	0.0010	mg/L	E420	05-Jul-2022	05-Jul-2022	549716
magnesium, total	7439-95-4	14.9	0.0050	mg/L	E420	05-Jul-2022	05-Jul-2022	549716
manganese, total	7439-96-5	0.0201	0.00010	mg/L	E420	05-Jul-2022	05-Jul-2022	549716
molybdenum, total	7439-98-7	0.124	0.000050	mg/L	E420	05-Jul-2022	05-Jul-2022	549716
nickel, total	7440-02-0	0.0149	0.00050	mg/L	E420	05-Jul-2022	05-Jul-2022	549716
phosphorus, total	7723-14-0	0.053	0.050	mg/L	E420	05-Jul-2022	05-Jul-2022	549716
potassium, total	7440-09-7	8.30	0.050	mg/L	E420	05-Jul-2022	05-Jul-2022	549716
rubidium, total	7440-17-7	0.00372	0.00020	mg/L	E420	05-Jul-2022	05-Jul-2022	549716
selenium, total	7782-49-2	0.000988	0.000050	mg/L	E420	05-Jul-2022	05-Jul-2022	549716
silicon, total	7440-21-3	3.84	0.10	mg/L	E420	05-Jul-2022	05-Jul-2022	549716
silver, total	7440-22-4	0.000015	0.000010	mg/L	E420	05-Jul-2022	05-Jul-2022	549716
sodium, total	7440-23-5	188	0.050	mg/L	E420	05-Jul-2022	05-Jul-2022	549716
strontium, total	7440-24-6	0.426	0.00020	mg/L	E420	05-Jul-2022	05-Jul-2022	549716
sulfur, total	7704-34-9	124	0.50	mg/L	E420	05-Jul-2022	05-Jul-2022	549716
tellurium, total	13494-80-9	<0.00020	0.00020	mg/L	E420	05-Jul-2022	05-Jul-2022	549716
thallium, total	7440-28-0	0.000012	0.000010	mg/L	E420	05-Jul-2022	05-Jul-2022	549716
thorium, total	7440-29-1	0.00021	0.00010	mg/L	E420	05-Jul-2022	05-Jul-2022	549716
tin, total	7440-31-5	0.00014	0.00010	mg/L	E420	05-Jul-2022	05-Jul-2022	549716
titanium, total	7440-32-6	0.0122	0.00030	mg/L	E420	05-Jul-2022	05-Jul-2022	549716
tungsten, total	7440-33-7	0.00102	0.00010	mg/L	E420	05-Jul-2022	05-Jul-2022	549716
uranium, total	7440-61-1	0.00414	0.000010	mg/L	E420	05-Jul-2022	05-Jul-2022	549716
vanadium, total	7440-62-2	0.0265	0.00050	mg/L	E420	05-Jul-2022	05-Jul-2022	549716

Page : 4 of 4
Work Order : EO2205135

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B July 4

Analytical Results

EO2205135-001

Sub-Matrix: Water Client sample ID: Pond B

(Matrix: Water) Client sampling date / time: 04-Jul-2022 12:00

Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot
Total Metals								
zinc, total	7440-66-6	0.0135	0.0030	mg/L	E420	05-Jul-2022	05-Jul-2022	549716
zirconium, total	7440-67-7	0.00126	0.00020	mg/L	E420	05-Jul-2022	05-Jul-2022	549716
Aggregate Organics								
chemical oxygen demand [COD]		35	10	mg/L	E559-L	-	05-Jul-2022	549390
oil & grease (visible sheen)		Absent	-	-	E566	-	06-Jul-2022	-

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : EO2205135

Client : Clean Harbors Environmental Services, Inc.

Contact : Todd Webb

Address : PO Box 390, 50114 Rame Road 173

AB Canada T0B4A0

Telephone : 780 663 2513
Project : Pond B July 4

PO : ---C-O-C number : ---Sampler : TW

Site : Table 4.3B

Quote number : Q82439 / Q82442

No. of samples received : 1
No. of samples analysed : 1

Page : 1 of 7

Laboratory : Edmonton - Environmental

Account Manager : Pamela Toledo

Address : 9450 - 17 Avenue NW

Edmonton, Alberta Canada T6N 1M9

Telephone : +1 780 413 5227

Date Samples Received : 04-Jul-2022 17:45

Issue Date : 11-Jul-2022 16:16

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

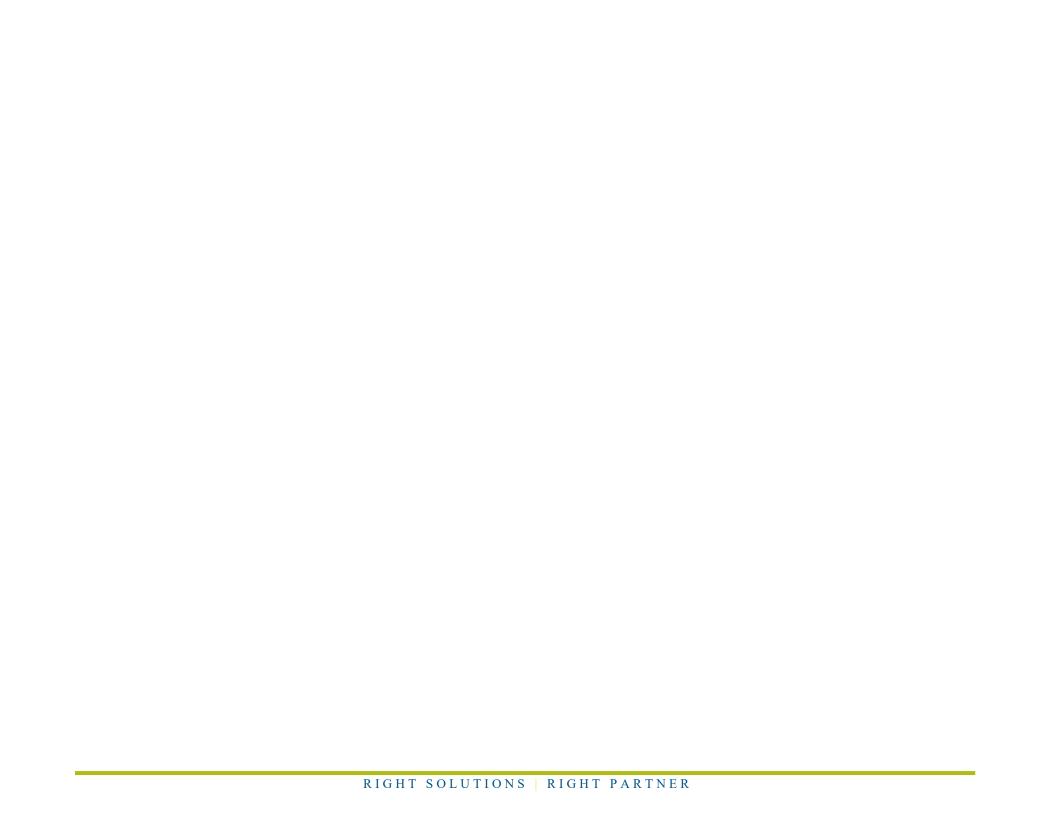
Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers

Outliers: Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples


• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers: Frequency of Quality Control Samples

• No Quality Control Sample Frequency Outliers occur.

Page : 3 of 7
Work Order : EO2205135

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B July 4

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					Ev	aluation: 🗴 =	Holding time exce	edance ; 🗸	= Within	Holding Tim
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Aggregate Organics : Chemical Oxygen Demand by Colourimetry (Low Level)										
Amber glass total (sulfuric acid)										
Pond B	E559-L	04-Jul-2022					05-Jul-2022	28 days	1 days	✓
Aggregate Organics : Oil & Grease by Visible Sheen										
Amber glass (hydrochloric acid)										
Pond B	E566	04-Jul-2022					06-Jul-2022	28 days	2 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
Pond B	E298	04-Jul-2022	05-Jul-2022				05-Jul-2022	28 days	1 days	✓
Anions and Nutrients : Chloride in Water by IC										
HDPE										
Pond B	E235.CI	04-Jul-2022					06-Jul-2022	28 days	2 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE										
Pond B	E235.SO4	04-Jul-2022					06-Jul-2022	28 days	2 days	✓
Bioassays : Survival/LC50 Rainbow Trout (96 hours)										
LDPE carboy										
Pond B	TRT-LC50-96	04-Jul-2022					11-Jul-2022	5 days	7 days	*
										EHT
Physical Tests : pH by Meter										
HDPE										
Pond B	E108	04-Jul-2022					06-Jul-2022	0.25	44 hrs	35
								hrs		EHTR-FM

Page : 4 of 7
Work Order : EO2205135

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B July 4

Matrix: Water Evaluation: × = Holding time exceedance; ✓ = Within Holding Time

Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : TDS by Gravimetry										
HDPE Pond B	E162	04-Jul-2022					05-Jul-2022	7 days	1 days	✓
Physical Tests : TSS by Gravimetry										
HDPE Pond B	E160	04-Jul-2022					05-Jul-2022	7 days	1 days	√
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid) Pond B	E420	04-Jul-2022					05-Jul-2022	180 days	1 days	✓

Legend & Qualifier Definitions

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended

EHT: Exceeded ALS recommended hold time prior to analysis.

Rec. HT: ALS recommended hold time (see units).

Page : 5 of 7
Work Order : EO2205135

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B July 4

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Water	<u> </u>	Evaluati	ion: × = QC frequ	ency outside spe	ecification; ✓ = 0	QC frequency wi	thin specificatio
Quality Control Sample Type				ount		Frequency (%	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Ammonia by Fluorescence	E298	550328	1	9	11.1	5.0	✓
Chemical Oxygen Demand by Colourimetry (Low Level)	E559-L	549390	1	18	5.5	5.0	✓
Chloride in Water by IC	E235.Cl	550402	1	20	5.0	5.0	✓
pH by Meter	E108	550116	1	17	5.8	5.0	✓
Sulfate in Water by IC	E235.SO4	550401	1	16	6.2	5.0	✓
TDS by Gravimetry	E162	549719	1	13	7.6	5.0	✓
Total Metals in Water by CRC ICPMS	E420	549716	1	20	5.0	5.0	✓
TSS by Gravimetry	E160	549456	1	19	5.2	5.0	✓
Laboratory Control Samples (LCS)							
Ammonia by Fluorescence	E298	550328	1	9	11.1	5.0	✓
Chemical Oxygen Demand by Colourimetry (Low Level)	E559-L	549390	1	18	5.5	5.0	✓
Chloride in Water by IC	E235.CI	550402	1	20	5.0	5.0	✓
pH by Meter	E108	550116	1	17	5.8	5.0	✓
Sulfate in Water by IC	E235.SO4	550401	1	16	6.2	5.0	✓
TDS by Gravimetry	E162	549719	1	13	7.6	5.0	✓
Total Metals in Water by CRC ICPMS	E420	549716	1	20	5.0	5.0	✓
TSS by Gravimetry	E160	549456	1	19	5.2	5.0	✓
Method Blanks (MB)							
Ammonia by Fluorescence	E298	550328	1	9	11.1	5.0	✓
Chemical Oxygen Demand by Colourimetry (Low Level)	E559-L	549390	1	18	5.5	5.0	✓
Chloride in Water by IC	E235.CI	550402	1	20	5.0	5.0	✓
Sulfate in Water by IC	E235.SO4	550401	1	16	6.2	5.0	✓
TDS by Gravimetry	E162	549719	1	13	7.6	5.0	✓
Total Metals in Water by CRC ICPMS	E420	549716	1	20	5.0	5.0	✓
TSS by Gravimetry	E160	549456	1	19	5.2	5.0	✓
Matrix Spikes (MS)							
Ammonia by Fluorescence	E298	550328	1	9	11.1	5.0	✓
Chemical Oxygen Demand by Colourimetry (Low Level)	E559-L	549390	1	18	5.5	5.0	✓
Chloride in Water by IC	E235.CI	550402	1	20	5.0	5.0	✓
Sulfate in Water by IC	E235.SO4	550401	1	16	6.2	5.0	1
Total Metals in Water by CRC ICPMS	E420	549716	1	20	5.0	5.0	1

Page : 6 of 7
Work Order : EO2205135

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B July 4

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
pH by Meter	E108 Edmonton - Environmental	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally $20 \pm 5^{\circ}$ C). For high accuracy test results, pH should be measured in the field within the recommended 15 minute hold time.
TSS by Gravimetry	Edmonton - Environmental	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, following by drying of the filter at $104 \pm 1^{\circ}$ C, with gravimetric measurement of the filtered solids. Samples containing very high dissolved solid content (i.e. seawaters, brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples.
TDS by Gravimetry	E162 Edmonton - Environmental	Water	APHA 2540 C (mod)	Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, with evaporation of the filtrate at 180 ± 2°C for 16 hours or to constant weight, with gravimetric measurement of the residue.
Chloride in Water by IC	E235.CI Edmonton - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Sulfate in Water by IC	E235.SO4 Edmonton - Environmental	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
Ammonia by Fluorescence	E298 Edmonton - Environmental	Water	Method Fialab 100, 2018	Ammonia in water is determined by automated continuous flow analysis with membrane diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde). This method is approved under US EPA 40 CFR Part 136 (May 2021)
Total Metals in Water by CRC ICPMS	E420 Edmonton - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Chemical Oxygen Demand by Colourimetry (Low Level)	E559-L Edmonton - Environmental	Water	APHA 5220 D (mod)	Samples are analyzed using the closed reflux colourimetric method.
Oil & Grease by Visible Sheen	E566 Edmonton - Environmental	Water	Alberta Energy Regulator, Drilling waste Management, Directive 050, July 2016	Use a qualitivative visual observation of rainbow sheen to determine the presence or absence of oil and grease on water.

 Page
 : 7 of 7

 Work Order
 : EO2205135

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B July 4

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Survival/LC50 Rainbow Trout (96 hours)	TRT-LC50-96	Water	EPS1/RM/13	See attached report.
	Bureau Veritas (Edmonton) - 9331 - 48th Street Edmonton Alberta Canada T6B 2R4			
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
	Edmonton - Environmental			

QUALITY CONTROL REPORT

Work Order : EO2205135

Client : Clean Harbors Environmental Services, Inc.

Contact : Todd Webb

Address : PO Box 390, 50114 Rame Road 173

AB Canada T0B4A0

Telephone : 780 663 2513
Project : Pond B July 4

PO : ---C-O-C number : ---Sampler : TW

Site : Table 4.3B

Quote number : Q82439 / Q82442

No. of samples received : 1
No. of samples analysed : 1

Page : 1 of 10

Laboratory : Edmonton - Environmental

Account Manager : Pamela Toledo

Address : 9450 - 17 Avenue NW

Edmonton, Alberta Canada T6N 1M9

Telephone :+1 780 413 5227

Date Samples Received :04-Jul-2022 17:45

Date Analysis Commenced : 05-Jul-2022

Issue Date : 11-Jul-2022 16:16

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives

- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Amanda Powell	Account Manager	Bureau Veritas (Edmonton) External Subcontracting, Edmonton, Alberta
Angeli Marzan	Lab Analyst	Edmonton Inorganics, Edmonton, Alberta
Austin Wasylyshyn	Lab Analyst	Edmonton Metals, Edmonton, Alberta
Jessica Maitland	Lab Assistant	Edmonton Inorganics, Edmonton, Alberta
Muzammil Ali	Lab Analyst	Edmonton Inorganics, Edmonton, Alberta
Ping Yeung	Team Leader - Inorganics	Edmonton Inorganics, Edmonton, Alberta
Sobhithan Pillay		Edmonton Inorganics, Edmonton, Alberta
Yan Zhang	Lab Analyst	Edmonton Organics, Edmonton, Alberta

Page : 2 of 10 Work Order : EO2205135

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B July 4

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Page : 3 of 10 Work Order : EO2205135

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B July 4

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Physical Tests (QC	Lot: 549456)										
EO2205048-010	Anonymous	solids, total suspended [TSS]		E160	3.0	mg/L	31.4	27.6	3.8	Diff <2x LOR	
Physical Tests (QC	Lot: 549719)										
EO2205092-001	Anonymous	solids, total dissolved [TDS]		E162	20	mg/L	154	148	6	Diff <2x LOR	
Physical Tests (QC	Lot: 550116)										
EO2205134-002	Anonymous	рН		E108	0.10	pH units	8.18	8.13	0.613%	3%	
Anions and Nutrien	ts (QC Lot: 550328)										
EO2205135-001	Pond B	ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.0218	0.0213	0.0005	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 550401)										
FC2201472-001	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	74.4	74.2	0.318%	20%	
Anions and Nutrien	ts (QC Lot: 550402)										
FC2201472-001	Anonymous	chloride	16887-00-6	E235.CI	0.50	mg/L	52.9	52.4	1.08%	20%	
Total Metals (QC Lo	ot: 549716)										
EO2204958-001	Anonymous	aluminum, total	7429-90-5	E420	0.0600	mg/L	26.8	25.2	5.78%	20%	
		antimony, total	7440-36-0	E420	0.00200	mg/L	<0.00200	<0.00200	0	Diff <2x LOR	
		arsenic, total	7440-38-2	E420	0.00200	mg/L	0.0161	0.0156	0.00051	Diff <2x LOR	
		barium, total	7440-39-3	E420	0.00200	mg/L	0.680	0.640	5.98%	20%	
		beryllium, total	7440-41-7	E420	0.000400	mg/L	0.00280	0.00287	0.000067	Diff <2x LOR	
		bismuth, total	7440-69-9	E420	0.00100	mg/L	<0.00100	<0.00100	0	Diff <2x LOR	
		boron, total	7440-42-8	E420	0.200	mg/L	0.500	0.503	0.003	Diff <2x LOR	
		cadmium, total	7440-43-9	E420	0.000100	mg/L	0.000713	0.000679	0.0000342	Diff <2x LOR	
		calcium, total	7440-70-2	E420	1.00	mg/L	45.1	44.2	2.08%	20%	
		cesium, total	7440-46-2	E420	0.000200	mg/L	0.00267	0.00249	6.86%	20%	
		chromium, total	7440-47-3	E420	0.0100	mg/L	0.0296	0.0284	0.00118	Diff <2x LOR	
		cobalt, total	7440-48-4	E420	0.00200	mg/L	0.0179	0.0171	0.00081	Diff <2x LOR	
		copper, total	7440-50-8	E420	0.0100	mg/L	0.0678	0.0649	0.00296	Diff <2x LOR	
		iron, total	7439-89-6	E420	0.200	mg/L	20.2	18.8	7.10%	20%	
		lead, total	7439-92-1	E420	0.00100	mg/L	0.0188	0.0180	4.39%	20%	
		lithium, total	7439-93-2	E420	0.0200	mg/L	0.0955	0.0895	0.0060	Diff <2x LOR	
		magnesium, total	7439-95-4	E420	0.100	mg/L	13.7	12.9	5.80%	20%	
		manganese, total	7439-96-5	E420	0.00200	mg/L	0.422	0.412	2.45%	20%	
		molybdenum, total	7439-98-7	E420	0.00100	mg/L	0.00117	0.00117	0.000003	Diff <2x LOR	

Page : 4 of 10 Work Order : EO2205135

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B July 4

Sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Total Metals (QC Lo	ot: 549716) - continued										
EO2204958-001	Anonymous	nickel, total	7440-02-0	E420	0.0100	mg/L	0.0769	0.0731	0.00384	Diff <2x LOR	
		phosphorus, total	7723-14-0	E420	1.00	mg/L	<1.00	<1.00	0	Diff <2x LOR	
		potassium, total	7440-09-7	E420	1.00	mg/L	10.4	10.1	3.83%	20%	
		rubidium, total	7440-17-7	E420	0.00400	mg/L	0.0310	0.0293	0.00172	Diff <2x LOR	
		selenium, total	7782-49-2	E420	0.00100	mg/L	<0.00100	0.00100	0.000004	Diff <2x LOR	
		silicon, total	7440-21-3	E420	2.00	mg/L	66.3	64.4	3.01%	20%	
		silver, total	7440-22-4	E420	0.000200	mg/L	0.000301	0.000261	0.000039	Diff <2x LOR	
		sodium, total	7440-23-5	E420	1.00	mg/L	202	202	0.215%	20%	
		strontium, total	7440-24-6	E420	0.00400	mg/L	0.751	0.738	1.83%	20%	
		sulfur, total	7704-34-9	E420	10.0	mg/L	62.1	63.8	1.72	Diff <2x LOR	
		tellurium, total	13494-80-9	E420	0.00400	mg/L	<0.00400	<0.00400	0	Diff <2x LOR	
		thallium, total	7440-28-0	E420	0.000200	mg/L	0.000384	0.000304	0.000080	Diff <2x LOR	
		thorium, total	7440-29-1	E420	0.00200	mg/L	0.00300	0.00328	0.00028	Diff <2x LOR	
		tin, total	7440-31-5	E420	0.00200	mg/L	<0.00200	<0.00200	0	Diff <2x LOR	
		titanium, total	7440-32-6	E420	0.00600	mg/L	0.178	0.147	19.2%	20%	
		tungsten, total	7440-33-7	E420	0.00200	mg/L	<0.00200	<0.00200	0	Diff <2x LOR	
		uranium, total	7440-61-1	E420	0.000200	mg/L	0.00394	0.00374	5.14%	20%	
		vanadium, total	7440-62-2	E420	0.0100	mg/L	0.0549	0.0508	0.00405	Diff <2x LOR	
		zinc, total	7440-66-6	E420	0.0600	mg/L	0.182	0.172	0.0104	Diff <2x LOR	
		zirconium, total	7440-67-7	E420	0.00400	mg/L	0.0273	0.0275	0.00024	Diff <2x LOR	
Aggregate Organics	(QC Lot: 549390)										
EO2205003-004	Anonymous	chemical oxygen demand [COD]		E559-L	100	mg/L	8300	8650	4.24%	20%	

Page : 5 of 10 Work Order : EO2205135

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B July 4

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Water

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 549456)					
olids, total suspended [TSS]	E160	3	mg/L	<3.0	
Physical Tests (QCLot: 549719)					
olids, total dissolved [TDS]	E162	10	mg/L	<10	
Anions and Nutrients (QCLot: 550328)					
mmonia, total (as N)	7664-41-7 E298	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 550401)					
ulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	<0.30	
Anions and Nutrients (QCLot: 550402)					
hloride	16887-00-6 E235.CI	0.5	mg/L	<0.50	
otal Metals (QCLot: 549716)					
luminum, total	7429-90-5 E420	0.003	mg/L	<0.0030	
ntimony, total	7440-36-0 E420	0.0001	mg/L	<0.00010	
rsenic, total	7440-38-2 E420	0.0001	mg/L	<0.00010	
arium, total	7440-39-3 E420	0.0001	mg/L	<0.00010	
eryllium, total	7440-41-7 E420	0.00002	mg/L	<0.000020	
smuth, total	7440-69-9 E420	0.00005	mg/L	<0.000050	
oron, total	7440-42-8 E420	0.01	mg/L	<0.010	
admium, total	7440-43-9 E420	0.000005	mg/L	<0.000050	
alcium, total	7440-70-2 E420	0.05	mg/L	<0.050	
esium, total	7440-46-2 E420	0.00001	mg/L	<0.000010	
hromium, total	7440-47-3 E420	0.0005	mg/L	<0.00050	
obalt, total	7440-48-4 E420	0.0001	mg/L	<0.00010	
opper, total	7440-50-8 E420	0.0005	mg/L	<0.00050	
on, total	7439-89-6 E420	0.01	mg/L	<0.010	
ead, total	7439-92-1 E420	0.00005	mg/L	<0.000050	
hium, total	7439-93-2 E420	0.001	mg/L	<0.0010	
nagnesium, total	7439-95-4 E420	0.005	mg/L	<0.0050	
nanganese, total	7439-96-5 E420	0.0001	mg/L	<0.00010	
olybdenum, total	7439-98-7 E420	0.00005	mg/L	<0.000050	
ickel, total	7440-02-0 E420	0.0005	mg/L	<0.00050	
hosphorus, total	7723-14-0 E420	0.05	mg/L	<0.050	
otassium, total	7440-09-7 E420	0.05	mg/L	<0.050	
		0.0002	mg/L	<0.00020	

Page : 6 of 10 Work Order : EO2205135

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B July 4

Sub-Matrix: Water

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Total Metals (QCLot: 549716) - contir	nued					
selenium, total	7782-49-2	E420	0.00005	mg/L	<0.000050	
silicon, total	7440-21-3	E420	0.1	mg/L	<0.10	
silver, total	7440-22-4	E420	0.00001	mg/L	<0.000010	
sodium, total	7440-23-5	E420	0.05	mg/L	<0.050	
strontium, total	7440-24-6	E420	0.0002	mg/L	<0.00020	
sulfur, total	7704-34-9	E420	0.5	mg/L	<0.50	
tellurium, total	13494-80-9	E420	0.0002	mg/L	<0.00020	
thallium, total	7440-28-0	E420	0.00001	mg/L	<0.000010	
thorium, total	7440-29-1	E420	0.0001	mg/L	<0.00010	
tin, total	7440-31-5	E420	0.0001	mg/L	<0.00010	
titanium, total	7440-32-6	E420	0.0003	mg/L	<0.00030	
tungsten, total	7440-33-7	E420	0.0001	mg/L	<0.00010	
uranium, total	7440-61-1	E420	0.00001	mg/L	<0.000010	
vanadium, total	7440-62-2	E420	0.0005	mg/L	<0.00050	
zinc, total	7440-66-6	E420	0.003	mg/L	<0.0030	
zirconium, total	7440-67-7	E420	0.0002	mg/L	<0.00020	
Aggregate Organics (QCLot: 549390)						
chemical oxygen demand [COD]		E559-L	10	mg/L	<10	

Page : 7 of 10
Work Order : EO2205135

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B July 4

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water						Laboratory Co	ntrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number Me	ethod	LOR	Unit	Concentration	LCS	Low	High	Qualifie
Physical Tests (QCLot: 549456)									
solids, total suspended [TSS]	E1	60	3	mg/L	150 mg/L	93.3	85.0	115	
Physical Tests (QCLot: 549719)									
solids, total dissolved [TDS]	E1	62	10	mg/L	1000 mg/L	94.0	85.0	115	
Physical Tests (QCLot: 550116)									1
рН	E1	08		pH units	6 pH units	102	97.0	103	
Anions and Nutrients (QCLot: 550328)									
ammonia, total (as N)	7664-41-7 E2	298	0.005	mg/L	0.2 mg/L	102	85.0	115	
Anions and Nutrients (QCLot: 550401)									
sulfate (as SO4)	14808-79-8 E2	235.SO4	0.3	mg/L	100 mg/L	108	90.0	110	
Anions and Nutrients (QCLot: 550402)									
chloride	16887-00-6 E2	235.CI	0.5	mg/L	100 mg/L	102	90.0	110	
Total Metals (QCLot: 549716)									
aluminum, total	7429-90-5 E4	120	0.003	mg/L	2 mg/L	110	80.0	120	
antimony, total	7440-36-0 E4	120	0.0001	mg/L	1 mg/L	111	80.0	120	
arsenic, total	7440-38-2 E4	120	0.0001	mg/L	1 mg/L	106	80.0	120	
barium, total	7440-39-3 E4	120	0.0001	mg/L	0.25 mg/L	105	80.0	120	
beryllium, total	7440-41-7 E4	120	0.00002	mg/L	0.1 mg/L	99.4	80.0	120	
bismuth, total	7440-69-9 E4	120	0.00005	mg/L	1 mg/L	104	80.0	120	
boron, total	7440-42-8 E4	120	0.01	mg/L	1 mg/L	89.8	80.0	120	
cadmium, total	7440-43-9 E4	120	0.000005	mg/L	0.1 mg/L	107	80.0	120	
calcium, total	7440-70-2 E4	120	0.05	mg/L	50 mg/L	99.2	80.0	120	
cesium, total	7440-46-2 E4	120	0.00001	mg/L	0.05 mg/L	108	80.0	120	
chromium, total	7440-47-3 E4	120	0.0005	mg/L	0.25 mg/L	109	80.0	120	
cobalt, total	7440-48-4 E4	120	0.0001	mg/L	0.25 mg/L	108	80.0	120	
copper, total	7440-50-8 E4	120	0.0005	mg/L	0.25 mg/L	109	0.08	120	
iron, total	7439-89-6 E4	20	0.01	mg/L	1 mg/L	106	80.0	120	
lead, total	7439-92-1 E4	20	0.00005	mg/L	0.5 mg/L	103	80.0	120	
lithium, total	7439-93-2 E4	20	0.001	mg/L	0.25 mg/L	102	80.0	120	
magnesium, total	7439-95-4 E4	120	0.005	mg/L	50 mg/L	106	0.08	120	
manganese, total	7439-96-5 E4	20	0.0001	mg/L	0.25 mg/L	109	80.0	120	
molybdenum, total	7439-98-7 E4	120	0.00005	mg/L	0.25 mg/L	99.7	80.0	120	
nickel, total	7440-02-0 E4	120	0.0005	mg/L	0.5 mg/L	108	80.0	120	

Page : 8 of 10 Work Order : EO2205135

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B July 4

Sub-Matrix: Water						Laboratory Co	ontrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Total Metals (QCLot: 549716) - continued	ı								
phosphorus, total	7723-14-0	E420	0.05	mg/L	10 mg/L	104	80.0	120	
potassium, total	7440-09-7	E420	0.05	mg/L	50 mg/L	106	80.0	120	
rubidium, total	7440-17-7	E420	0.0002	mg/L	0.1 mg/L	109	80.0	120	
selenium, total	7782-49-2	E420	0.00005	mg/L	1 mg/L	102	80.0	120	
silicon, total	7440-21-3	E420	0.1	mg/L	10 mg/L	97.7	80.0	120	
silver, total	7440-22-4	E420	0.00001	mg/L	0.1 mg/L	99.0	80.0	120	
sodium, total	7440-23-5	E420	0.05	mg/L	50 mg/L	99.1	80.0	120	
strontium, total	7440-24-6	E420	0.0002	mg/L	0.25 mg/L	99.6	80.0	120	
sulfur, total	7704-34-9	E420	0.5	mg/L	50 mg/L	92.3	80.0	120	
tellurium, total	13494-80-9	E420	0.0002	mg/L	0.1 mg/L	103	80.0	120	
thallium, total	7440-28-0	E420	0.00001	mg/L	1 mg/L	103	80.0	120	
thorium, total	7440-29-1	E420	0.0001	mg/L	0.1 mg/L	92.5	80.0	120	
tin, total	7440-31-5	E420	0.0001	mg/L	0.5 mg/L	105	80.0	120	
titanium, total	7440-32-6	E420	0.0003	mg/L	0.25 mg/L	103	80.0	120	
tungsten, total	7440-33-7	E420	0.0001	mg/L	0.1 mg/L	102	80.0	120	
uranium, total	7440-61-1	E420	0.00001	mg/L	0.005 mg/L	103	80.0	120	
vanadium, total	7440-62-2	E420	0.0005	mg/L	0.5 mg/L	107	80.0	120	
zinc, total	7440-66-6	E420	0.003	mg/L	0.5 mg/L	106	80.0	120	
zirconium, total	7440-67-7	E420	0.0002	mg/L	0.1 mg/L	97.1	80.0	120	
Aggregate Organics (QCLot: 549390)									1
chemical oxygen demand [COD]		E559-L	10	mg/L	100 mg/L	91.6	85.0	115	

Page : 9 of 10 Work Order : EO2205135

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B July 4

ALS

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water						Matrix Spike (MS) Report						
					Spi	Spike		Recovery	Limits (%)			
aboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie		
	ents (QCLot: 550328)											
EO2205149-001	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.0959 mg/L	0.1 mg/L	95.9	75.0	125			
nions and Nutri	ents (QCLot: 550401)											
C2201472-001	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	112 mg/L	100 mg/L	112	75.0	125			
nions and Nutri	ents (QCLot: 550402)											
C2201472-001	Anonymous	chloride	16887-00-6	E235.CI	104 mg/L	100 mg/L	104	75.0	125			
otal Metals (QC	Lot: 549716)											
EO2204958-002	Anonymous	aluminum, total	7429-90-5	E420	ND mg/L	0.2 mg/L	ND	70.0	130			
		antimony, total	7440-36-0	E420	0.0229 mg/L	0.02 mg/L	114	70.0	130			
		arsenic, total	7440-38-2	E420	0.0223 mg/L	0.02 mg/L	112	70.0	130			
		barium, total	7440-39-3	E420	ND mg/L	0.02 mg/L	ND	70.0	130			
		beryllium, total	7440-41-7	E420	0.0441 mg/L	0.04 mg/L	110	70.0	130			
		bismuth, total	7440-69-9	E420	0.00988 mg/L	0.01 mg/L	98.8	70.0	130			
		boron, total	7440-42-8	E420	ND mg/L	0.1 mg/L	ND	70.0	130			
		cadmium, total	7440-43-9	E420	0.00444 mg/L	0.004 mg/L	111	70.0	130			
		calcium, total	7440-70-2	E420	ND mg/L	4 mg/L	ND	70.0	130			
		cesium, total	7440-46-2	E420	0.0113 mg/L	0.01 mg/L	113	70.0	130			
		chromium, total	7440-47-3	E420	0.0454 mg/L	0.04 mg/L	114	70.0	130			
		cobalt, total	7440-48-4	E420	0.0222 mg/L	0.02 mg/L	111	70.0	130			
		copper, total	7440-50-8	E420	ND mg/L	0.02 mg/L	ND	70.0	130			
		iron, total	7439-89-6	E420	ND mg/L	2 mg/L	ND	70.0	130			
		lead, total	7439-92-1	E420	0.0200 mg/L	0.02 mg/L	99.8	70.0	130			
		lithium, total	7439-93-2	E420	0.105 mg/L	0.1 mg/L	105	70.0	130			
		magnesium, total	7439-95-4	E420	ND mg/L	1 mg/L	ND	70.0	130			
		manganese, total	7439-96-5	E420	ND mg/L	0.02 mg/L	ND	70.0	130			
		molybdenum, total	7439-98-7	E420	0.0207 mg/L	0.02 mg/L	104	70.0	130			
		nickel, total	7440-02-0	E420	0.0446 mg/L	0.04 mg/L	112	70.0	130			
		phosphorus, total	7723-14-0	E420	10.7 mg/L	10 mg/L	107	70.0	130			
		potassium, total	7440-09-7	E420	ND mg/L	4 mg/L	ND	70.0	130			
		rubidium, total	7440-17-7	E420	0.0224 mg/L	0.02 mg/L	112	70.0	130			
		selenium, total	7782-49-2	E420	0.0409 mg/L	0.04 mg/L	102	70.0	130			
		silicon, total	7440-21-3	E420	ND mg/L	10 mg/L	ND	70.0	130			
	T	silver, total	7440-22-4	E420	0.00424 mg/L	0.004 mg/L	106	70.0	130			

Page : 10 of 10 Work Order : EO2205135

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B July 4

Sub-Matrix: Water					Matrix Spike (MS) Report					
						Spike		(%) Recovery Limits (%)		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Total Metals (QCLot: 549716) - continued										
EO2204958-002	Anonymous	sodium, total	7440-23-5	E420	ND mg/L	2 mg/L	ND	70.0	130	
		strontium, total	7440-24-6	E420	ND mg/L	0.02 mg/L	ND	70.0	130	
		sulfur, total	7704-34-9	E420	ND mg/L	20 mg/L	ND	70.0	130	
		tellurium, total	13494-80-9	E420	0.0431 mg/L	0.04 mg/L	108	70.0	130	
		thallium, total	7440-28-0	E420	0.00384 mg/L	0.004 mg/L	96.0	70.0	130	
		thorium, total	7440-29-1	E420	0.0210 mg/L	0.02 mg/L	105	70.0	130	
		tin, total	7440-31-5	E420	0.0225 mg/L	0.02 mg/L	112	70.0	130	
		titanium, total	7440-32-6	E420	ND mg/L	0.04 mg/L	ND	70.0	130	
		tungsten, total	7440-33-7	E420	0.0206 mg/L	0.02 mg/L	103	70.0	130	
		uranium, total	7440-61-1	E420	0.00415 mg/L	0.004 mg/L	104	70.0	130	
		vanadium, total	7440-62-2	E420	0.113 mg/L	0.1 mg/L	113	70.0	130	
		zinc, total	7440-66-6	E420	0.418 mg/L	0.4 mg/L	104	70.0	130	
		zirconium, total	7440-67-7	E420	0.0396 mg/L	0.04 mg/L	99.0	70.0	130	
Aggregate Organics (QCLot: 549390)										
EO2205003-005	Anonymous	chemical oxygen demand [COD]		E559-L	ND mg/L	100 mg/L	ND	75.0	125	

RESULTS OF DAPHNIA MAGNA LC50 MULTI-CONCENTRATION

Client: 70036 ALS ENVIRONMENTAL, CALGARY Job Number: C247502 Client Project Name & Number: EO2205135 Sample Number: AWM114-02

Test Result:

48 hrs LC50 % vol/vol (95% CL): >100% (N/A) Statistical Method: Visual

POND B Sample Matrix: Water Sample Name:

Description: Yellow, clear Sample Prior to Analysis:

Sample Collected: Jul 04, 2022 12:00 PM Sampling Method: 8.2 N/A pH: 19°C Sample Collected By: N/A Site Collection: N/A Temperature:

Sample Received: Jul 05, 2022 09:50 AM Volume Received: 2 L Dissolved Oxygen: 7.9 mg/L Analysis Start: Jul 05, 2022 11:02 AM Avg Temp Arrival: 7°C Sample Conductance: 926 µS/cm

Hardness: 160 mg CaCO ₃/L End: Jul 07, 2022 10:10 AM Storage: 2-6°C

Concentration	Temperature (°C)	pH (pH)	Conductivity (uS/cm)	Dissolved Oxygen (mg/L)	Mortality (#)	Mortality (%)	Immobility (#)	Immobility (%)	Temperature (°C)	pH (pH)	Conductivity (uS/cm)	Dissolved Oxygen (mg/L)
% vol/vol	Start	Start	Start	Start	24 hrs	24 hrs	24 hrs	24 hrs	48 hrs	48 hr	48 hrs	48 hrs
0	20	8.3	370	7.7	0	0	0	0	21	7.8	385	7.9
6.25	20	8.3	406	7.8	0	0	0	0	21	7.8	419	7.9
12.5	20	8.3	437	7.8	0	0	0	0	21	8.0	465	8.0
25	20	8.2	508	7.8	0	0	0	0	21	7.9	529	7.8
50	19	8.2	650	7.9	0	0	0	0	21	7.9	679	7.8
100	18	8.1	898	7.9	0	0	0	0	21	8.0	946	7.8

Concentration	Mortality (#)	Mortality (%)	Immobility (#)	Immobility (%)
% vol/vol	48 hrs	48 hrs	48 hrs	48 hrs
0	0	0	0	0
6.25	0	0	0	0
12.5	0	0	0	0
25	0	0	0	0
50	0	0	0	0
100	0	0	0	0

Comments: None

Culture/Control/Dilution Water: City of Edmonton dechlorinated tap water

Hardness: 180 mg/L CaCO₃ Other parameters available on request.

Test Conditions 0,6.25,12.5,25,50,100 (% vol/vol) Test concentration:

Organisms per Vessel: 10 Pre-aeration Time: 0 min Rate of Pre-aeration: 25-50 mL/min/L

60 20 ± 2 °C Total # of Organisms Used: Test Temperature : Test Hardness Adjusted: No Test Volume: 150 mL Vessel Volume: 225 mL Test pH Adjusted: No

Loading Density: 15.0 mL/Daphnia Photoperiod: 16:8 (light: dark)

Daphnia magna Source: In House Culture Test Organism:

Average Brood Size: 28.5 Age at Test Initiation: <24 hrs % Mortality within 7 days: Culture Photoperiod: 16:8 (light: dark) 1.6 Culture Temperature: 20 ± 2 °C Time To First Brood: 7 Days **Culture Diet**

Pseudokirchnriella and YTC at a ratio of 2 mL/L of culture daily. New cultures weekly, 63 daphnids

distributed into 6 culture vessels and 3 reproductive vessels.

RESULTS OF DAPHNIA MAGNA LC50 MULTI-CONCENTRATION

Client:70036ALS ENVIRONMENTAL, CALGARYJob Number:C247502Client Project Name & Number:E02205135Sample Number:AWM114-02

Reference chemical:Sodium ChlorideTest Date:Jul 01, 2022Test Endpoint 48 hrs LC50 (95% confidence interval):6.17 (5.50, 6.93)g/LStatistical Method:Untrimmed

Spearman-Kärber

Historical Mean LC50 (warning limits): 6.19 (4.60, 8.31) g/L Concentration: 0,1.71,2.56,3.82,5.7,8.5 g/L

<u>Test Method</u> EPS 1/RM/14

Method Deviations: None

Note: The results contained in this report refer only to the testing of the sample submitted. Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation, including the toxicity parameters reported herein. The conductivity, dissolved oxygen and pH

specific parameters on scopes of accreditation, including the toxicity parameters reported herein. The conductivity, dissolved oxygen and pH data contained within the toxicity report are provided for information purposes and are not individually accredited parameters. This report

may not be reproduced, except in its entirety, without the written approval of the laboratory.

Analyst: Chelsea Tessier, Natasha Lloyd

Verified By: Cara Shurgot, Analyst 2 Date: Jul 08, 2022 02:16 PM

RESULTS OF RAINBOW TROUT LC50 MULTI-CONCENTRATION

Client: 70036 ALS ENVIRONMENTAL, CALGARY Job Number: C247502

Client Project Name & Number: EO2205135

Test Result:

96 hrs LC50 % vol/vol (95% CL): >100% (N/A) Statistical Method: Visual

Sample Name: POND B Sample Matrix: Water

Description: Yellow, clear Sample Number: AWM114-01

Sample Collected: Jul 04, 2022 12:00 PM Sampling Method: N/A Site Collection: N/A

Sample Collected By: N/A Volume Received: 40 L Avg Temp Arrival: 7 °C Storage: 2-6°C

Sample Received: Jul 05, 2022 09:50 AM pH: 7.9 Dissolved Oxygen: 8.4 mg/L
Analysis Start: Jul 05, 2022 11:50 AM Temperature: 14 °C Sample Conductance: 827 μS/cm

ranarysis start.		Jui 03	, 2022 11.507	uvi iciii	iperature .		17 0	Jui	iipic conac	acturice. 02	- 7 μ3/ επι	
Concentration	Temperature (°C)	pH (pH)	Conductivity (uS/cm)	Dissolved Oxygen (mg/L)	Mortality (#)	Mortality (%)	Atypical Behaviour (#)	Atypical Behaviour (%)	Mortality (#)	Mortality (%)	Atypical Behaviour (#)	Atypical Behaviour (%)
% vol/vol	Start	Start	Start	Start	24 hrs	24 hrs	24 hrs	24 hrs	48 hrs	48 hrs	48 hrs	48 hrs
0	15	8.0	355	9.1	0	0	0	0	0	0	0	0
6.25	15	8.0	386	9.1	0	0	0	0	0	0	0	0
12.5	14	7.8	429	9.2	0	0	0	0	0	0	0	0
25	14	8.0	484	9.1	0	0	0	0	0	0	0	0
50	14	7.9	608	9.0	0	0	0	0	0	0	0	0
100	14	7.9	838	9.2	0	0	0	0	0	0	0	0

Concentration	Mortality (#)	Mortality (%)	Atypical Behaviour (#)	Atypical Behaviour (%)	Temperature (°C)	pH (pH)	Conductivity (uS/cm)	Dissolved Oxygen (mg/L)	Mortality (#)	Mortality (%)	Atypical Behaviour (#)	Atypical Behaviour (%)
% vol/vol	72 hrs	72 hrs	72 hrs	72 hrs	96 hrs	96 hr	96 hrs	96 hrs	96 hrs	96 hrs	96 hrs	96 hrs
0	0	0	0	0	15	7.9	354	8.8	0	0	0	0
6.25	0	0	0	0	15	8.0	382	8.8	0	0	0	0
12.5	0	0	0	0	15	8.0	430	8.7	0	0	0	0
25	0	0	0	0	15	8.0	488	8.7	0	0	0	0
50	0	0	0	0	15	7.8	615	7.6	0	0	0	0
100	0	0	0	0	15	8.1	846	8.6	0	0	0	0

Comments: None

<u>Culture/Control/Dilution Water</u> City of Edmonton dechlorinated tap water

Hardness: 190 mg/L CaCO₃ Other parameters available on request.

Test Conditions Test concentration: 0,6.25,12.5,25,50,100 (% vol/vol)

Organisms per Vessel : 10 Test Temperature : 15 ± 1 °C Solution Depth : >15 cm

Total # of Organisms Used: 60 Pre-aeration Time: 30 min. Rate of Aeration 6.5±1 mL/min/L

Test Volume : 20 L Vessel Volume : 38L Test pH Adjusted: No

Loading Density: 0.3 g/L Photoperiod: 16:8 (light: dark)

<u>Test Organism :</u> Rainbow Trout (Oncorhynchus mykiss) Source : Spring Valley Trout Hatchery

Culture Temperature : 15 ± 2 °C Weight (Mean) +- SD : 0.6 ± 0.1 g Length (Mean) +- SD : 4.24 ± 0.31 cm Culture Water Renewal : ≥ 1.0 L/min/kg fish Weight (Range) : 0.4 - 0.8 g Length (Range) : 3.70 - 4.80 cm

Culture Photoperiod: 16:8 (light: dark) % Mortality within 7 days: 0%

Feeding rate and frequency: daily: 1-5% biomass of trout. Acclimation Time: >14 days

Reference chemical:PhenolTest Date:Jun 28, 2022Test Endpoint 96 hrs LC50 (95% confidence interval):10.4 (9.35, 11.4)mg/LStatistical Method:Probit

Historical Mean LC50 (warning limits): 9.94 (8.72, 11.3) mg/L Concentration: 0,8,10,12,15,20 mg/L

RESULTS OF RAINBOW TROUT LC50 MULTI-CONCENTRATION

Client:70036ALS ENVIRONMENTAL, CALGARYJob Number:C247502Client Project Name & Number:E02205135Sample Number:AWM114-01

<u>Test Method</u> EPS 1/RM/13

Method Deviations : None

Note:

The results contained in this report refer only to the testing of the sample submitted. Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation, including the toxicity parameters reported herein. The conductivity, dissolved oxygen and pH data contained within the toxicity report are provided for information purposes and are not individually accredited parameters. This report may not be reproduced, except in its entirety, without the written approval of the laboratory.

Analyst: Cara Shurgot, Kaylie Lyons, Kyle Monaghan

Verified By: Cara Shurgot, Analyst 2 Date: Jul 09, 2022 01:48 PM

ALS ENVIRONMENTAL

Client Project #: EO2205135

Report Date: 2022/07/09

Bureau Veritas Job Number: C247502

RESULTS OF CHEMICAL ANALYSES OF WATER

Bureau Veritas ID		AWM114	
Sampling Date		2022/07/04 12:00	
COC Number		62453	
	UNITS	POND B	QC Batch
Daphnia Magna Bioassay			
LC50	% vol/vol	ATTACHED	A633088

RDL = Reportable Detection Limit

N/A = Not Applicable

Results relate only to the items tested.

Your Project #: EO2205135 Your C.O.C. #: 62453

Attention: ALS Reporting Edmonton

ALS ENVIRONMENTAL
Bay 7, 1313 44th ave NE
CALGARY, AB
CANADA T2E 6L5

Report Date: 2022/07/09

Report #: R3197701 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C247502 Received: 2022/07/05. 09:50

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Daphnia magna LC50 Multi-Concentration	1	N/A	2022/07/05	EENVSOP-00154	EPS 1 RM14 2nd ed m
Rainbow Trout LC50 Multi-Concentration	1	N/A	2022/07/05	EENVSOP-00160	EPS 1 RM13 2nd ed m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

 $Reference\ Method\ suffix\ "m"\ indicates\ test\ methods\ incorporate\ validated\ modifications\ from\ specific\ reference\ methods\ to\ improve\ performance.$

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Your Project #: EO2205135 Your C.O.C. #: 62453

Attention: ALS Reporting Edmonton

ALS ENVIRONMENTAL
Bay 7, 1313 44th ave NE
CALGARY, AB
CANADA T2E 6L5

Report Date: 2022/07/09

Report #: R3197701 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C247502 Received: 2022/07/05, 09:50

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Customer Solutions, Western Canada Customer Experience Team Email: customersolutionswest@bureauveritas.com Phone# (780) 577-7100

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

A633088

RESULTS OF CHEMICAL ANALYSES OF WATER

Daphnia Magna Bioassay					
	UNITS	POND B	QC Batch		
COC Number		62453			
Sampling Date		12:00			
Sampling Date		2022/07/04			
Bureau Veritas ID		AWM114			

% vol/vol

ATTACHED

LC50

A632619

TOXICOLOGY (WATER)

Rainbow Trout Bioassay			
	UNITS	POND B	QC Batch
COC Number		62453	
Sampling Date		12:00	
Compling Data		2022/07/04	
Bureau Veritas ID		AWM114	

% vol/vol

ATTACHED

LC50

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	8.0°C
Package 2	6.3°C
Package 3	7.0°C
Package 4	7.3°C
Package 5	6.0°C

Results relate only to the items tested.

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Cara Shurgot, Analyst 2

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

051(5)

Destination Lab:

Bureau Veritas (Edmonton)

Address:

9331 - 48th Street Edmonton AB Canada

T6B 2R4

Work Order Number: EO2205135

Original Receipt Date/Time

Instructions Received

04/07/2022 17:45

Relinquished By Date/Time Received By Date/Time

Receipt Temp

Return as Indicated: Results: ALSEDClientServices@alsglobal.com Attention: Pamela Toledo			Invoice: ALSEDClientServices@alsglobal.com		Electronic Data: ALSEDClientServices@alsglobal.com			
ALS Sample ID	Client ID	Matrix	Container Type	Test Codes	Method Description	Due Date	Sampling Date and Time	Remarks
EO2205135-001	Pond B	Water	LDPE carboy	TRT-LC50-96	Survival/LC50 Rainbow Trout (96 hours)	06-07-2022	04/07/2022 12:00	
EO2205135-001	Pond B	Water	LDPE carboy			06-07-2022	04/07/2022 12:00	
EO2205135-001	Pond B	Water	LDPE carboy			06-07-2022	04/07/2022 12:00	
EO2205135-001	Pond B	Water	LDPE carboy			06-07-2022	04/07/2022 12:00	
EO2205135-001	Pond B	Water	LDPE carboy	DAP-LC50-48	Survival/LC50 Daphnia Magna 48 hours × 2	06-07-2022	04/07/2022 12:00	
EO2205135-001	Pond B	Water	LDPE carboy			06-07-2022	04/07/2022 12:00	

P4 - Due 208-SUL. 2022 Temp See ACTR

Deji Wu D-2022/07/05 09:50

Job# C247502

Chain of Custody (COC) / Analytical Request Form

Canada Toll Free: 1 800 668 9878

COC Number: 22 -

Page

Are samples taken from a Regulated DW System? REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION Released by: Are samples for human consumption/ use? ALS Sample # (ALS use only) Street: PO / AFE: Job #: Contact: City/Province: ALS Account # / Quote #: Company: Postal Code: ALS Lab Work Order # (ALS use only): hone: Contact: Company: Report To Drinking Water (DW) Samples (client use) YES NO YES | NO Pond B Ryley, AB (780) 663-2513 Pond B July 4 Robbi Gooding Clean Harbors Canada Same as Report To PO Box 390, 50114 Range Road 173 Copy of Invoice with Report TOB 4A0 Company address below will appear on the final Clean Harbors Canada Todd Webb, Stan Yuha Table 4.3B Todd Webb SHIPMENT RELEASE (client use) Contact and company name below will appear on the final report Project Information Sample Identification and/or Coordinates (This description will appear on the report) Q82442 (Table 4.3B) 602205, YES YES Same analysis as EO2202394 Please rush. Analyze as per Table 4.3B (attached), including trout and Daphnia bioassays. report S 8 24-Jun-22 Time: Notes / Specify Limits for result evaluation by selecting from drop-down below (Excel COC only) Received by ALS Contact: Select Invoice Distribution: 🗸 EMAIL 🗌 MAIL AFE/Cost Center: Email 2 Email 1 or Fax gooding.robbi@cleanharbors.com Email 3 Email 1 or Fax webb.todd@cleanharbors.com Requisitioner: Major/Minor Code: Email 2 Select Distribution: Select Report Format: Merge QC/QCI Reports with COA ☐ YES ☐ NO ☐ N/A ocation: Compare Results to Criteria on Report - provide details below if box checked Oil and Gas Required Fields (client use) INITIAL SHIPMENT RECEPTION (ALS use only) yuha.stan@cleanharbors.com Pamela Toledo (dd-mmm-yy) 4-Jul-22 EMAIL. Date Reports / Recipients Invoice Recipients PDF C EXCEL C EDD (DIGITAL) WHITE - LABORATOR Sampler: Routing Code MAIL (hh:mm) 12:00 Time WH-7022 FAX COPY Surface Water Fodd Webb Sample Type FAX YELLOW - CLIENT COPY Submission Comments identified on Sample Receipt Notification: Cooling Method: Routine [R] if received by 3pm M-F - no surcharges apply

4 day [P4] if received by 3pm M-F - 20% rush surcharge minimum

3 day [P3] if received by 3pm M-F - 25% rush surcharge minimum

2 day [P2] if received by 3pm M-F - 50% rush surcharge minimum

1 day [E] if received by 3pm M-F - 100% rush surcharge minimum

Same day [E2] if received by 10am M-S - 200% rush surcharge. Cooler Custody Seals Intact: 3 NUMBER OF CONTAINERS Date and Time Required for all E&P TATs: P2 Table 4.3B INITIAL COOLER TEMPERATURES °C Additional fees may apply to rush requests on weekends, statutory holidays and for non-routine tests Received by P4 Trout 96 hr multi conc. Acute Lethal Turnaround Time (TAT) Requested Indicate Filtered (F), Preserved (P) or Filtered and Preserved (F/P) below NONE Daphnia 48 hr Static acute lethality For all tests with rush TATs requested, please contact your AM to confirm availability SAMPLE RE □ ice FINAL SHIPMENT RECEPTION (ALS use only) YES N/A ICE PACKS FROZEN **Analysis Request** Edmonton **Environmental Division** Telephone: +1 780 413 5227 Work Order Reference Sample Custody Seals Intact: FINAL COOLER TEMPERATURES °C AFFIX ALS BARCODE LABEL HERE ☐ YES COOLING INITIATED No No ☐ YES ☐ N/A Time. SAMPLES ON HOLD EXTENDED STORAGE REQUIRED SUSPECTED HAZARD (see notes

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the scales and Conditions as specified on the back page of the white - report copy 1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

TABLE 4.3-8: RUNOFF LIMITS FOR SURFACE WATER DETENTION POND

96-Hour Multiple Concentration Acute Lethality Test Using Rainbow Trout (Oncorhynchus mykiss)	Not present in amounts sufficient to create a visible film or sheen		
Oil or other substances			
etsriqing	J/gm 000		
unipos	Z00 mg/L		
Chloride	250 mg/L		
Ammonia (expressed as Nitrogen)	J/6w g		
188	Ze mg/L		
SOL	2500 mg/L		
doo	J/gm 02		
Hq	stinu Hq 2.9 - 0.8		
ЯЗТЭМАЯАЧ	LIMITS Maximum unless otherwise indicated		

48 hr Static Acute Lethality test using Daphnic Magne

Appendix D Ponds B and C Annual Monitoring – TABLE 4.3-E

October 2022

ALS Canada Ltd.

CERTIFICATE OF ANALYSIS

Work Order : **EO2208443** Page : 1 of 8

Amendment : 1

Client : Clean Harbors Environmental Laboratory : Edmonton - Environmental

Services, Inc.

AB Canada T0B4A0

Contact : Todd Webb Account Manager : Pamela Toledo

Address : PO Box 390, 50114 Range Road 173 Address : 9450 - 17 Avenue NW

Edmonton AB Canada T6N 1M9

 Telephone
 : 780 663 2513
 Telephone
 : +1 780 413 5227

 Project
 : Pond B and C Oct 3
 Date Samples Received
 : 03-Oct-2022 15:30

 PO
 : 228509
 Date Analysis
 : 05-Oct-2022

Commenced

: ---- Issue Date : 09-Nov-2022 12:36

Sampler : TW

 Site
 : Table 4.3B + Table 4.3E

 Quote number
 : Q82439 / Q82442

No. of samples received : 2
No. of samples analysed : 2

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

General Comments

Analytical Results

Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

C-O-C number

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Alex Drake	Lab Analyst	Inorganics, Edmonton, Alberta
Amanda Powell	Account Manager	External Subcontracting, Edmonton, Alberta
Amanda Powell	Client Service Manager	Internal Subcontracting, Kelso, Washington DC (District of
		Columbia)
Angeli Marzan	Lab Analyst	Inorganics, Edmonton, Alberta
Austin Wasylyshyn	Lab Analyst	Metals, Edmonton, Alberta
Christian Murera	Lab Analyst	Organics, Edmonton, Alberta
Dan Nguyen	Team Leader - Inorganics	Inorganics, Edmonton, Alberta
Dan Nguyen	Team Leader - Inorganics	Metals, Edmonton, Alberta
Daniel Nguyen	Lab Assistant	Inorganics, Edmonton, Alberta
Janice Leung	Supervisor - Organics Instrumentation	Organics, Burnaby, British Columbia
Jing Liu	Lab Assistant	Inorganics, Edmonton, Alberta
Joan Wu	Lab Analyst	Metals, Edmonton, Alberta
Jocelyn Kennedy	Department Manager - Semi-Volatile Organics	Organics, Waterloo, Ontario
Jon Fisher	Department Manager - Inorganics	Inorganics, Waterloo, Ontario
Muzammil Ali	Lab Analyst	Inorganics, Edmonton, Alberta
Ping Yeung	Team Leader - Inorganics	Inorganics, Edmonton, Alberta
Samantha Mayor	Lab Assistant	Inorganics, Edmonton, Alberta
Shruti Mudliar	Lab Analyst	Inorganics, Edmonton, Alberta
Sobhithan Pillay		Inorganics, Edmonton, Alberta
Yan Zhang	Lab Analyst	Organics, Edmonton, Alberta

Page : 2 of 8

Work Order : EO2208443 Amendment 1

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B and C Oct 3

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
%	percent
μg/L	micrograms per litre
μS/cm	Microsiemens per centimetre
mg/L	milligrams per litre
pH units	pH units

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

Qualifier	Description
DTC	Dissolved concentration exceeds total. Results were confirmed by re-analysis.

<: less than.

Page : 3 of 8

Work Order : EO2208443 Amendment 1

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B and C Oct 3

Analytical Results

EO2208443-001

Sub-Matrix:**Water** Client sample ID: Pond B -

(Matrix: Water) Client sampling date / time: 03-Oct-2022 00:00

Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis	QCLot
Physical Tests							Date	
alkalinity, bicarbonate (as HCO3)	71-52-3	223	1.0	mg/L	E290	05-Oct-2022	05-Oct-2022	682038
alkalinity, carbonate (as CO3)	3812-32-6	6.1	1.0	mg/L	E290	05-Oct-2022	05-Oct-2022	682038
alkalinity, hydroxide (as OH)	14280-30-9	<1.0	1.0	mg/L	E290	05-Oct-2022	05-Oct-2022	682038
conductivity		1320	1.0	μS/cm	E100	05-Oct-2022	05-Oct-2022	682036
pH		8.54	0.10	pH units	E108	05-Oct-2022	05-Oct-2022	682037
solids, total dissolved [TDS]		933	20	mg/L	E162	-	06-Oct-2022	683794
solids, total dissolved [TDS], calculated		963	1.0	mg/L	EC103		06-Oct-2022	003734
solids, total suspended [TSS]		21.6	3.0	mg/L	E160	_	05-Oct-2022	- 681561
Anions and Nutrients		21.0	3.0	mg/L	L 100	-	05-001-2022	001301
	7004 44 7	0.0399	0.0050	ma/l	E298	12-Oct-2022	40.0-4.0000	004705
ammonia, total (as N)	7664-41-7	42.4		mg/L	E235.CI	05-Oct-2022	12-Oct-2022	691785
chloride	16887-00-6		0.50	mg/L			05-Oct-2022	682269
fluoride	16984-48-8	1.32	0.020	mg/L	E235.F	05-Oct-2022	05-Oct-2022	682273
nitrate (as N)	14797-55-8	0.022	0.020	mg/L	E235.NO3	05-Oct-2022	05-Oct-2022	682271
nitrate + nitrite (as N)		<0.0224	0.0224	mg/L	EC235.N+N	-	07-Oct-2022	-
nitrite (as N)	14797-65-0	<0.010	0.010	mg/L	E235.NO2	05-Oct-2022	05-Oct-2022	682272
phosphorus, total	7723-14-0	0.0614	0.0010	mg/L	E372-S	10-Oct-2022	13-Oct-2022	688839
phosphorus, total dissolved	7723-14-0	0.0390	0.0010	mg/L	E375-U	10-Oct-2022	14-Oct-2022	688347
sulfate (as SO4)	14808-79-8	478	0.30	mg/L	E235.SO4	05-Oct-2022	05-Oct-2022	682270
Kjeldahl nitrogen, total [TKN]		1.59	0.200	mg/L	E318	19-Oct-2022	20-Oct-2022	702163
Cyanides						1		
cyanide, weak acid dissociable		<0.0050	0.0050	mg/L	E336	05-Oct-2022	05-Oct-2022	681970
Organic / Inorganic Carbon								
carbon, dissolved organic [DOC]		18.6	0.50	mg/L	E358-L	07-Oct-2022	07-Oct-2022	686272
lon Balance						1		
ion balance (cations/anions)		95.4	0.010	%	EC101	-	06-Oct-2022	-
Total Metals								
chromium, total	7440-47-3	0.00316	0.00050	mg/L	E420	11-Oct-2022	12-Oct-2022	689839
mercury, total	7439-97-6	0.0000061	0.0000050	mg/L	E508	06-Oct-2022	06-Oct-2022	683187
Dissolved Metals								
aluminum, dissolved	7429-90-5	0.0136	0.0010	mg/L	E421	11-Oct-2022	12-Oct-2022	689921
antimony, dissolved	7440-36-0	0.00064	0.00010	mg/L	E421	11-Oct-2022	12-Oct-2022	689921
arsenic, dissolved	7440-38-2	0.00102	0.00010	mg/L	E421	11-Oct-2022	12-Oct-2022	689921
barium, dissolved	7440-39-3	0.0584	0.00010	mg/L	E421	11-Oct-2022	12-Oct-2022	689921
beryllium, dissolved	7440-41-7	<0.000020	0.000020	mg/L	E421	11-Oct-2022	12-Oct-2022	689921
bismuth, dissolved	7440-69-9	<0.000050	0.000050	mg/L	E421	11-Oct-2022	12-Oct-2022	689921
boron, dissolved	7440-42-8	0.102	0.010	mg/L	E421	11-Oct-2022	12-Oct-2022	689921
cadmium, dissolved	7440-43-9	0.0000734	0.0000050	mg/L	E421	11-Oct-2022	12-Oct-2022	689921
calcium, dissolved	7440-70-2	44.5	0.050	mg/L	E421	11-Oct-2022	12-Oct-2022	689921
chromium, dissolved	7440-47-3	<0.00050	0.00050	mg/L	E421	11-Oct-2022	12-Oct-2022	689921
cobalt, dissolved	7440-48-4	0.00023	0.00010	mg/L	E421	11-Oct-2022	12-Oct-2022	689921
copper, dissolved	7440-50-8	0.0107 DTG	0.00020	mg/L	E421	11-Oct-2022	13-Oct-2022	689921
iron, dissolved	7439-89-6	<0.010	0.010	mg/L	E421	11-Oct-2022	12-Oct-2022	689921
lead, dissolved	7439-92-1	0.000052	0.000050	mg/L	E421	11-Oct-2022	12-Oct-2022	689921
magnesium, dissolved	7439-95-4	23.8	0.0050	mg/L	E421	11-Oct-2022	12-Oct-2022	689921
manganese, dissolved	7439-96-5	0.0121	0.00010	mg/L	E421	11-Oct-2022	12-Oct-2022	689921
and the form of the second second	7400 00 7	0.450	0.000050		E 40.4		I	
molybdenum, dissolved	7439-98-7	0.156	0.000050	mg/L	E421	11-Oct-2022	12-Oct-2022	689921

Page : 4 of 8

Work Order : EO2208443 Amendment 1

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B and C Oct 3

Analytical Results

EO2208443-001

Sub-Matrix:**Water** Client sample ID: Pond B -

(Matrix: Water) Client sampling date / time: 03-Oct-2022 00:00

Analyta	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis	QCLot
Analyte	CAS Number	Nesult	LON	Offic	Metriou	T TOP Date	Analysis Date	QULUI
Dissolved Metals								1
nickel, dissolved	7440-02-0	0.0105	0.00050	mg/L	E421	11-Oct-2022	12-Oct-2022	689921
potassium, dissolved	7440-09-7	8.38	0.050	mg/L	E421	11-Oct-2022	12-Oct-2022	689921
selenium, dissolved	7782-49-2	0.000665	0.000050	mg/L	E421	11-Oct-2022	12-Oct-2022	689921
silver, dissolved	7440-22-4	<0.000010	0.000010	mg/L	E421	11-Oct-2022	12-Oct-2022	689921
sodium, dissolved	7440-23-5	230	0.050	mg/L	E421	11-Oct-2022	12-Oct-2022	689921
strontium, dissolved	7440-24-6	0.623	0.00020	mg/L	E421	11-Oct-2022	12-Oct-2022	689921
thallium, dissolved	7440-28-0	0.000010	0.000010	mg/L	E421	11-Oct-2022	12-Oct-2022	689921
tin, dissolved	7440-31-5	<0.00010	0.00010	mg/L	E421	11-Oct-2022	12-Oct-2022	689921
uranium, dissolved	7440-61-1	0.00623	0.000010	mg/L	E421	11-Oct-2022	12-Oct-2022	689921
vanadium, dissolved	7440-62-2	0.00311	0.00050	mg/L	E421	11-Oct-2022	12-Oct-2022	689921
zinc, dissolved	7440-66-6	0.0021	0.0010	mg/L	E421	11-Oct-2022	12-Oct-2022	689921
zirconium, dissolved	7440-67-7	<0.00020	0.00020	mg/L	E421	11-Oct-2022	12-Oct-2022	689921
dissolved metals filtration location		Field	_	-	EP421	-	11-Oct-2022	689921
Speciated Metals								1
chromium, hexavalent [Cr VI], dissolved	18540-29-9	<0.00050	0.00050	mg/L	E532A	-	06-Oct-2022	683703
Aggregate Organics							•	
adsorbable organic halogens, [AOX], (as CI)		See Attached	10	mg/L	AOX	-	14-Oct-2022	-
chemical oxygen demand [COD]		48	10	mg/L	E559-L	-	11-Oct-2022	689766
phenols, total (4AAP)		<0.0010	0.0010	mg/L	E562	10-Oct-2022	10-Oct-2022	687934
Volatile Organic Compounds								
benzene	71-43-2	<0.50	0.50	μg/L	E611A	19-Oct-2022	19-Oct-2022	703933
ethylbenzene	100-41-4	<0.50	0.50	μg/L	E611A	19-Oct-2022	19-Oct-2022	703933
toluene	108-88-3	<0.50	0.50	μg/L	E611A	19-Oct-2022	19-Oct-2022	703933
xylene, m+p-	179601-23-1	<0.40	0.40	μg/L	E611A	19-Oct-2022	19-Oct-2022	703933
xylene, o-	95-47-6	<0.30	0.30	μg/L	E611A	19-Oct-2022	19-Oct-2022	703933
xylenes, total	1330-20-7	<0.50	0.50	μg/L	E611A	19-Oct-2022	19-Oct-2022	703933
Hydrocarbons								
F1 (C6-C10)		<100	100	μg/L	E581.F1	19-Oct-2022	19-Oct-2022	703934
F1-BTEX		<100	100	μg/L	EC580	-	20-Oct-2022	-
F2 (C10-C16)		<100	100	μg/L	E601	19-Oct-2022	19-Oct-2022	703963
Hydrocarbons Surrogates								
bromobenzotrifluoride, 2- (F2-F4 surr)	392-83-6	101	1.0	%	E601	19-Oct-2022	19-Oct-2022	703963
dichlorotoluene, 3,4-	97-75-0	115	1.0	%	E581.F1	19-Oct-2022	19-Oct-2022	703934
Volatile Organic Compounds Surrogates								
bromofluorobenzene, 4-	460-00-4	81.3	1.0	%	E611A	19-Oct-2022	19-Oct-2022	703933
difluorobenzene, 1,4-	540-36-3	90.6	1.0	%	E611A	19-Oct-2022	19-Oct-2022	703933
Chlorinated Phenolics								
chlorophenol, 2-	95-57-8	<0.30	0.30	μg/L	E651C	06-Oct-2022	07-Oct-2022	683686
dichlorophenol, 2,4-	120-83-2	<0.20	0.20	μg/L	E651C	06-Oct-2022	07-Oct-2022	683686
dichlorophenol, 2,6-	87-65-0	<0.20	0.20	μg/L	E651C	06-Oct-2022	07-Oct-2022	683686
methylphenol, 4-chloro-3-	59-50-7	<0.50	0.50	μg/L	E651C	06-Oct-2022	07-Oct-2022	683686
pentachlorophenol [PCP]	87-86-5	<0.50	0.50	μg/L	E651C	06-Oct-2022	07-Oct-2022	683686
tetrachlorophenol, 2,3,4,5-	4901-51-3	<0.50	0.50	μg/L	E651C	06-Oct-2022	07-Oct-2022	683686
tetrachlorophenol, 2,3,4,6-	58-90-2	<0.50	0.50	μg/L	E651C	06-Oct-2022	07-Oct-2022	683686
tetrachlorophenol, 2,3,5,6-	935-95-5	<0.50	0.50	μg/L	E651C	06-Oct-2022	07-Oct-2022	683686
trichlorophenol, 2,3,4-	15950-66-0	<0.50	0.50	μg/L	E651C	06-Oct-2022	07-Oct-2022	683686

Page : 5 of 8

Work Order : EO2208443 Amendment 1

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B and C Oct 3

Analytical Results

EO2208443-001

Sub-Matrix:**Water** Client sample ID: Pond B -

(Matrix: Water) Client sampling date / time: 03-Oct-2022 00:00

Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot
Chlorinated Phenolics								
trichlorophenol, 2,3,5-	933-78-8	<0.50	0.50	μg/L	E651C	06-Oct-2022	07-Oct-2022	683686
trichlorophenol, 2,4,5-	95-95-4	<0.50	0.50	μg/L	E651C	06-Oct-2022	07-Oct-2022	683686
trichlorophenol, 2,4,6-	88-06-2	<0.50	0.50	μg/L	E651C	06-Oct-2022	07-Oct-2022	683686
Non-Chlorinated Phenolics								
dimethylphenol, 2,4-	105-67-9	<0.50	0.50	μg/L	E651C	06-Oct-2022	07-Oct-2022	683686
dinitrophenol, 2,4-	51-28-5	<1.0	1.0	μg/L	E651C	06-Oct-2022	07-Oct-2022	683686
methylphenol, 2-	95-48-7	<0.50	0.50	μg/L	E651C	06-Oct-2022	07-Oct-2022	683686
methylphenol, 3+4-		<0.50	0.50	μg/L	E651C	06-Oct-2022	07-Oct-2022	683686
methylphenols, total		<0.75	0.75	μg/L	E651C	06-Oct-2022	07-Oct-2022	683686
nitrophenol, 2-	88-75-5	<0.50	0.50	μg/L	E651C	06-Oct-2022	07-Oct-2022	683686
nitrophenol, 4-	100-02-7	<0.50	0.50	μg/L	E651C	06-Oct-2022	07-Oct-2022	683686
phenol	108-95-2	<0.50	0.50	μg/L	E651C	06-Oct-2022	07-Oct-2022	683686
phenol, 2-methyl-4,6-dinitro- [DNOC]	534-52-1	<2.0	2.0	μg/L	E651C	06-Oct-2022	07-Oct-2022	683686
Phenolics Surrogates								
tribromophenol, 2,4,6-	118-79-6	98.1	1.0	%	E651C	06-Oct-2022	07-Oct-2022	683686
Polychlorinated Biphenyls								
Aroclor 1016	12674-11-2	<1.0	1.0	μg/L	E685	05-Oct-2022	06-Oct-2022	682338
Aroclor 1221	11104-28-2	<1.0	1.0	μg/L	E685	05-Oct-2022	06-Oct-2022	682338
Aroclor 1232	11141-16-5	<1.0	1.0	μg/L	E685	05-Oct-2022	06-Oct-2022	682338
Aroclor 1242	53469-21-9	<1.0	1.0	μg/L	E685	05-Oct-2022	06-Oct-2022	682338
Aroclor 1248	12672-29-6	<1.0	1.0	μg/L	E685	05-Oct-2022	06-Oct-2022	682338
Aroclor 1254	11097-69-1	<1.0	1.0	μg/L	E685	05-Oct-2022	06-Oct-2022	682338
Aroclor 1260	11096-82-5	<1.0	1.0	μg/L	E685	05-Oct-2022	06-Oct-2022	682338
Aroclor 1262	37324-23-5	<1.0	1.0	μg/L	E685	05-Oct-2022	06-Oct-2022	682338
Aroclor 1268	11100-14-4	<1.0	1.0	μg/L	E685	05-Oct-2022	06-Oct-2022	682338
polychlorinated biphenyls [PCBs], total		<1.0	1.0	μg/L	E685	05-Oct-2022	06-Oct-2022	682338
Polychlorinated Biphenyls Surrogates								
decachlorobiphenyl	2051-24-3	92.5	1.0	%	E685	05-Oct-2022	06-Oct-2022	682338

Please refer to the General Comments section for an explanation of any qualifiers detected.

Analytical Results

EO2208443-002

Sub-Matrix: Water Client sample ID: Pond C -

(Matrix: Water) Client sampling date / time: 03-Oct-2022 00:00

Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot
Physical Tests								
alkalinity, bicarbonate (as HCO3)	71-52-3	188	1.0	mg/L	E290	05-Oct-2022	05-Oct-2022	682038
alkalinity, carbonate (as CO3)	3812-32-6	2.2	1.0	mg/L	E290	05-Oct-2022	05-Oct-2022	682038
alkalinity, hydroxide (as OH)	14280-30-9	<1.0	1.0	mg/L	E290	05-Oct-2022	05-Oct-2022	682038
conductivity		1380	1.0	μS/cm	E100	05-Oct-2022	05-Oct-2022	682036
pH		8.37	0.10	pH units	E108	05-Oct-2022	05-Oct-2022	682037
solids, total dissolved [TDS]		988	20	mg/L	E162	-	06-Oct-2022	683794
solids, total dissolved [TDS], calculated		1000	1.0	mg/L	EC103	-	06-Oct-2022	-

Page 6 of 8

Work Order EO2208443 Amendment 1

Client Clean Harbors Environmental Services, Inc. Project

Pond B and C Oct 3

Analytical Results

EO2208443-002

Sub-Matrix:Water

(Matrix: Water)

Client sample ID: Pond C -

Client sampling date / time: 03-Oct-2022 00:00

			g dato / til					
Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot
Physical Tests								
solids, total suspended [TSS]		19.0	3.0	mg/L	E160	-	05-Oct-2022	681561
Anions and Nutrients								
ammonia, total (as N)	7664-41-7	0.0225	0.0050	mg/L	E298	12-Oct-2022	12-Oct-2022	691785
chloride	16887-00-6	72.8	0.50	mg/L	E235.CI	05-Oct-2022	05-Oct-2022	68226
fluoride	16984-48-8	0.861	0.020	mg/L	E235.F	05-Oct-2022	05-Oct-2022	68227
nitrate (as N)	14797-55-8	<0.020	0.020	mg/L	E235.NO3	05-Oct-2022	05-Oct-2022	68227
nitrate + nitrite (as N)		<0.0224	0.0224	mg/L	EC235.N+N	-	07-Oct-2022	-
nitrite (as N)	14797-65-0	< 0.010	0.010	mg/L	E235.NO2	05-Oct-2022	05-Oct-2022	68227
phosphorus, total	7723-14-0	0.117	0.0050	mg/L	E372-S	10-Oct-2022	13-Oct-2022	68883
phosphorus, total dissolved	7723-14-0	0.0250	0.0010	mg/L	E375-U	10-Oct-2022	14-Oct-2022	68834
sulfate (as SO4)	14808-79-8	502	0.30	mg/L	E235.SO4	05-Oct-2022	05-Oct-2022	68227
Kjeldahl nitrogen, total [TKN]		2.32	0.200	mg/L	E318	19-Oct-2022	20-Oct-2022	70216
Cyanides								
cyanide, weak acid dissociable		<0.0050	0.0050	mg/L	E336	05-Oct-2022	05-Oct-2022	68197
Organic / Inorganic Carbon				J.			30 031 2022	55101
carbon, dissolved organic [DOC]		17.0	0.50	mg/L	E358-L	07-Oct-2022	07-Oct-2022	68627
Bioassays				3.			07 000 2022	00027
rout bioassay LC50		See attached	-	-	TRT-LC50-96	-	14-Oct-2022	-
Ion Balance		attacheu						
on balance (cations/anions)		92.4	0.010	%	EC101	-	06-Oct-2022	-
Total Metals								ı
chromium, total	7440-47-3	0.00104	0.00050	mg/L	E420	11-Oct-2022	12-Oct-2022	68983
nercury, total	7439-97-6	0.0000053	0.0000050	mg/L	E508	06-Oct-2022	06-Oct-2022	68318
Dissolved Metals								
aluminum, dissolved	7429-90-5	0.0703	0.0010	mg/L	E421	11-Oct-2022	12-Oct-2022	68992
antimony, dissolved	7440-36-0	0.00070	0.00010	mg/L	E421	11-Oct-2022	12-Oct-2022	68992
arsenic, dissolved	7440-38-2	0.00205	0.00010	mg/L	E421	11-Oct-2022	12-Oct-2022	68992
parium, dissolved	7440-39-3	0.0536	0.00010	mg/L	E421	11-Oct-2022	12-Oct-2022	68992
peryllium, dissolved	7440-41-7	<0.000020	0.000020	mg/L	E421	11-Oct-2022	12-Oct-2022	68992
bismuth, dissolved	7440-69-9	<0.000050	0.000050	mg/L	E421	11-Oct-2022	12-Oct-2022	68992
boron, dissolved	7440-42-8	0.084	0.010	mg/L	E421	11-Oct-2022	12-Oct-2022	68992
cadmium, dissolved	7440-43-9	0.0000432	0.0000050	mg/L	E421	11-Oct-2022	12-Oct-2022	68992
calcium, dissolved	7440-70-2	49.7	0.050	mg/L	E421	11-Oct-2022	12-Oct-2022	68992
chromium, dissolved	7440-47-3	0.00068	0.00050	mg/L	E421	11-Oct-2022	12-Oct-2022	68992
cobalt, dissolved	7440-48-4	0.00013	0.00010	mg/L	E421	11-Oct-2022	12-Oct-2022	68992
copper, dissolved	7440-50-8	0.00432	0.00020	mg/L	E421	11-Oct-2022	12-Oct-2022	68992
ron, dissolved	7440-30-0						1	68992
ion, dissolved	7439-89-6	0.044	0.010	mg/L	E421	11-Oct-2022	12-Oct-2022	00992
			0.010 0.000050	mg/L mg/L	E421 E421	11-Oct-2022 11-Oct-2022	12-Oct-2022 12-Oct-2022	68992
ead, dissolved	7439-89-6	0.044						
ead, dissolved nagnesium, dissolved	7439-89-6 7439-92-1	0.044 0.000097	0.000050	mg/L	E421	11-Oct-2022	12-Oct-2022	68992
ead, dissolved magnesium, dissolved manganese, dissolved	7439-89-6 7439-92-1 7439-95-4	0.044 0.000097 20.9	0.000050 0.0050	mg/L mg/L	E421 E421	11-Oct-2022 11-Oct-2022	12-Oct-2022 12-Oct-2022	68992 68992 68992
ead, dissolved magnesium, dissolved manganese, dissolved molybdenum, dissolved	7439-89-6 7439-92-1 7439-95-4 7439-96-5	0.044 0.000097 20.9 0.00223	0.000050 0.0050 0.00010	mg/L mg/L mg/L	E421 E421 E421	11-Oct-2022 11-Oct-2022 11-Oct-2022	12-Oct-2022 12-Oct-2022 12-Oct-2022	68992 68992 68992 68992
ead, dissolved magnesium, dissolved manganese, dissolved molybdenum, dissolved nickel, dissolved	7439-89-6 7439-92-1 7439-95-4 7439-96-5 7439-98-7	0.044 0.000097 20.9 0.00223 0.115	0.000050 0.0050 0.00010 0.000050	mg/L mg/L mg/L mg/L	E421 E421 E421 E421	11-Oct-2022 11-Oct-2022 11-Oct-2022 11-Oct-2022	12-Oct-2022 12-Oct-2022 12-Oct-2022 12-Oct-2022	68992 68992
lead, dissolved magnesium, dissolved manganese, dissolved molybdenum, dissolved nickel, dissolved potassium, dissolved	7439-89-6 7439-92-1 7439-95-4 7439-96-5 7439-98-7 7440-02-0 7440-09-7	0.044 0.000097 20.9 0.00223 0.115 0.0125	0.000050 0.0050 0.00010 0.000050 0.00050	mg/L mg/L mg/L mg/L mg/L	E421 E421 E421 E421 E421	11-Oct-2022 11-Oct-2022 11-Oct-2022 11-Oct-2022 11-Oct-2022	12-Oct-2022 12-Oct-2022 12-Oct-2022 12-Oct-2022 12-Oct-2022 12-Oct-2022	68992 68992 68992 68992 68992
lead, dissolved magnesium, dissolved manganese, dissolved molybdenum, dissolved nickel, dissolved potassium, dissolved selenium, dissolved silver, dissolved	7439-89-6 7439-92-1 7439-95-4 7439-96-5 7439-98-7 7440-02-0	0.044 0.000097 20.9 0.00223 0.115 0.0125 6.81	0.000050 0.0050 0.00010 0.000050 0.00050 0.050	mg/L mg/L mg/L mg/L mg/L mg/L	E421 E421 E421 E421 E421 E421	11-Oct-2022 11-Oct-2022 11-Oct-2022 11-Oct-2022 11-Oct-2022 11-Oct-2022	12-Oct-2022 12-Oct-2022 12-Oct-2022 12-Oct-2022 12-Oct-2022	68992 68992 68992 68992

Page : 7 of 8

Work Order : EO2208443 Amendment 1

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B and C Oct 3

Analytical Results

EO2208443-002

Sub-Matrix:Water

(Matrix: Water)

Client sample ID: Pond C -

Client sampling date / time: 03-Oct-2022 00:00

						T _	T	
Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis	QCLot
Dissolved Metals							Date	
strontium, dissolved	7440-24-6	0.507	0.00020	mg/L	E421	11-Oct-2022	12-Oct-2022	689921
thallium, dissolved	7440-28-0	<0.000010	0.000010	mg/L	E421	11-Oct-2022	12-Oct-2022	689921
tin, dissolved	7440-31-5	<0.00010	0.00010	mg/L	E421	11-Oct-2022	12-Oct-2022	689921
uranium, dissolved	7440-61-1	0.00454	0.000010	mg/L	E421	11-Oct-2022	12-Oct-2022	689921
vanadium, dissolved	7440-62-2	0.0107	0.00050	mg/L	E421	11-Oct-2022	12-Oct-2022	689921
zinc, dissolved	7440-66-6	0.0032	0.0010	mg/L	E421	11-Oct-2022	12-Oct-2022	689921
zirconium, dissolved	7440-67-7	<0.00020	0.00020	mg/L	E421	11-Oct-2022	12-Oct-2022	689921
dissolved metals filtration location	7440-07-7	Field	-	-	EP421	-	11-Oct-2022	689921
Speciated Metals		1 icia			LI 72 I		11-001-2022	009921
chromium, hexavalent [Cr VI], dissolved	18540-29-9	<0.00050	0.00050	mg/L	E532A	-	06-Oct-2022	683703
Aggregate Organics	10340-29-9	10.00000	0.00000	mg/L	2002/1		00-001-2022	003703
adsorbable organic halogens, [AOX], (as CI)		See	10	mg/L	AOX	_	14-Oct-2022	_
account organic halogons, [NON], (as of)		Attached	10	g/ L	,,,,,,		17-001-2022	_
chemical oxygen demand [COD]		40	10	mg/L	E559-L	-	11-Oct-2022	689766
oil & grease (visible sheen)		Absent	_	-	E566	_	06-Oct-2022	-
phenois, total (4AAP)		<0.0010	0.0010	mg/L	E562	10-Oct-2022	10-Oct-2022	687934
Volatile Organic Compounds								
benzene	71-43-2	<0.50	0.50	μg/L	E611A	19-Oct-2022	19-Oct-2022	703933
ethylbenzene	100-41-4	<0.50	0.50	μg/L	E611A	19-Oct-2022	19-Oct-2022	703933
toluene	108-88-3	<0.50	0.50	μg/L	E611A	19-Oct-2022	19-Oct-2022	703933
xylene, m+p-	179601-23-1	<0.40	0.40	μg/L	E611A	19-Oct-2022	19-Oct-2022	703933
xylene, o-	95-47-6	<0.30	0.30	μg/L	E611A	19-Oct-2022	19-Oct-2022	703933
xylenes, total	1330-20-7	<0.50	0.50	μg/L	E611A	19-Oct-2022	19-Oct-2022	703933
Hydrocarbons	1110 20 1							,
F1 (C6-C10)		<100	100	μg/L	E581.F1	19-Oct-2022	19-Oct-2022	703934
F1-BTEX		<100	100	μg/L	EC580	-	20-Oct-2022	-
F2 (C10-C16)		<100	100	μg/L	E601	19-Oct-2022	19-Oct-2022	703963
Hydrocarbons Surrogates								
bromobenzotrifluoride, 2- (F2-F4 surr)	392-83-6	103	1.0	%	E601	19-Oct-2022	19-Oct-2022	703963
dichlorotoluene, 3,4-	97-75-0	104	1.0	%	E581.F1	19-Oct-2022	19-Oct-2022	703934
Volatile Organic Compounds Surrogates						I		
bromofluorobenzene, 4-	460-00-4	80.0	1.0	%	E611A	19-Oct-2022	19-Oct-2022	703933
difluorobenzene, 1,4-	540-36-3	93.9	1.0	%	E611A	19-Oct-2022	19-Oct-2022	703933
Chlorinated Phenolics								
chlorophenol, 2-	95-57-8	<0.30	0.30	μg/L	E651C	06-Oct-2022	07-Oct-2022	683686
dichlorophenol, 2,4-	120-83-2	<0.20	0.20	μg/L	E651C	06-Oct-2022	07-Oct-2022	683686
dichlorophenol, 2,6-	87-65-0	<0.20	0.20	μg/L	E651C	06-Oct-2022	07-Oct-2022	683686
methylphenol, 4-chloro-3-	59-50-7	<0.50	0.50	μg/L	E651C	06-Oct-2022	07-Oct-2022	683686
pentachlorophenol [PCP]	87-86-5	<0.50	0.50	μg/L	E651C	06-Oct-2022	07-Oct-2022	683686
tetrachlorophenol, 2,3,4,5-	4901-51-3	<0.50	0.50	μg/L	E651C	06-Oct-2022	07-Oct-2022	683686
tetrachlorophenol, 2,3,4,6-	58-90-2	<0.50	0.50	μg/L	E651C	06-Oct-2022	07-Oct-2022	683686
tetrachlorophenol, 2,3,5,6-	935-95-5	<0.50	0.50	μg/L	E651C	06-Oct-2022	07-Oct-2022	683686
trichlorophenol, 2,3,4-	15950-66-0	<0.50	0.50	μg/L	E651C	06-Oct-2022	07-Oct-2022	683686
trichlorophenol, 2,3,5-	933-78-8	<0.50	0.50	μg/L	E651C	06-Oct-2022	07-Oct-2022	683686
trichlorophenol, 2,4,5-	95-95-4	<0.50	0.50	μg/L	E651C	06-Oct-2022	07-Oct-2022	683686
trichlorophenol, 2,4,6-	88-06-2	<0.50	0.50	μg/L	E651C	06-Oct-2022	07-Oct-2022	683686
Non-Chlorinated Phenolics								

Page : 8 of 8

Work Order : EO2208443 Amendment 1

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B and C Oct 3

Analytical Results

EO2208443-002

Sub-Matrix: Water Client sample ID: Pond C -

(Matrix: Water) Client sampling date / time: 03-Oct-2022 00:00

Analyte	CAS Number	Result	LOR	Unit	Method	Prep Date	Analysis Date	QCLot
Non-Chlorinated Phenolics								
dimethylphenol, 2,4-	105-67-9	<0.50	0.50	μg/L	E651C	06-Oct-2022	07-Oct-2022	683686
dinitrophenol, 2,4-	51-28-5	<1.0	1.0	μg/L	E651C	06-Oct-2022	07-Oct-2022	683686
methylphenol, 2-	95-48-7	<0.50	0.50	μg/L	E651C	06-Oct-2022	07-Oct-2022	683686
methylphenol, 3+4-		<0.50	0.50	μg/L	E651C	06-Oct-2022	07-Oct-2022	683686
methylphenols, total		<0.75	0.75	μg/L	E651C	06-Oct-2022	07-Oct-2022	683686
nitrophenol, 2-	88-75-5	<0.50	0.50	μg/L	E651C	06-Oct-2022	07-Oct-2022	683686
nitrophenol, 4-	100-02-7	<0.50	0.50	μg/L	E651C	06-Oct-2022	07-Oct-2022	683686
phenol	108-95-2	<0.50	0.50	μg/L	E651C	06-Oct-2022	07-Oct-2022	683686
phenol, 2-methyl-4,6-dinitro- [DNOC]	534-52-1	<2.0	2.0	μg/L	E651C	06-Oct-2022	07-Oct-2022	683686
Phenolics Surrogates								
tribromophenol, 2,4,6-	118-79-6	105	1.0	%	E651C	06-Oct-2022	07-Oct-2022	683686
Polychlorinated Biphenyls								
Aroclor 1016	12674-11-2	<1.0	1.0	μg/L	E685	05-Oct-2022	06-Oct-2022	682338
Aroclor 1221	11104-28-2	<1.0	1.0	μg/L	E685	05-Oct-2022	06-Oct-2022	682338
Aroclor 1232	11141-16-5	<1.0	1.0	μg/L	E685	05-Oct-2022	06-Oct-2022	682338
Aroclor 1242	53469-21-9	<1.0	1.0	μg/L	E685	05-Oct-2022	06-Oct-2022	682338
Aroclor 1248	12672-29-6	<1.0	1.0	μg/L	E685	05-Oct-2022	06-Oct-2022	682338
Aroclor 1254	11097-69-1	<1.0	1.0	μg/L	E685	05-Oct-2022	06-Oct-2022	682338
Aroclor 1260	11096-82-5	<1.0	1.0	μg/L	E685	05-Oct-2022	06-Oct-2022	682338
Aroclor 1262	37324-23-5	<1.0	1.0	μg/L	E685	05-Oct-2022	06-Oct-2022	682338
Aroclor 1268	11100-14-4	<1.0	1.0	μg/L	E685	05-Oct-2022	06-Oct-2022	682338
polychlorinated biphenyls [PCBs], total		<1.0	1.0	μg/L	E685	05-Oct-2022	06-Oct-2022	682338
Polychlorinated Biphenyls Surrogates								
decachlorobiphenyl	2051-24-3	67.7	1.0	%	E685	05-Oct-2022	06-Oct-2022	682338

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : **EO2208443** Page : 1 of 19

Amendment :1

Client : Clean Harbors Environmental Services, Inc. Laboratory : Edmonton - Environmental

Contact : Todd Webb Account Manager : Pamela Toledo

Address : PO Box 390, 50114 Range Road 173 Address : 9450 - 17 Avenue NW

Edmonton, Alberta Canada T6N 1M9

 Telephone
 :780 663 2513
 Telephone
 :+1 780 413 5227

 Project
 :Pond B and C Oct 3
 Date Samples Received
 : 03-Oct-2022 15:30

 PO
 : 228509
 Issue Date
 : 09-Nov-2022 12:36

C-O-C number : ---Sampler : TW

Site : Table 4.3B + Table 4.3E

AB Canada T0B4A0

Quote number : Q82439 / Q82442

No. of samples received :2
No. of samples analysed :2

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers Outliers : Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Matrix Spike outliers occur.
- Laboratory Control Sample (LCS) outliers occur please see following pages for full details.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

<u>No</u> Quality Control Sample Frequency Outliers occur.

Page : 3 of 19

Work Order : EO2208443 Amendment 1

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B and C Oct 3

Outliers : Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: Water

Analyte Group	Laboratory sample ID	Client/Ref Sample ID	Analyte	CAS Number	Method	Result	Limits	Comment
Laboratory Control Sample (LCS) Re	coveries							
Non-Chlorinated Phenolics	QC-MRG2-6836860		dinitrophenol, 2,4-	51-28-5	E651C	144 % LCS-H	40.0-130%	Recovery greater than
	02							upper control limit
Non-Chlorinated Phenolics	QC-MRG2-6836860		phenol,	534-52-1	E651C	149 % LCS-H	40.0-140%	Recovery greater than
	02		2-methyl-4,6-dinitro-					upper control limit
			[DNOC]					

Result Qualifiers

Qualifier	Description
LCS-H	Lab Control Sample recovery was above ALS DQO. Non-detected sample results are considered reliable. Other results, if reported, have been qualified.

Page : 4 of 19

Work Order : EO2208443 Amendment 1

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B and C Oct 3

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

				E	valuation: 🗴 =	Holding time exce	edance ; 🖠	= Within	Holding Tim
Method	Sampling Date	Ext	traction / Pr	reparation			Analys	sis	
		Preparation Date	Holding Rec	g Times Actual	Eval	Analysis Date	Holding Rec	g Times Actual	Eval
ulometric									
AOX	03-Oct-2022					14-Oct-2022	180 days	12 days	✓
ulometric									
107	00.0.4.00==								
AOX	03-Oct-2022					14-Oct-2022	180 days	12 days	✓
E559-L	03-Oct-2022					11-Oct-2022	28 days	8 days	✓
								1	
E559-L	03-Oct-2022					11-Oct-2022	28 days	8 days	✓
								1	
E566	03-Oct-2022					06-Oct-2022	28 days	3 days	✓
E562	03-Oct-2022	10-Oct-2022				10-Oct-2022	28 days	7 days	✓
	AOX ulometric AOX E559-L E566	AOX 03-Oct-2022 ulometric AOX 03-Oct-2022 E559-L 03-Oct-2022 E566 03-Oct-2022	Preparation Date	Preparation Date Holding Rec	Method Sampling Date Extraction / Preparation Preparation Date Rec Actual	Method Sampling Date Extraction / Preparation Holding Times Rec Actual Eval Eval Eval ulometric AOX 03-Oct-2022 AOX 03-Oct-2022 E559-L 03-Oct-2022 E559-L 03-Oct-2022 E566 03-Oct-2022	Method Sampling Date Extraction / Preparation Preparation Date Rec Actual Analysis Date	Method Sampling Date Extraction / Preparation Holding Times Eval Analysis Date Holding Rec Actual	Preparation Date Holding Times Rec Actual Analysis Date Holding Times Rec Actual

Page : 5 of 19

Work Order : EO2208443 Amendment 1

Client : Clean Harbors Environmental Services, Inc.

Matrix: Water					Ev	raluation: 🗴 =	Holding time exce	edance ; 🔻	/ = Within	Holding Tin
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	sis	
Container / Client Sample ID(s)			Preparation Date	Holding Rec	g Times Actual	Eval	Analysis Date	Holding Rec	7 Times Actual	Eval
Aggregate Organics : Phenols (4AAP) in Water by Colorimetry										
Amber glass total (sulfuric acid) Pond C	E562	03-Oct-2022	10-Oct-2022				10-Oct-2022	28 days	7 days	4
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid) Pond B	E298	03-Oct-2022	12-Oct-2022				12-Oct-2022	28 days	9 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid) Pond C	E298	03-Oct-2022	12-Oct-2022				12-Oct-2022	28 days	9 days	✓
Anions and Nutrients : Chloride in Water by IC										
HDPE Pond B	E235.Cl	03-Oct-2022	05-Oct-2022				05-Oct-2022	28 days	3 days	✓
Anions and Nutrients : Chloride in Water by IC										
HDPE Pond C	E235.CI	03-Oct-2022	05-Oct-2022				05-Oct-2022	28 days	3 days	√
Anions and Nutrients : Fluoride in Water by IC										
HDPE Pond B	E235.F	03-Oct-2022	05-Oct-2022				05-Oct-2022	28 days	3 days	✓
Anions and Nutrients : Fluoride in Water by IC										
HDPE Pond C	E235.F	03-Oct-2022	05-Oct-2022				05-Oct-2022	28 days	3 days	✓
Anions and Nutrients : Nitrate in Water by IC										
HDPE Pond B	E235.NO3	03-Oct-2022	05-Oct-2022				05-Oct-2022	3 days	3 days	✓
Anions and Nutrients : Nitrate in Water by IC										
HDPE Pond C	E235.NO3	03-Oct-2022	05-Oct-2022				05-Oct-2022	3 days	3 days	✓

Page : 6 of 19

Work Order : EO2208443 Amendment 1

Client : Clean Harbors Environmental Services, Inc.

Matrix: Water					Ev	aluation: 🗴 =	Holding time exce	edance ; 🔻	= Within	Holding Tin
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation Date	Holding Rec	g Times Actual	Eval	Analysis Date	Holding Rec	Times Actual	Eval
Anions and Nutrients : Nitrite in Water by IC			Date						7 1010.0	
HDPE Pond B	E235.NO2	03-Oct-2022	05-Oct-2022				05-Oct-2022	3 days	3 days	✓
Anions and Nutrients : Nitrite in Water by IC										
HDPE Pond C	E235.NO2	03-Oct-2022	05-Oct-2022				05-Oct-2022	3 days	3 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE Pond B	E235.SO4	03-Oct-2022	05-Oct-2022				05-Oct-2022	28 days	3 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE Pond C	E235.SO4	03-Oct-2022	05-Oct-2022				05-Oct-2022	28 days	3 days	✓
Anions and Nutrients : Total Dissolved Phosphorus by Colourimetry (0.001 mg/L)										
Amber glass dissolved (sulfuric acid) Pond B	E375-U	03-Oct-2022	10-Oct-2022				14-Oct-2022	28 days	12 days	✓
Anions and Nutrients : Total Dissolved Phosphorus by Colourimetry (0.001 mg/L)										
Amber glass dissolved (sulfuric acid) Pond C	E375-U	03-Oct-2022	10-Oct-2022				14-Oct-2022	28 days	12 days	✓
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid) Pond B	E318	03-Oct-2022	19-Oct-2022				20-Oct-2022	28 days	18 days	✓
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid) Pond C	E318	03-Oct-2022	19-Oct-2022				20-Oct-2022	28 days	18 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.001 mg/L)										
Amber glass total (sulfuric acid) Pond B	E372-S	03-Oct-2022	10-Oct-2022				13-Oct-2022	28 days	11 days	✓

Page : 7 of 19

Work Order : EO2208443 Amendment 1

Client : Clean Harbors Environmental Services, Inc.

Matrix: Water					Ev	aluation: 🗴 =	Holding time exce	edance ; 🔻	= Within	Holding Tir
Analyte Group	Method	Sampling Date	Ext	traction / Pr	reparation		Analysis			
Container / Client Sample ID(s)			Preparation Date	Holding Rec	g Times Actual	Eval	Analysis Date	Holding Rec	Times Actual	Eval
Anions and Nutrients : Total Phosphorus by Colourimetry (0.001 mg/L)										
Amber glass total (sulfuric acid) Pond C	E372-S	03-Oct-2022	10-Oct-2022				13-Oct-2022	28 days	11 days	✓
Bioassays : Survival/LC50 Rainbow Trout (96 hours)										
LDPE carboy Pond C	TRT-LC50-96	03-Oct-2022					14-Oct-2022	5 days	12 days	x EHT
Chlorinated Phenolics : Phenolics (Eastern Canada List with Nitro-Phenols) by Go	C-MS									
Amber glass/Teflon lined cap Pond B	E651C	03-Oct-2022	06-Oct-2022	14 days	4 days	✓	07-Oct-2022	40 days	1 days	✓
Chlorinated Phenolics : Phenolics (Eastern Canada List with Nitro-Phenols) by Go	C-MS									
Amber glass/Teflon lined cap Pond C	E651C	03-Oct-2022	06-Oct-2022	14 days	4 days	✓	07-Oct-2022	40 days	1 days	✓
Cyanides : WAD Cyanide										
UV inhibited HDPE - total (lab preserved) Pond B	E336	03-Oct-2022	05-Oct-2022	0.02 hrs	41 hrs	* EHT	05-Oct-2022	-21.28 hrs	0.02 hrs	* EHT
Cyanides : WAD Cyanide										
UV inhibited HDPE - total (lab preserved) Pond C	E336	03-Oct-2022	05-Oct-2022	0.02 hrs	41 hrs	x EHT	05-Oct-2022	-21.28 hrs	0.02 hrs	* EHT
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid) Pond B	E421	03-Oct-2022	11-Oct-2022				12-Oct-2022	180 days	10 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid) Pond C	E421	03-Oct-2022	11-Oct-2022				12-Oct-2022	180 days	10 days	✓
Hydrocarbons : CCME PHC - F1 by Headspace GC-FID										
Glass vial (sodium bisulfate) Pond B	E581.F1	03-Oct-2022	19-Oct-2022				19-Oct-2022	14 days	17 days	* EHT

Page : 8 of 19

Work Order : EO2208443 Amendment 1

Client : Clean Harbors Environmental Services, Inc.

Matrix: Water					Εν	⁄aluation: ≭ =	Holding time exce	edance ; 🕦	= Within	Holding Tin
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analysis		
Container / Client Sample ID(s)			Preparation Date	Holding Rec	g Times Actual	Eval	Analysis Date	Holding Rec	Times Actual	Eval
Hydrocarbons : CCME PHC - F1 by Headspace GC-FID										
Glass vial (sodium bisulfate) Pond C	E581.F1	03-Oct-2022	19-Oct-2022				19-Oct-2022	14 days	17 days	x EHT
Hydrocarbons : CCME PHCs - F2-F4 by GC-FID										
Amber glass/Teflon lined cap (sodium bisulfate) Pond B	E601	03-Oct-2022	19-Oct-2022	14 days	17 days	* EHT	19-Oct-2022	40 days	0 days	✓
Hydrocarbons : CCME PHCs - F2-F4 by GC-FID										
Amber glass/Teflon lined cap (sodium bisulfate) Pond C	E601	03-Oct-2022	19-Oct-2022	14 days	17 days	* EHT	19-Oct-2022	40 days	0 days	✓
Non-Chlorinated Phenolics : Phenolics (Eastern Canada List with Nitro-Phenols) I	y GC-MS									
Amber glass/Teflon lined cap Pond B	E651C	03-Oct-2022	06-Oct-2022				07-Oct-2022			
Non-Chlorinated Phenolics : Phenolics (Eastern Canada List with Nitro-Phenols) I	y GC-MS									
Amber glass/Teflon lined cap Pond C	E651C	03-Oct-2022	06-Oct-2022				07-Oct-2022			
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Leve	el)									
Amber glass dissolved (sulfuric acid) Pond B	E358-L	03-Oct-2022	07-Oct-2022				07-Oct-2022	28 days	5 days	√
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Levi	el)									
Amber glass dissolved (sulfuric acid) Pond C	E358-L	03-Oct-2022	07-Oct-2022				07-Oct-2022	28 days	5 days	√
Physical Tests : Alkalinity Species by Titration										
HDPE Pond B	E290	03-Oct-2022	05-Oct-2022				05-Oct-2022	14 days	3 days	✓
Physical Tests : Alkalinity Species by Titration										
HDPE Pond C	E290	03-Oct-2022	05-Oct-2022				05-Oct-2022	14 days	3 days	✓

Page : 9 of 19

Work Order : EO2208443 Amendment 1

Client : Clean Harbors Environmental Services, Inc.

atrix: Water						aluation. * -	Holding time exce			i Holding 11
Analyte Group	Method	Sampling Date	Extraction / Preparation				Analysis			
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : Conductivity in Water										
HDPE										
Pond B	E100	03-Oct-2022	05-Oct-2022				05-Oct-2022	28 days	3 days	✓
Physical Tests : Conductivity in Water										
HDPE										
Pond C	E100	03-Oct-2022	05-Oct-2022				05-Oct-2022	28 days	3 days	1
Physical Tests : pH by Meter										
HDPE							1			
Pond B	E108	03-Oct-2022	05-Oct-2022				05-Oct-2022	0.25	0.48	x
								hrs	hrs	EHTR-F
Physical Tests : pH by Meter										
HDPE							<u> </u>			
Pond C	E108	03-Oct-2022	05-Oct-2022				05-Oct-2022	0.25	0.48	*
1 old o	2.00	00 001 2022	00 001 2022				00 000 2022	hrs	hrs	EHTR-I
								1113	1113	
Physical Tests : TDS by Gravimetry				T	1 1					
HDPE	E162	03-Oct-2022					06-Oct-2022	7 days	4 days	1
Pond B	E102	03-Oct-2022					06-Oct-2022	7 days	4 days	,
Physical Tests : TDS by Gravimetry										
HDPE										
Pond C	E162	03-Oct-2022					06-Oct-2022	7 days	4 days	✓
Physical Tests : TSS by Gravimetry										
HDPE										
Pond B	E160	03-Oct-2022					05-Oct-2022	7 days	3 days	✓
Physical Tests : TSS by Gravimetry										
HDPE										
Pond C	E160	03-Oct-2022					05-Oct-2022	7 days	3 days	✓
Polychlorinated Biphenyls : PCB Aroclors by GC-ECD										
Amber glass/Teflon lined cap										
Pond B	E685	03-Oct-2022	05-Oct-2022				06-Oct-2022	40 days	1 days	1
· =	1							,0	,5	

Page : 10 of 19

Work Order : EO2208443 Amendment 1

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B and C Oct 3

Matrix: Water					Ev	/aluation: × =	Holding time exce	edance ; 🔻	/ = Within	Holding Tim
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation		Analysis			
Container / Client Sample ID(s)			Preparation Date	Holding Rec	Times Actual	Eval	Analysis Date	Holding Rec	7 Times Actual	Eval
Polychlorinated Biphenyls : PCB Aroclors by GC-ECD										
Amber glass/Teflon lined cap Pond C	E685	03-Oct-2022	05-Oct-2022				06-Oct-2022	40 days	1 days	✓
Speciated Metals : Dissolved Hexavalent Chromium (Cr VI) by IC										
HDPE Pond B	E532A	03-Oct-2022					06-Oct-2022	0 hrs	84 hrs	* EHT
Speciated Metals : Dissolved Hexavalent Chromium (Cr VI) by IC										
HDPE Pond C	E532A	03-Oct-2022					06-Oct-2022	0 hrs	84 hrs	* EHT
Total Metals : Total Mercury in Water by CVAAS										
Glass vial total (hydrochloric acid) Pond B	E508	03-Oct-2022	06-Oct-2022				06-Oct-2022	28 days	3 days	✓
Total Metals : Total Mercury in Water by CVAAS										
Glass vial total (hydrochloric acid) Pond C	E508	03-Oct-2022	06-Oct-2022				06-Oct-2022	28 days	3 days	✓
Total Metals : Total metals in Water by CRC ICPMS										
HDPE total (nitric acid) Pond B	E420	03-Oct-2022	11-Oct-2022				12-Oct-2022	180 days	10 days	✓
Total Metals : Total metals in Water by CRC ICPMS										
HDPE total (nitric acid) Pond C	E420	03-Oct-2022	11-Oct-2022				12-Oct-2022	180 days	10 days	4
Volatile Organic Compounds : BTEX by Headspace GC-MS										
Glass vial (sodium bisulfate) Pond B	E611A	03-Oct-2022	19-Oct-2022				19-Oct-2022	14 days	17 days	* EHT
Volatile Organic Compounds : BTEX by Headspace GC-MS										
Glass vial (sodium bisulfate) Pond C	E611A	03-Oct-2022	19-Oct-2022				19-Oct-2022	14 days	17 days	* EHT

Legend & Qualifier Definitions

Page : 11 of 19

Work Order : EO2208443 Amendment 1

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B and C Oct 3

EHT: Exceeded ALS recommended hold time prior to analysis.

Rec. HT: ALS recommended hold time (see units).

Page : 12 of 19

Work Order : EO2208443 Amendment 1

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B and C Oct 3

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Water Quality Control Sample Type		Lvaluatio			pecification; ✓ = QC frequency within spec			
	Method	QC Lot #	QC	ount Regular	Actual	Frequency (%) Expected) Evaluation	
Analytical Methods	Metriod	QC Lot #	40	Regulai	Actual	Expected	Lvaluation	
Laboratory Duplicates (DUP)		004705		00	I 50	5.0		
Ammonia by Fluorescence	E298	691785	1	20	5.0	5.0	√	
BTEX by Headspace GC-MS	E611A	703933	1	2	50.0	5.0	✓	
CCME PHC - F1 by Headspace GC-FID	E581.F1	703934	1	2	50.0	5.0	✓	
Chemical Oxygen Demand by Colourimetry (Low Level)	E559-L	689766	1	20	5.0	5.0	✓	
Chloride in Water by IC	E235.CI	682269	1	19	5.2	5.0	✓	
Conductivity in Water	E100	682036	1	14	7.1	5.0	✓	
Dissolved Hexavalent Chromium (Cr VI) by IC	E532A	683703	1	18	5.5	5.0	✓	
Dissolved Metals in Water by CRC ICPMS	E421	689921	1	20	5.0	5.0	✓	
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	686272	1	20	5.0	5.0	✓	
Fluoride in Water by IC	E235.F	682273	1	19	5.2	5.0	✓	
Nitrate in Water by IC	E235.NO3	682271	1	19	5.2	5.0	✓	
Nitrite in Water by IC	E235.NO2	682272	1	19	5.2	5.0	✓	
pH by Meter	E108	682037	1	13	7.6	5.0	✓	
Phenols (4AAP) in Water by Colorimetry	E562	687934	1	20	5.0	5.0	✓	
Sulfate in Water by IC	E235.SO4	682270	1	20	5.0	5.0	✓	
TDS by Gravimetry	E162	683794	1	20	5.0	5.0	✓	
Total Dissolved Phosphorus by Colourimetry (0.001 mg/L)	E375-U	688347	1	14	7.1	5.0	✓	
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	702163	1	20	5.0	5.0	1	
Total Mercury in Water by CVAAS	E508	683187	1	20	5.0	5.0	1	
Total metals in Water by CRC ICPMS	E420	689839	1	5	20.0	5.0	1	
Total Phosphorus by Colourimetry (0.001 mg/L)	E372-S	688839	1	20	5.0	5.0	1	
TSS by Gravimetry	E160	681561	1	20	5.0	5.0	1	
WAD Cyanide	E336	681970	1	7	14.2	5.0	1	
Laboratory Control Samples (LCS)							_	
Ammonia by Fluorescence	E298	691785	1	20	5.0	5.0	1	
BTEX by Headspace GC-MS	E611A	703933	1	2	50.0	5.0	1	
CCME PHC - F1 by Headspace GC-FID	E581.F1	703934	1	2	50.0	5.0	1	
CCME PHCs - F2-F4 by GC-FID	E601	703963	1	20	5.0	5.0	1	
Chemical Oxygen Demand by Colourimetry (Low Level)	E559-L	689766	1	20	5.0	5.0	√	
Chloride in Water by IC	E235.Cl	682269	1	19	5.2	5.0	√	
Conductivity in Water	E100	682036	1	14	7.1	5.0	√	
Dissolved Hexavalent Chromium (Cr VI) by IC	E532A	683703	1	18	5.5	5.0	✓	
Dissolved Metals in Water by CRC ICPMS	E421	689921	1	20	5.0	5.0	√	
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	686272	1	20	5.0	5.0	√	
Fluoride in Water by IC	E235.F	682273	1	19	5.2	5.0	√	
Nitrate in Water by IC	E235.NO3	682271	1	19	5.2	5.0	✓	

Page : 13 of 19

Work Order : EO2208443 Amendment 1

Client : Clean Harbors Environmental Services, Inc.

Matrix: Water	Evaluation: × = QC frequency outside specification; ✓ = QC frequency within Count Frequency (%)						
Quality Control Sample Type				ount			
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Control Samples (LCS) - Continued							
Nitrite in Water by IC	E235.NO2	682272	1	19	5.2	5.0	✓
PCB Aroclors by GC-ECD	E685	682338	1	3	33.3	5.0	✓
pH by Meter	E108	682037	1	13	7.6	5.0	✓
Phenolics (Eastern Canada List with Nitro-Phenols) by GC-MS	E651C	683686	1	3	33.3	5.0	✓
Phenols (4AAP) in Water by Colorimetry	E562	687934	1	20	5.0	5.0	✓
Sulfate in Water by IC	E235.SO4	682270	1	20	5.0	5.0	✓
TDS by Gravimetry	E162	683794	1	20	5.0	5.0	✓
Total Dissolved Phosphorus by Colourimetry (0.001 mg/L)	E375-U	688347	1	14	7.1	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	702163	1	20	5.0	5.0	✓
Total Mercury in Water by CVAAS	E508	683187	1	20	5.0	5.0	✓
Total metals in Water by CRC ICPMS	E420	689839	1	5	20.0	5.0	✓
Total Phosphorus by Colourimetry (0.001 mg/L)	E372-S	688839	1	20	5.0	5.0	✓
TSS by Gravimetry	E160	681561	1	20	5.0	5.0	✓
WAD Cyanide	E336	681970	1	7	14.2	5.0	✓
Method Blanks (MB)							
Ammonia by Fluorescence	E298	691785	1	20	5.0	5.0	1
BTEX by Headspace GC-MS	E611A	703933	1	2	50.0	5.0	<u> </u>
CCME PHC - F1 by Headspace GC-FID	E581.F1	703934	1	2	50.0	5.0	√
CCME PHCs - F2-F4 by GC-FID	E601	703963	1	20	5.0	5.0	
Chemical Oxygen Demand by Colourimetry (Low Level)	E559-L	689766	1	20	5.0	5.0	√
Chloride in Water by IC	E235.CI	682269	1	19	5.2	5.0	1
Conductivity in Water	E100	682036	1	14	7.1	5.0	√
Dissolved Hexavalent Chromium (Cr VI) by IC	E532A	683703	1	18	5.5	5.0	√
Dissolved Metals in Water by CRC ICPMS	E421	689921	1	20	5.0	5.0	√
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	686272	1	20	5.0	5.0	√
Fluoride in Water by IC	E235.F	682273	1	19	5.2	5.0	1
Nitrate in Water by IC	E235.NO3	682271	1	19	5.2	5.0	√
Nitrite in Water by IC	E235.NO2	682272	1	19	5.2	5.0	✓
PCB Aroclors by GC-ECD	E685	682338	1	3	33.3	5.0	√
Phenolics (Eastern Canada List with Nitro-Phenols) by GC-MS	E651C	683686	1	3	33.3	5.0	✓
Phenols (4AAP) in Water by Colorimetry	E562	687934	1	20	5.0	5.0	1
Sulfate in Water by IC	E235.SO4	682270	1	20	5.0	5.0	✓
TDS by Gravimetry	E162	683794	1	20	5.0	5.0	<u>√</u>
Total Dissolved Phosphorus by Colourimetry (0.001 mg/L)	E375-U	688347	1	14	7.1	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	702163	1	20	5.0	5.0	<u> </u>
Total Mercury in Water by CVAAS	E508	683187	1	20	5.0	5.0	<u> </u>
Total metals in Water by CRC ICPMS	E420	689839	1	5	20.0	5.0	<u> </u>
Total Phosphorus by Colourimetry (0.001 mg/L)	E372-S	688839	1	20	5.0	5.0	<u> </u>
TSS by Gravimetry	E160	681561	1	20	5.0	5.0	

Page : 14 of 19

Work Order : EO2208443 Amendment 1

Client : Clean Harbors Environmental Services, Inc.

Matrix: Water	Evaluation: × = QC frequency outside specification; ✓ = QC frequency within specification							
Quality Control Sample Type			Co	ount	Frequency (%)			
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation	
Method Blanks (MB) - Continued								
WAD Cyanide	E336	681970	1	7	14.2	5.0	✓	
Matrix Spikes (MS)								
Ammonia by Fluorescence	E298	691785	1	20	5.0	5.0	✓	
BTEX by Headspace GC-MS	E611A	703933	1	2	50.0	5.0	✓	
Chemical Oxygen Demand by Colourimetry (Low Level)	E559-L	689766	1	20	5.0	5.0	✓	
Chloride in Water by IC	E235.CI	682269	1	19	5.2	5.0	✓	
Dissolved Hexavalent Chromium (Cr VI) by IC	E532A	683703	1	18	5.5	5.0	✓	
Dissolved Metals in Water by CRC ICPMS	E421	689921	1	20	5.0	5.0	✓	
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	686272	1	20	5.0	5.0	✓	
Fluoride in Water by IC	E235.F	682273	1	19	5.2	5.0	✓	
Nitrate in Water by IC	E235.NO3	682271	1	19	5.2	5.0	✓	
Nitrite in Water by IC	E235.NO2	682272	1	19	5.2	5.0	✓	
Phenols (4AAP) in Water by Colorimetry	E562	687934	1	20	5.0	5.0	✓	
Sulfate in Water by IC	E235.SO4	682270	1	20	5.0	5.0	✓	
Total Dissolved Phosphorus by Colourimetry (0.001 mg/L)	E375-U	688347	1	14	7.1	5.0	✓	
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	702163	1	20	5.0	5.0	✓	
Total Mercury in Water by CVAAS	E508	683187	1	20	5.0	5.0	✓	
Total metals in Water by CRC ICPMS	E420	689839	1	5	20.0	5.0	✓	
Total Phosphorus by Colourimetry (0.001 mg/L)	E372-S	688839	1	20	5.0	5.0	✓	
WAD Cyanide	E336	681970	1	7	14.2	5.0	✓	

Page : 15 of 19

Work Order : EO2208443 Amendment 1

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B and C Oct 3

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions				
Adsorbable Organic Halides (AOX) by Adsortption and Coulometric Titration	AOX	Water	EPA 1650C	Organic halide in water is determined by adsorption onto granular activated carbon (GAC), washing the adsorbed sample and GAC to remove inorganic halide, combustion				
·	Kelso - Environmental -			of the sample and GAC to form the hydrogen halide, and titration of the hydrogen halide				
	1317 South 13th			with a micro-coulometer.				
	Avenue Kelso							
	Washington DC (District							
	of Columbia) United							
	States 98626							
Conductivity in Water	E100	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is measured by immersion of a conductivity cell with platinum electrodes into a water				
	Edmonton -			sample. Conductivity measurements are temperature-compensated to 25°C.				
	Environmental							
pH by Meter	E108	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally 20 ± 5°C). For high accuracy test results,				
	Edmonton -			pH should be measured in the field within the recommended 15 minute hold time.				
	Environmental							
TSS by Gravimetry	E160	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass filter, following by drying of the filter at 104 ± 1°C, with gravimetric measurement of				
	Edmonton -			filtered solids. Samples containing very high dissolved solid content (i.e. seawaters,				
	Environmental			brackish waters) may produce a positive bias by this method. Alternate analysis				
				methods are available for these types of samples.				
TDS by Gravimetry	E162	Water	APHA 2540 C (mod)	Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, with evaporation of the filtrate at 180 ± 2°C for 16 hours or to constant weight,				
	Edmonton -			with gravimetric measurement of the residue.				
	Environmental							
Chloride in Water by IC	E235.CI	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.				
	Edmonton -							
	Environmental							
Fluoride in Water by IC	E235.F	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.				
	Edmonton -							
	Environmental							
Nitrite in Water by IC	E235.NO2	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.				
	Edmonton -							
	Environmental							

Page : 16 of 19

Work Order : EO2208443 Amendment 1

Client : Clean Harbors Environmental Services, Inc.

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Nitrate in Water by IC	E235.NO3	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
	Edmonton -			dotoston.
	Environmental			
Sulfate in Water by IC	E235.SO4	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
	Edmonton -			
	Environmental			
Alkalinity Species by Titration	E290	Water	APHA 2320 B (mod)	Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total
	Edmonton -			alkalinity values.
	Environmental			
Ammonia by Fluorescence	E298	Water	Method Fialab 100, 2018	Ammonia in water is determined by automated continuous flow analysis with membrane diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde).
	Edmonton -			This method is approved under US EPA 40 CFR Part 136 (May 2021)
	Environmental			
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	Water	Method Fialab 100, 2018	TKN in water is determined by automated continuous flow analysis with membrane diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde).
	Edmonton -			This method is approved under US EPA 40 CFR Part 136 (May 2021).
	Environmental			
WAD Cyanide	E336	Water	APHA 4500-CN I (mod)	Weak Acid Dissociable (WAD) cyanide is determined by Continuous Flow Analyzer (CFA) with in-line distillation followed by colourmetric analysis.
	Waterloo -			
	Environmental			
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	Water	APHA 5310 B (mod)	Dissolved Organic Carbon (Non-Purgeable), also known as NPOC (dissolved), is a direct measurement of DOC after a filtered (0.45 micron) sample has been acidified and
	Edmonton -			purged to remove inorganic carbon (IC). Analysis is by high temperature combustion
	Environmental			with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of DC (dissolved carbon) is
				comprised of IC (which is common), this method is more accurate and more reliable than
				the DOC by subtraction method (i.e. DC minus DIC).
Total Phosphorus by Colourimetry (0.001 mg/L)	E372-S	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically after heated persulfate digestion of the sample.
	Edmonton -			
	Environmental			
Total Dissolved Phosphorus by Colourimetry	E375-U	Water	APHA 4500-P E (mod).	Total Dissolved Phosphorus is determined colourmetrically after filtration through a 0.45
(0.001 mg/L)				micron filter followed by heated persulfate digestion of the sample.
	Edmonton -			
	Environmental			
Total metals in Water by CRC ICPMS	E420	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS.
	Edmonton -			
	Environmental			Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

Page : 17 of 19

Work Order : EO2208443 Amendment 1

Client : Clean Harbors Environmental Services, Inc.

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Metals in Water by CRC ICPMS	E421	Water	APHA 3030B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS.
	Edmonton -			
	Environmental			Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered
				by this method.
Total Mercury in Water by CVAAS	E508	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction
				with stannous chloride, and analyzed by CVAAS
	Edmonton -			
Disashus di Laurandant Charasinas (Ca VII) hu IC	Environmental	10/-4		
Dissolved Hexavalent Chromium (Cr VI) by IC	E532A	Water	APHA 3500-Cr C (Ion	Hexavalent Chromium is measured by Ion chromatography-Post column reaction and UV
	Edmonton -		Chromatography)	detection.
	Environmental			sample pretreatment involved field or lab filtration following by sample preservation.
Chemical Oxygen Demand by Colourimetry	E559-L	Water	APHA 5220 D (mod)	Sample pretreatment involved field of lab littration following by sample preservation. Samples are analyzed using the closed reflux colourimetric method.
(Low Level)	L333-L	Water	7 ti 117 t ozzo z (mod)	cumpled and analyzed doing the deeds rollar delegation in allowed.
(Low Level)	Edmonton -			
	Environmental			
Phenols (4AAP) in Water by Colorimetry	E562	Water	EPA 9066	This automated method is based on the distillation of phenol and subsequent reaction of the distillate with alkaline ferricyanide (K3Fe(CN)6) and 4-amino-antipyrine (4-AAP) to
	Edmonton -			form a red complex which is measured colorimetrically.
	Environmental			Torin a red complex which is measured coloninethically.
Oil & Grease by Visible Sheen	E566	Water	Alberta Energy	Use a qualitivative visual observation of rainbow sheen to determine the presence or
			Regulator, Drilling	absence of oil and grease on water.
	Edmonton -		waste Management,	
	Environmental		Directive 050, July	
			2016	
CCME PHC - F1 by Headspace GC-FID	E581.F1	Water	CCME PHC in Soil - Tier	CCME Fraction 1 (F1) is analyzed by static headspace GC-FID. Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler, causing
	Edmonton -			VOCs to partition between the aqueous phase and the headspace in accordance with
	Environmental			Henry's law.
CCME PHCs - F2-F4 by GC-FID	E601	Water	CCME PHC in Soil - Tier	Sample extracts are analyzed by GC-FID for CCME hydrocarbon fractions (F2-F4).
	Edmonton -			
	Environmental			
BTEX by Headspace GC-MS	E611A	Water	EPA 8260D (mod)	Volatile Organic Compounds (VOCs) are analyzed by static headspace GC-MS. Samples are prepared in headspace vials and are heated and agitated on the
	Edmonton -			headspace autosampler, causing VOCs to partition between the aqueous phase and
	Environmental			the headspace in accordance with Henry's law.
Phenolics (Eastern Canada List	E651C	Water	EPA 8270E (mod)	Phenolics are analyzed by GC-MS.
with Nitro-Phenols) by GC-MS			, ,	
, ,	Waterloo -			
	Environmental			
PCB Aroclors by GC-ECD	E685	Water	EPA 8082A (mod)	PCB Aroclors are analyzed by GC-ECD

Page : 18 of 19

Work Order : EO2208443 Amendment 1

Client : Clean Harbors Environmental Services, Inc.

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
	Vancouver -			
	Environmental			
Ion Balance using Dissolved Metals	EC101	Water	APHA 1030E	Cation Sum, Anion Sum, and Ion Balance are calculated based on guidance from APHA
				Standard Methods (1030E Checking Correctness of Analysis). Dissolved species are
	Edmonton -			used where available. Minor ions are included where data is present.
	Environmental			Ion Balance cannot be calculated accurately for waters with very low electrical
				conductivity (EC).
TDS in Water (Calculation)	EC103	Water	APHA 1030E (mod)	Total Dissolved Solids is calculated based on guidance from APHA Standard Methods
				(1030E Checking Correctness of Analysis). Dissolved species are used where
	Edmonton -			available. Minor ions are included where data is present.
Nitrode and Alifeite (as Ali (O desdellar)	Environmental	10/	EDA 000 0	
Nitrate and Nitrite (as N) (Calculation)	EC235.N+N	Water	EPA 300.0	Nitrate and Nitrite (as N) is a calculated parameter. Nitrate and Nitrite (as N) = Nitrite (as
	E 1			N) + Nitrate (as N).
	Edmonton -			
F1-BTEX	Environmental EC580	Water	CCME PHC in Soil - Tier	F1-BTEX is calculated as follows: F1-BTEX = F1 (C6-C10) minus benzene, toluene,
I I-BILX	EC300	Water	1	ethylbenzene and xylenes (BTEX).
	Edmonton -			ethylberizerie and xyleries (b i EX).
	Environmental			
Survival/LC50 Rainbow Trout (96 hours)	TRT-LC50-96	Water	EPS1/RM/13	See attached report.
(11(1-2000-00			
	Bureau Veritas			
	(Edmonton) - 9331 -			
	48th Street Edmonton			
	Alberta Canada T6B			
	2R4			
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
	Edmonton -			
	Environmental			
Digestion for TKN in water	EP318	Water	APHA 4500-Norg D	Samples are digested at high temperature using Sulfuric Acid with Copper catalyst,
			(mod)	which converts organic nitrogen sources to Ammonia, which is then quantified by the
	Edmonton -			analytical method as TKN. This method is unsuitable for samples containing high levels
	Environmental			of nitrate. If nitrate exceeds TKN concentration by ten times or more, results may be
				biased low.
Preparation for Dissolved Organic Carbon for	EP358	Water	APHA 5310 B (mod)	Preparation for Dissolved Organic Carbon
Combustion				
	Edmonton -			
Direction for Table Direct	Environmental	10/	ADUA 4500 B 5 ("	
Digestion for Total Phosphorus in water	EP372	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.
	Edmonton -			
	Environmental			
	1			

Page : 19 of 19

Work Order : EO2208443 Amendment 1

Client : Clean Harbors Environmental Services, Inc.

Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Digestion for Dissolved Phosphorus in water	EP375	Water	APHA 4500-P E (mod).	Samples are filtered through a 0.45 micron membrane filter and then heated with a persulfate digestion reagent.
	Edmonton -			
	Environmental			
Dissolved Metals Water Filtration	EP421	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HNO3.
	Edmonton -			
	Environmental			
VOCs Preparation for Headspace Analysis	EP581	Water	EPA 5021A (mod)	Samples are prepared in headspace vials and are heated and agitated on the headspace autosampler. An aliquot of the headspace is then injected into the
	Edmonton -			GC/MS-FID system.
	Environmental			·
PHCs and PAHs Hexane Extraction	EP601	Water	EPA 3511 (mod)	Petroleum Hydrocarbons (PHCs) and Polycyclic Aromatic Hydrocarbons (PAHs) are extracted using a hexane liquid-liquid extraction.
	Edmonton -			
	Environmental			
Phenolics Extraction	EP651	Water	EPA 3511 (mod)	Phenolics are extracted from acidic aqueous sample using DCM liquid-liquid extraction.
	Waterloo -			
	Environmental			
PCB Aroclors Extraction	EP685	Water	EPA 3510C (mod)	PCBs are extracted using an organic solvent liquid-liquid extraction. The hexane extract
				undergoes one or more of the following clean-up procedures (if required): florisil
	Vancouver -			clean-up, silica gel clean-up, sulphur clean-up and/or sulphuric acid clean-up.
	Environmental			

ALS Canada Ltd.

QUALITY CONTROL REPORT

Work Order : EO2208443

Amendment : 1

Client ; Clean Harbors Environmental Services, Inc.

Contact : Todd Webb

Address : PO Box 390, 50114 Range Road 173

AB Canada T0B4A0

Telephone

Project : Pond B and C Oct 3

PO : 228509 C-O-C number :----

Sampler : TW

780 663 2513 Site : Table 4.3B + Table 4.3E

Quote number : Q82439 / Q82442

No. of samples received : 2
No. of samples analysed : 2

Page : 1 of 17

Laboratory : Edmonton - Environmental

Account Manager : Pamela Toledo

Address : 9450 - 17 Avenue NW

Edmonton, Alberta Canada T6N 1M9

Telephone :+1 780 413 5227

Date Samples Received :03-Oct-2022 15:30

Date Analysis Commenced : 05-Oct-2022

Laboratory Department

Issue Date : 09-Nov-2022 12:36

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives

Position

- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

olgitatorioo	, conton	Euroratory Doparation
Alex Drake	Lab Analyst	Edmonton Inorganics, Edmonton, Alberta
Amanda Powell	Account Manager	Bureau Veritas (Edmonton) External Subcontracting, Edmonton, Alberta
Amanda Powell	Client Service Manager	USA - Kelso Internal Subcontracting, Kelso, Washington DC (District of Columbia)
Angeli Marzan	Lab Analyst	Edmonton Inorganics, Edmonton, Alberta
Austin Wasylyshyn	Lab Analyst	Edmonton Metals, Edmonton, Alberta
Christian Murera	Lab Analyst	Edmonton Organics, Edmonton, Alberta
Dan Nguyen	Team Leader - Inorganics	Edmonton Inorganics, Edmonton, Alberta
Dan Nguyen	Team Leader - Inorganics	Edmonton Metals, Edmonton, Alberta
Daniel Nguyen	Lab Assistant	Edmonton Inorganics, Edmonton, Alberta
Janice Leung	Supervisor - Organics Instrumentation	Vancouver Organics, Burnaby, British Columbia
Jing Liu	Lab Assistant	Edmonton Inorganics, Edmonton, Alberta
Joan Wu	Lab Analyst	Edmonton Metals, Edmonton, Alberta
Jocelyn Kennedy	Department Manager - Semi-Volatile Organics	Waterloo Organics, Waterloo, Ontario
Jon Fisher	Department Manager - Inorganics	Waterloo Inorganics, Waterloo, Ontario

Muzammil Ali Lab Analyst Edmonton Inorganics, Edmonton, Alberta Edmonton Inorganics, Edmonton, Alberta Ping Yeung Team Leader - Inorganics Edmonton Inorganics, Edmonton, Alberta Samantha Mayor Lab Assistant Shruti Mudliar Lab Analyst Edmonton Inorganics, Edmonton, Alberta Sobhithan Pillay Edmonton Inorganics, Edmonton, Alberta Lab Analyst Yan Zhang Edmonton Organics, Edmonton, Alberta

Page : 3 of 17

Work Order : EO2208443 Amendment 1

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B and C Oct 3

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Page : 4 of 17

Work Order: EO2208443 Amendment 1

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B and C Oct 3

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

ub-Matrix: Water							Labora	atory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Physical Tests (QC	Lot: 681561)										
EO2208349-001	Anonymous	solids, total suspended [TSS]		E160	3.0	mg/L	17.2	15.4	1.8	Diff <2x LOR	
Physical Tests (QC	Lot: 682036)										
EO2208443-001	Pond B	conductivity		E100	1.0	μS/cm	1320	1350	1.65%	10%	
Physical Tests (QC	Lot: 682037)										
EO2208443-001	Pond B	pH		E108	0.10	pH units	8.54	8.53	0.117%	3%	
Physical Tests (QC	Lot: 683794)										
EO2208443-001	Pond B	solids, total dissolved [TDS]		E162	20	mg/L	933	907	2.83%	20%	
Anions and Nutrien	ts (QC Lot: 682269)										
EO2208443-002	Pond C	chloride	16887-00-6	E235.CI	0.50	mg/L	72.8	71.5	1.79%	20%	
Anions and Nutrien	ts (QC Lot: 682270)										
EO2208443-002	Pond C	sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	502	488	2.82%	20%	
Anions and Nutrien	ts (QC Lot: 682271)										
EO2208443-002	Pond C	nitrate (as N)	14797-55-8	E235.NO3	0.020	mg/L	<0.020	<0.020	0	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 682272)										
EO2208443-002	Pond C	nitrite (as N)	14797-65-0	E235.NO2	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 682273)										
EO2208443-002	Pond C	fluoride	16984-48-8	E235.F	0.020	mg/L	0.861	0.869	0.925%	20%	
Anions and Nutrien	ts (QC Lot: 688347)										
EO2208132-001	Anonymous	phosphorus, total dissolved	7723-14-0	E375-U	0.0010	mg/L	0.0714	0.0714	0.00%	20%	
Anions and Nutrien	ts (QC Lot: 688839)										
EO2208289-007	Anonymous	phosphorus, total	7723-14-0	E372-S	0.200	mg/L	3.02	3.12	3.00%	20%	
Anions and Nutrien	ts (QC Lot: 691785)										
EO2208331-016	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.0819	0.0847	3.36%	20%	
Anions and Nutrion	ts (QC Lot: 702163)										
EO2208368-002	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	0.601	0.594	1.27%	20%	
Cyanides (QC Lot:	681970)										
TY2202315-001	Anonymous	cyanide, weak acid dissociable		E336	0.0020	mg/L	<0.0020	<0.0020	0	Diff <2x LOR	
Organic / Inorganic	Carbon (QC Lot: 686)										
EO2208443-001	Pond B	carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	18.6	19.0	2.24%	20%	
Total Metals (QC Lo		, 5 , 1 , 2 , 1									

Page : 5 of 17

Work Order: EO2208443 Amendment 1

Client : Clean Harbors Environmental Services, Inc.

Sub-Matrix: Water						Laboratory Duplicate (DUP) Report					
boratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
tal Metals (QC Lo	t: 683187) - continued										
02208347-001	Anonymous	mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	
tal Metals (QC Lo	t: 689839)										
02208409-001	Anonymous	chromium, total	7440-47-3	E420	0.00050	mg/L	0.00128	0.00120	0.00008	Diff <2x LOR	
ssolved Metals (Q	C Lot: 689921)										
02208389-003	Anonymous	aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
		antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00010	<0.00010	0.000005	Diff <2x LOR	
		arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00032	0.00031	0.00001	Diff <2x LOR	
		barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0814	0.0810	0.508%	20%	
		beryllium, dissolved	7440-41-7	E421	0.000020	mg/L	<0.000020	<0.000020	0	Diff <2x LOR	
		bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, dissolved	7440-42-8	E421	0.010	mg/L	0.214	0.214	0.0664%	20%	
		cadmium, dissolved	7440-43-9	E421	0.0000050	mg/L	0.0000207	0.0000241	0.0000033	Diff <2x LOR	
		calcium, dissolved	7440-70-2	E421	0.050	mg/L	126	127	0.940%	20%	
		chromium, dissolved	7440-47-3	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		cobalt, dissolved	7440-48-4	E421	0.00010	mg/L	0.00014	0.00015	0.000002	Diff <2x LOR	
		copper, dissolved	7440-50-8	E421	0.00020	mg/L	0.00300	0.00301	0.115%	20%	
		iron, dissolved	7439-89-6	E421	0.030	mg/L	<0.030	<0.030	0	Diff <2x LOR	
		lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	72.2	70.5	2.31%	20%	
		manganese, dissolved	7439-96-5	E421	0.00500	mg/L	0.00748	0.00761	0.00012	Diff <2x LOR	
		molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.000697	0.000743	6.31%	20%	
		nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.00249	0.00238	0.00011	Diff <2x LOR	
		potassium, dissolved	7440-09-7	E421	0.050	mg/L	2.82	2.84	0.657%	20%	
		selenium, dissolved	7782-49-2	E421	0.000050	mg/L	0.00213	0.00210	1.26%	20%	
		silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, dissolved	7440-23-5	E421	0.050	mg/L	29.2	29.4	0.807%	20%	
		strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.516	0.512	0.664%	20%	
		thallium, dissolved	7440-28-0	E421	0.000010	mg/L	0.000033	0.000032	0.0000009	Diff <2x LOR	
		tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.0137	0.0143	4.29%	20%	
		vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		zinc, dissolved	7440-66-6	E421	0.0010	mg/L	0.0016	0.0014	0.0001	Diff <2x LOR	
		zirconium, dissolved	7440-67-7	E421	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
peciated Metals (Q	C Lot: 683703)										

Page : 6 of 17

Work Order: EO2208443 Amendment 1

Client : Clean Harbors Environmental Services, Inc.

Sub-Matrix: Water	ıb-Matrix: Water					Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Speciated Metals (QC Lot: 683703) - continued											
FC2202434-001	Anonymous	chromium, hexavalent [Cr VI], dissolved	18540-29-9	E532A	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
Aggregate Organics	(QC Lot: 687934)										
RG2201387-010	Anonymous	phenols, total (4AAP)		E562	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
Aggregate Organics	(QC Lot: 689766)										
EO2208443-001	Pond B	chemical oxygen demand [COD]		E559-L	10	mg/L	48	50	2	Diff <2x LOR	
Volatile Organic Co	mpounds (QC Lot: 7039	33)									
EO2208443-001	Pond B	benzene	71-43-2	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		ethylbenzene	100-41-4	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		toluene	108-88-3	E611A	0.50	μg/L	<0.50	<0.50	0	Diff <2x LOR	
		xylene, m+p-	179601-23-1	E611A	0.40	μg/L	<0.40	<0.40	0	Diff <2x LOR	
		xylene, o-	95-47-6	E611A	0.30	μg/L	<0.30	<0.30	0	Diff <2x LOR	
Hydrocarbons (QC	Lot: 703934)										
EO2208443-001	Pond B	F1 (C6-C10)		E581.F1	100	μg/L	<100	<100	0	Diff <2x LOR	

Page : 7 of 17

Work Order: EO2208443 Amendment 1

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B and C Oct 3

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

nalyte	CAS Number Method	LOR	Unit	Result	Qualifier
hysical Tests (QCLot: 681561)					
solids, total suspended [TSS]	E160	3	mg/L	<3.0	
hysical Tests (QCLot: 682036)					
conductivity	E100	1	μS/cm	1.2	
hysical Tests (QCLot: 683794)					
solids, total dissolved [TDS]	E162	10	mg/L	<10	
nions and Nutrients (QCLot: 682269)					
chloride	16887-00-6 E235.CI	0.5	mg/L	<0.50	
nions and Nutrients (QCLot: 682270)					
sulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	<0.30	
nions and Nutrients (QCLot: 682271)					
nitrate (as N)	14797-55-8 E235.NO3	0.02	mg/L	<0.020	
nions and Nutrients (QCLot: 682272)					
nitrite (as N)	14797-65-0 E235.NO2	0.01	mg/L	<0.010	
nions and Nutrients (QCLot: 682273)					
fluoride	16984-48-8 E235.F	0.02	mg/L	<0.020	
nions and Nutrients (QCLot: 688347)					
phosphorus, total dissolved	7723-14-0 E375-U	0.001	mg/L	<0.0010	
nions and Nutrients (QCLot: 688839)					
phosphorus, total	7723-14-0 E372-S	0.001	mg/L	<0.0010	
nions and Nutrients (QCLot: 691785)					
ammonia, total (as N)	7664-41-7 E298	0.005	mg/L	<0.0050	
nions and Nutrients (QCLot: 702163)					
Kjeldahl nitrogen, total [TKN]	E318	0.05	mg/L	<0.050	
yanides (QCLot: 681970)					
cyanide, weak acid dissociable	E336	0.002	mg/L	<0.0020	
rganic / Inorganic Carbon (QCLot: 6862	72)				
carbon, dissolved organic [DOC]	E358-L	0.5	mg/L	<0.50	
otal Metals (QCLot: 683187)					
mercury, total	7439-97-6 E508	0.000005	mg/L	<0.0000050	
otal Metals (QCLot: 689839)					
chromium, total	7440-47-3 E420	0.0005	mg/L	<0.00050	

Page : 8 of 17

Work Order: EO2208443 Amendment 1

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B and C Oct 3

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
issolved Metals (QCLot: 689921) - contin	ued				
aluminum, dissolved	7429-90-5 E421	0.001	mg/L	<0.0010	
antimony, dissolved	7440-36-0 E421	0.0001	mg/L	<0.00010	
arsenic, dissolved	7440-38-2 E421	0.0001	mg/L	<0.00010	
barium, dissolved	7440-39-3 E421	0.0001	mg/L	<0.00010	
beryllium, dissolved	7440-41-7 E421	0.00002	mg/L	<0.000020	
bismuth, dissolved	7440-69-9 E421	0.00005	mg/L	<0.000050	
boron, dissolved	7440-42-8 E421	0.01	mg/L	<0.010	
cadmium, dissolved	7440-43-9 E421	0.000005	mg/L	<0.0000050	
calcium, dissolved	7440-70-2 E421	0.05	mg/L	<0.050	
chromium, dissolved	7440-47-3 E421	0.0005	mg/L	<0.00050	
cobalt, dissolved	7440-48-4 E421	0.0001	mg/L	<0.00010	
copper, dissolved	7440-50-8 E421	0.0002	mg/L	<0.00020	
iron, dissolved	7439-89-6 E421	0.01	mg/L	<0.010	
lead, dissolved	7439-92-1 E421	0.00005	mg/L	<0.000050	
magnesium, dissolved	7439-95-4 E421	0.005	mg/L	<0.0050	
manganese, dissolved	7439-96-5 E421	0.0001	mg/L	<0.00010	
molybdenum, dissolved	7439-98-7 E421	0.00005	mg/L	<0.000050	
nickel, dissolved	7440-02-0 E421	0.0005	mg/L	<0.00050	
potassium, dissolved	7440-09-7 E421	0.05	mg/L	<0.050	
selenium, dissolved	7782-49-2 E421	0.00005	mg/L	<0.000050	
silver, dissolved	7440-22-4 E421	0.00001	mg/L	<0.000010	
sodium, dissolved	7440-23-5 E421	0.05	mg/L	<0.050	
strontium, dissolved	7440-24-6 E421	0.0002	mg/L	<0.00020	
thallium, dissolved	7440-28-0 E421	0.00001	mg/L	<0.000010	
uranium, dissolved	7440-61-1 E421	0.00001	mg/L	<0.000010	
vanadium, dissolved	7440-62-2 E421	0.0005	mg/L	<0.00050	
zinc, dissolved	7440-66-6 E421	0.001	mg/L	<0.0010	
zirconium, dissolved	7440-67-7 E421	0.0002	mg/L	<0.00020	
peciated Metals (QCLot: 683703)					
chromium, hexavalent [Cr VI], dissolved	18540-29-9 E532A	0.0005	mg/L	<0.00050	
ggregate Organics (QCLot: 687934)					
phenols, total (4AAP)	E562	0.001	mg/L	<0.0010	
ggregate Organics (QCLot: 689766)					
chemical oxygen demand [COD]	E559-L	10	mg/L	<10	

Page : 9 of 17

Work Order: EO2208443 Amendment 1

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B and C Oct 3

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Volatile Organic Compounds (QCLot:						
benzene	71-43-2	E611A	0.5	μg/L	<0.50	
ethylbenzene	100-41-4	E611A	0.5	μg/L	<0.50	
toluene	108-88-3	E611A	0.5	μg/L	<0.50	
xylene, m+p-	179601-23-1	E611A	0.4	μg/L	<0.40	
xylene, o-	95-47-6	E611A	0.3	μg/L	<0.30	
Hydrocarbons (QCLot: 703934)						
F1 (C6-C10)		E581.F1	100	μg/L	<100	
Hydrocarbons (QCLot: 703963)						
F2 (C10-C16)		E601	100	μg/L	<100	
Chlorinated Phenolics (QCLot: 683686	5)					
chlorophenol, 2-	95-57-8	E651C	0.3	μg/L	<0.30	
dichlorophenol, 2,4-	120-83-2	E651C	0.2	μg/L	<0.20	
dichlorophenol, 2,6-	87-65-0	E651C	0.2	μg/L	<0.20	
methylphenol, 4-chloro-3-	59-50-7	E651C	0.5	μg/L	<0.50	
pentachlorophenol [PCP]	87-86-5	E651C	0.5	μg/L	<0.50	
tetrachlorophenol, 2,3,4,5-	4901-51-3	E651C	0.5	μg/L	<0.50	
tetrachlorophenol, 2,3,4,6-	58-90-2	E651C	0.5	μg/L	<0.50	
tetrachlorophenol, 2,3,5,6-	935-95-5	E651C	0.5	μg/L	<0.50	
trichlorophenol, 2,3,4-	15950-66-0	E651C	0.5	μg/L	<0.50	
trichlorophenol, 2,3,5-	933-78-8	E651C	0.5	μg/L	<0.50	
trichlorophenol, 2,4,5-	95-95-4	E651C	0.5	μg/L	<0.50	
trichlorophenol, 2,4,6-	88-06-2	E651C	0.5	μg/L	<0.50	
Non-Chlorinated Phenolics (QCLot: 68	33686)					
dimethylphenol, 2,4-	105-67-9	E651C	0.5	μg/L	<0.50	
dinitrophenol, 2,4-	51-28-5	E651C	1	μg/L	<1.0	
methylphenol, 2-	95-48-7	E651C	0.5	μg/L	<0.50	
methylphenol, 3+4-		E651C	0.5	μg/L	<0.50	
nitrophenol, 2-	88-75-5	E651C	0.5	μg/L	<0.50	
nitrophenol, 4-	100-02-7	E651C	0.5	μg/L	<0.50	
phenol	108-95-2	E651C	0.5	μg/L	<0.50	
phenol, 2-methyl-4,6-dinitro- [DNOC]	534-52-1	E651C	2	μg/L	<2.0	
Polychlorinated Biphenyls (QCLot: 68)	2338)					
Aroclor 1016	12674-11-2	E685	1	μg/L	<1.0	
Aroclor 1221	11104-28-2	E685	1	μg/L	<1.0	
Aroclor 1232	11141-16-5	E685	1	μg/L	<1.0	

Page : 10 of 17

Work Order: EO2208443 Amendment 1

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B and C Oct 3

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Polychlorinated Biphenyls (C	QCLot: 682338) - continued					
Aroclor 1242	53469-21-9	E685	1	μg/L	<1.0	
Aroclor 1248	12672-29-6	E685	1	μg/L	<1.0	
Aroclor 1254	11097-69-1	E685	1	μg/L	<1.0	
Aroclor 1260	11096-82-5	E685	1	μg/L	<1.0	
Aroclor 1262	37324-23-5	E685	1	μg/L	<1.0	
Aroclor 1268	11100-14-4	E685	1	μg/L	<1.0	

Page : 11 of 17

Work Order: EO2208443 Amendment 1

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B and C Oct 3

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report					
					Spike	Recovery (%)	Recovery	Limits (%)		
Analyte C	AS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier	
Physical Tests (QCLot: 681561)										
solids, total suspended [TSS]		E160	3	mg/L	150 mg/L	105	85.0	115		
Physical Tests (QCLot: 682036)										
conductivity		E100	1	μS/cm	1412 μS/cm	101	90.0	110		
Physical Tests (QCLot: 682037)										
рН		E108		pH units	6 pH units	102	97.0	103		
Physical Tests (QCLot: 683794)										
solids, total dissolved [TDS]		E162	10	mg/L	1000 mg/L	105	85.0	115		
Anions and Nutrients (QCLot: 682269)										
chloride	16887-00-6	E235.Cl	0.5	mg/L	100 mg/L	98.4	90.0	110		
Anions and Nutrients (QCLot: 682270)	44000 70 0	5005.004							1	
sulfate (as SO4)	14808-79-8	E235.SO4	0.3	mg/L	100 mg/L	100	90.0	110		
Anions and Nutrients (QCLot: 682271)		5005.1100								
nitrate (as N)	14797-55-8	E235.NO3	0.02	mg/L	2.5 mg/L	101	90.0	110		
Anions and Nutrients (QCLot: 682272)		5005.1100							ı	
nitrite (as N)	14797-65-0	E235.NO2	0.01	mg/L	0.5 mg/L	97.0	90.0	110		
Anions and Nutrients (QCLot: 682273)	10001 10 0	5005.5							ı	
	16984-48-8	E235.F	0.02	mg/L	1 mg/L	101	90.0	110		
Anions and Nutrients (QCLot: 688347)	7700 44 0	E075 II	0.004				00.0	400		
phosphorus, total dissolved	7723-14-0	E3/5-U	0.001	mg/L	0.05 mg/L	97.4	80.0	120		
Anions and Nutrients (QCLot: 688839)	7723-14-0	F272 C	0.001	m a /l	0.05 //	440	80.0	120		
phosphorus, total	1123-14-0	E372-5	0.001	mg/L	0.05 mg/L	112	80.0	120		
Anions and Nutrients (QCLot: 691785)	7664-41-7	E298	0.005	ma/l	0.0//	400	85.0	115		
ammonia, total (as N)	7004-41-7	E290	0.005	mg/L	0.2 mg/L	106	65.0	115		
Anions and Nutrients (QCLot: 702163)		E318	0.05	ma/l	4 //	400	75.0	125	1	
Kjeldahl nitrogen, total [TKN]		E310	0.05	mg/L	4 mg/L	100	75.0	123		
0										
Cyanides (QCLot: 681970) cyanide, weak acid dissociable		E336	0.002	mg/L	0.125 mg/L	104	80.0	120		
eyamae, mean asia diooodabio			0.002	9, =	0.123 mg/L	107	33.3	.20		
Owenia / Ingressia Carbon (OCI at: C0C979)										
Organic / Inorganic Carbon (QCLot: 686272) carbon, dissolved organic [DOC]		E358-L	0.5	mg/L	8.57 mg/L	110	80.0	120		
sanson, accorda organio [DOO]				3. –	0.07 mg/L	110				

Page : 12 of 17

Work Order: EO2208443 Amendment 1

Client : Clean Harbors Environmental Services, Inc.

Sub-Matrix: Water	Laboratory Control Sample (LCS) Report								
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Total Metals (QCLot: 683187)									
mercury, total	7439-97-6	E508	0.000005	mg/L	0.0001 mg/L	96.8	80.0	120	
Total Metals (QCLot: 689839)									
chromium, total	7440-47-3	E420	0.0005	mg/L	0.25 mg/L	98.1	80.0	120	
Dissolved Metals (QCLot: 689921)									
aluminum, dissolved	7429-90-5		0.001	mg/L	2 mg/L	103	80.0	120	
antimony, dissolved	7440-36-0		0.0001	mg/L	1 mg/L	100	80.0	120	
arsenic, dissolved	7440-38-2	E421	0.0001	mg/L	1 mg/L	97.1	80.0	120	
parium, dissolved	7440-39-3	E421	0.0001	mg/L	0.25 mg/L	96.4	80.0	120	
peryllium, dissolved	7440-41-7	E421	0.00002	mg/L	0.1 mg/L	95.8	80.0	120	
pismuth, dissolved	7440-69-9	E421	0.00005	mg/L	1 mg/L	93.9	80.0	120	
poron, dissolved	7440-42-8	E421	0.01	mg/L	1 mg/L	113	80.0	120	
cadmium, dissolved	7440-43-9	E421	0.000005	mg/L	0.1 mg/L	97.6	80.0	120	
calcium, dissolved	7440-70-2	E421	0.05	mg/L	50 mg/L	101	80.0	120	
chromium, dissolved	7440-47-3	E421	0.0005	mg/L	0.25 mg/L	96.0	80.0	120	
cobalt, dissolved	7440-48-4	E421	0.0001	mg/L	0.25 mg/L	95.6	80.0	120	
copper, dissolved	7440-50-8	E421	0.0002	mg/L	0.25 mg/L	96.9	80.0	120	
ron, dissolved	7439-89-6	E421	0.01	mg/L	1 mg/L	111	80.0	120	
ead, dissolved	7439-92-1	E421	0.00005	mg/L	0.5 mg/L	101	80.0	120	
magnesium, dissolved	7439-95-4	E421	0.005	mg/L	50 mg/L	94.9	80.0	120	
manganese, dissolved	7439-96-5	E421	0.0001	mg/L	0.25 mg/L	98.8	80.0	120	
molybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	0.25 mg/L	98.5	80.0	120	
nickel, dissolved	7440-02-0	E421	0.0005	mg/L	0.5 mg/L	96.3	80.0	120	
potassium, dissolved	7440-09-7	E421	0.05	mg/L	50 mg/L	105	80.0	120	
selenium, dissolved	7782-49-2	E421	0.00005	mg/L	1 mg/L	98.2	80.0	120	
silver, dissolved	7440-22-4	E421	0.00001	mg/L	0.1 mg/L	100	80.0	120	
sodium, dissolved	7440-23-5	E421	0.05	mg/L	50 mg/L	101	80.0	120	
strontium, dissolved	7440-24-6	E421	0.0002	mg/L	0.25 mg/L	105	80.0	120	
hallium, dissolved	7440-28-0	E421	0.00001	mg/L	1 mg/L	97.3	80.0	120	
in, dissolved	7440-31-5	E421		mg/L	0.5 mg/L	97.7	80.0	120	
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	0.005 mg/L	109	80.0	120	
vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	0.5 mg/L	98.4	80.0	120	
zinc, dissolved	7440-66-6	E421	0.001	mg/L	0.5 mg/L	92.9	80.0	120	
zirconium, dissolved	7440-67-7		0.0002	mg/L	0.1 mg/L	97.8	80.0	120	

Page : 13 of 17

Work Order: EO2208443 Amendment 1

Client : Clean Harbors Environmental Services, Inc.

Sub-Matrix: Water		Laboratory Control Sample (LCS) Report							
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Speciated Metals (QCLot: 683703)									
chromium, hexavalent [Cr VI], dissolved	18540-29-9	E532A	0.0005	mg/L	0.25 mg/L	100	80.0	120	
Aggregate Organics (QCLot: 687934)									
phenols, total (4AAP)		E562	0.001	mg/L	0.02 mg/L	95.5	85.0	115	
Aggregate Organics (QCLot: 689766)									
chemical oxygen demand [COD]		E559-L	10	mg/L	100 mg/L	103	85.0	115	
Volatile Organic Compounds (QCLot: 7039									
benzene	71-43-2	E611A	0.5	μg/L	100 μg/L	100	70.0	130	
ethylbenzene	100-41-4	E611A	0.5	μg/L	100 μg/L	100	70.0	130	
toluene	108-88-3	E611A	0.5	μg/L	100 μg/L	94.3	70.0	130	
xylene, m+p-	179601-23-1	E611A	0.4	μg/L	200 μg/L	108	70.0	130	
xylene, o-	95-47-6	E611A	0.3	μg/L	100 μg/L	110	70.0	130	
Hydrocarbons (QCLot: 703934)									
F1 (C6-C10)		E581.F1	100	μg/L	2750 μg/L	101	70.0	130	
Hydrocarbons (QCLot: 703963)									
F2 (C10-C16)		E601	100	μg/L	3850 μg/L	110	70.0	130	
Chlorinated Phenolics (QCLot: 683686)									
chlorophenol, 2-	95-57-8	E651C	0.3	μg/L	4.8 μg/L	92.6	50.0	130	
dichlorophenol, 2,4-	120-83-2	E651C	0.2	μg/L	4.8 μg/L	101	50.0	130	
dichlorophenol, 2,6-	87-65-0	E651C	0.2	μg/L	4.8 μg/L	101	50.0	130	
methylphenol, 4-chloro-3-	59-50-7	E651C	0.5	μg/L	4.8 μg/L	102	60.0	130	
pentachlorophenol [PCP]	87-86-5	E651C	0.5	μg/L	4.8 µg/L	130	40.0	140	
tetrachlorophenol, 2,3,4,5-	4901-51-3	E651C	0.5	μg/L	4.8 µg/L	105	60.0	130	
tetrachlorophenol, 2,3,4,6-	58-90-2	E651C	0.5	μg/L	4.8 μg/L	102	60.0	130	
tetrachlorophenol, 2,3,5,6-	935-95-5	E651C	0.5	μg/L	4.8 μg/L	108	60.0	130	
trichlorophenol, 2,3,4-	15950-66-0	E651C	0.5	μg/L	4.8 μg/L	110	50.0	130	
trichlorophenol, 2,3,5-	933-78-8		0.5	μg/L	4.8 μg/L	109	50.0	130	
trichlorophenol, 2,4,5-	95-95-4		0.5	μg/L	4.8 μg/L	112	50.0	130	
trichlorophenol, 2,4,6-	88-06-2	E651C	0.5	μg/L	4.8 μg/L	108	50.0	130	
Non-Chlorinated Phenolics (QCLot: 68368)	6)								
dimethylphenol, 2,4-	105-67-9	E651C	0.5	μg/L	4.8 μg/L	105	50.0	130	
dinitrophenol, 2,4-	51-28-5		1	μg/L	4.8 μg/L	# 144	40.0	130	LCS-H
methylphenol, 2-	95-48-7		0.5	μg/L	4.8 μg/L	89.4	30.0	130	
	20 10 1	1	1	1-3	7.0 MB/ L	00.4		1	

Page : 14 of 17

Work Order: EO2208443 Amendment 1

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B and C Oct 3

Sub-Matrix: Water				Laboratory Control Sample (LCS) Report					
					Spike	Recovery (%)	Recovery		
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Non-Chlorinated Phenolics (QCLot: 683	686) - continued								
methylphenol, 3+4-		E651C	0.5	μg/L	9.6 µg/L	88.9	50.0	130	
nitrophenol, 2-	88-75-5	E651C	0.5	μg/L	1.6 μg/L	99.2	40.0	140	
nitrophenol, 4-	100-02-7	E651C	0.5	μg/L	4.8 μg/L	79.8	40.0	140	
phenol	108-95-2	E651C	0.5	μg/L	4.8 μg/L	113	30.0	130	
phenol, 2-methyl-4,6-dinitro- [DNOC]	534-52-1	E651C	2	μg/L	4.8 μg/L	# 149	40.0	140	LCS-H
Polychlorinated Biphenyls (QCLot: 6823	338)								
Aroclor 1260	11096-82-5	E685	1	μg/L	5 μg/L	104	65.0	130	

Qualifiers

Qualifier Description

LCS-H Lab Control Sample recovery was above ALS DQO. Non-detected sample results are considered reliable. Other results, if reported, have been qualified.

Page : 15 of 17

Work Order: EO2208443 Amendment 1

Client : Clean Harbors Environmental Services, Inc.

Project : Pond B and C Oct 3

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water							Matrix Spik	re (MS) Report		
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
Laboratory sample D	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Anions and Nutri	ents (QCLot: 682269)									
EO2208443-002	Pond C	chloride	16887-00-6	E235.CI	98.5 mg/L	100 mg/L	98.5	75.0	125	
Anions and Nutri	ents (QCLot: 682270)									
EO2208443-002	Pond C	sulfate (as SO4)	14808-79-8	E235.SO4	ND mg/L	100 mg/L	ND	75.0	125	
Anions and Nutri	ents (QCLot: 682271)									
EO2208443-002	Pond C	nitrate (as N)	14797-55-8	E235.NO3	2.74 mg/L	2.5 mg/L	110	75.0	125	
Anions and Nutri	ents (QCLot: 682272)									
EO2208443-002	Pond C	nitrite (as N)	14797-65-0	E235.NO2	0.528 mg/L	0.5 mg/L	106	75.0	125	
Anions and Nutri	ents (QCLot: 682273)									
EO2208443-002	Pond C	fluoride	16984-48-8	E235.F	1.03 mg/L	1 mg/L	103	75.0	125	
Anions and Nutri	ents (QCLot: 688347)									
EO2208144-001	Anonymous	phosphorus, total dissolved	7723-14-0	E375-U	0.0698 mg/L	0.067 mg/L	104	70.0	130	
Anions and Nutri	ents (QCLot: 688839)									
EO2208289-008	Anonymous	phosphorus, total	7723-14-0	E372-S	0.0676 mg/L	0.067 mg/L	101	70.0	130	
Anions and Nutri	ents (QCLot: 691785)									
EO2208331-016	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.121 mg/L	0.1 mg/L	121	75.0	125	
Anions and Nutri	ents (QCLot: 702163)									
EO2208368-003	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	2.58 mg/L	2.5 mg/L	103	70.0	130	
Cyanides (QCLo	t: 681970)									
TY2202315-001	Anonymous	cyanide, weak acid dissociable		E336	0.133 mg/L	0.125 mg/L	106	75.0	125	
Organic / Inorgar	ic Carbon (QCLot: 686	5272)								
EO2208443-002	Pond C	carbon, dissolved organic [DOC]		E358-L	ND mg/L	5 mg/L	ND	70.0	130	
Total Metals (QC	Lot: 683187)									
EO2208347-002	Anonymous	mercury, total	7439-97-6	E508	0.0000971 mg/L	0.0001 mg/L	97.1	70.0	130	
Total Metals (QC	Lot: 689839)									
EO2208412-001	Anonymous	chromium, total	7440-47-3	E420	0.0395 mg/L	0.04 mg/L	98.7	70.0	130	
Dissolved Metals	(QCLot: 689921)									
EO2208389-004	Anonymous	aluminum, dissolved	7429-90-5	E421	0.224 mg/L	0.2 mg/L	112	70.0	130	

Page : 16 of 17

Work Order: EO2208443 Amendment 1

Client : Clean Harbors Environmental Services, Inc.

Sub-Matrix: Water						Matrix Spike (MS) Report						
					Spi	ike	Recovery (%)	Recovery	Limits (%)			
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier		
	(QCLot: 689921) - c	continued										
EO2208389-004	Anonymous	antimony, dissolved	7440-36-0	E421	0.0208 mg/L	0.02 mg/L	104	70.0	130			
		arsenic, dissolved	7440-38-2	E421	0.0209 mg/L	0.02 mg/L	104	70.0	130			
		barium, dissolved	7440-39-3	E421	ND mg/L	0.02 mg/L	ND	70.0	130			
		beryllium, dissolved	7440-41-7	E421	0.0450 mg/L	0.04 mg/L	112	70.0	130			
		bismuth, dissolved	7440-69-9	E421	0.00943 mg/L	0.01 mg/L	94.3	70.0	130			
		boron, dissolved	7440-42-8	E421	ND mg/L	0.1 mg/L	ND	70.0	130			
		cadmium, dissolved	7440-43-9	E421	0.00382 mg/L	0.004 mg/L	95.6	70.0	130			
		calcium, dissolved	7440-70-2	E421	ND mg/L	4 mg/L	ND	70.0	130			
		chromium, dissolved	7440-47-3	E421	0.0401 mg/L	0.04 mg/L	100	70.0	130			
		cobalt, dissolved	7440-48-4	E421	ND mg/L	0.02 mg/L	ND	70.0	130			
		copper, dissolved	7440-50-8	E421	0.0199 mg/L	0.02 mg/L	99.4	70.0	130			
		iron, dissolved	7439-89-6	E421	2.20 mg/L	2 mg/L	110	70.0	130			
		lead, dissolved	7439-92-1	E421	0.0180 mg/L	0.02 mg/L	89.8	70.0	130			
		magnesium, dissolved	7439-95-4	E421	ND mg/L	1 mg/L	ND	70.0	130			
		manganese, dissolved	7439-96-5	E421	ND mg/L	0.02 mg/L	ND	70.0	130			
		molybdenum, dissolved	7439-98-7	E421	0.0196 mg/L	0.02 mg/L	98.2	70.0	130			
		nickel, dissolved	7440-02-0	E421	ND mg/L	0.04 mg/L	ND	70.0	130			
		potassium, dissolved	7440-09-7	E421	ND mg/L	4 mg/L	ND	70.0	130			
		selenium, dissolved	7782-49-2	E421	0.0386 mg/L	0.04 mg/L	96.6	70.0	130			
		silver, dissolved	7440-22-4	E421	0.00397 mg/L	0.004 mg/L	99.2	70.0	130			
		sodium, dissolved	7440-23-5	E421	ND mg/L	2 mg/L	ND	70.0	130			
		strontium, dissolved	7440-24-6	E421	ND mg/L	0.02 mg/L	ND	70.0	130			
		thallium, dissolved	7440-28-0	E421	0.00361 mg/L	0.004 mg/L	90.2	70.0	130			
		tin, dissolved	7440-31-5	E421	0.0198 mg/L	0.02 mg/L	99.1	70.0	130			
		uranium, dissolved	7440-61-1	E421	ND mg/L	0.004 mg/L	ND	70.0	130			
		vanadium, dissolved	7440-62-2	E421	0.106 mg/L	0.1 mg/L	106	70.0	130			
		zinc, dissolved	7440-66-6	E421	0.369 mg/L	0.4 mg/L	92.3	70.0	130			
		zirconium, dissolved	7440-67-7	E421	0.0445 mg/L	0.04 mg/L	111	70.0	130			
peciated Metals	(QCLot: 683703)											
C2202434-001	Anonymous	chromium, hexavalent [Cr VI], dissolved	18540-29-9	E532A	0.0487 mg/L	0.05 mg/L	97.4	70.0	130			
ggregate Organ	nics (QCLot: 687934)											
RG2201387-010	Anonymous	phenols, total (4AAP)		E562	0.0172 mg/L	0.02 mg/L	86.2	75.0	125			
Aggregate Organ	nics (QCLot: 689766)											
EO2208443-002	Pond C	chemical oxygen demand [COD]		E559-L	98 mg/L	100 mg/L	98.3	75.0	125			

Page : 17 of 17

Work Order: EO2208443 Amendment 1

Client : Clean Harbors Environmental Services, Inc.

Sub-Matrix: Water	b-Matrix: Water						Matrix Spike (MS) Report						
							Recovery (%)		Recovery Limits (%)				
Laboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier			
Volatile Organic C	Compounds (QCLot: 70	3933)											
EO2208443-002	Pond C	benzene	71-43-2	E611A	101 μg/L	100 μg/L	101	50.0	140				
		ethylbenzene	100-41-4	E611A	80.0 μg/L	100 μg/L	80.0	50.0	140				
		toluene	108-88-3	E611A	84.9 μg/L	100 μg/L	84.9	50.0	140				
		xylene, m+p-	179601-23-1	E611A	207 μg/L	200 μg/L	104	50.0	140				
		xylene, o-	95-47-6	E611A	94.6 µg/L	100 μg/L	94.6	50.0	140				

RESULTS OF DAPHNIA MAGNA LC50 MULTI-CONCENTRATION

Client:70036ALS ENVIRONMENTAL, CALGARYJob Number:C277285Client Project Name & Number:E02208443Sample Number:BD0096-02

Test Result:

48 hrs LC50 % vol/vol (95% CL): >100% (N/A) Statistical Method: Visual

Sample Name : EO2208443-002 - POND C Sample Matrix : Water

Description: Yellow, cloudy <u>Sample Prior to Analysis:</u>

Sample Collected: Oct 03, 2022 Sampling Method: 8.0 N/A pH: 20 °C Sample Collected By: N/A Site Collection: N/A Temperature: Sample Received: Oct 04, 2022 05:03 PM Volume Received: 1 L Dissolved Oxygen: 9.1 mg/L Analysis Start: Oct 05, 2022 01:22 PM Avg Temp Arrival: 5°C Sample Conductance: 1267 µS/cm

End: Oct 07, 2022 01:52 PM Storage: 2-6°C Hardness: 220 mg CaCO ₃/L

Concentration	Temperature (°C)	pH (pH)	Conductivity (uS/cm)	Dissolved Oxygen (mg/L)	Mortality (#)	Mortality (%)	Immobility (#)	Immobility (%)	Temperature (°C)	pH (pH)	Conductivity (uS/cm)	Dissolved Oxygen (mg/L)
% vol/vol	Start	Start	Start	Start	24 hrs	24 hrs	24 hrs	24 hrs	48 hrs	48 hr	48 hrs	48 hrs
0	19	8.0	290	8.6	0	0	0	0	20	8.0	298	8.1
6.25	20	8.0	354	8.5	0	0	0	0	20	7.9	372	8.3
12.5	20	8.0	417	8.5	0	0	0	0	20	8.0	423	8.0
25	20	8.0	558	8.6	0	0	0	0	20	8.0	562	8.0
50	20	8.1	807	8.6	0	0	0	0	20	8.1	798	7.9
100	20	8.1	1283	8.7	0	0	0	0	20	8.2	1294	8.4

Concentration	Mortality (#)	Mortality (%)	Immobility (#)	Immobility (%)
% vol/vol	48 hrs	48 hrs	48 hrs	48 hrs
0	0	0	0	0
6.25	0	0	0	0
12.5	0	0	0	0
25	0	0	0	0
50	0	0	0	0
100	0	0	0	0

Comments: Indigenous organisms present in sample.

Culture/Control/Dilution Water: City of Edmonton dechlorinated tap water

Hardness: 180 mg/L CaCO₃ Other parameters available on request.

<u>Test Conditions</u> Test concentration : 0,6.25,12.5,25,50,100 (% vol/vol)

Organisms per Vessel: 10 Pre-aeration Time: 30 min Rate of Pre-aeration: 25-50 mL/min/L

Total # of Organisms Used : 60 Test Temperature : 20 ± 2 °C Test Hardness Adjusted : No Test Volume : $200 \, \text{mL}$ Test pH Adjusted: No

Loading Density: 15.0 mL/Daphnia Photoperiod: 16:8 (light: dark)

<u>Test Organism :</u> Daphnia magna Source : In House Culture

Age at Test Initiation :<24 hrs</td>Average Brood Size :31.5Culture Photoperiod :16:8 (light: dark)% Mortality within 7 days :3.6Culture Temperature :20 ± 2 °CTime To First Brood :8 DaysCulture DietPseudokirchnriella and YTC at a ratio of 2 mL/L of culture daily. New cultures weekly, 63 daphnids

distributed into 6 culture vessels and 3 reproductive vessels.

RESULTS OF DAPHNIA MAGNA LC50 MULTI-CONCENTRATION

Client:70036ALS ENVIRONMENTAL, CALGARYJob Number:C277285Client Project Name & Number:E02208443Sample Number:BD0096-02

Reference chemical:Sodium ChlorideTest Date:Oct 04, 2022Test Endpoint 48 hrs LC50 (95% confidence interval):6.96 (5.70, 8.50)g/LStatistical Method:BinomialHistorical Mean LC50 (warning limits):5.80 (4.28, 7.87) g/LConcentration: 0,1.71,2.56,3.82,5.7,8.5 g/L

<u>Test Method</u> EPS 1/RM/14

Method Deviations: None

Note: The results contained in this report refer only to the testing of the sample submitted. Bureau Veritas is accredited to ISO/IEC 17025 for

specific parameters on scopes of accreditation, including the toxicity parameters reported herein. The conductivity, dissolved oxygen and pH data contained within the toxicity report are provided for information purposes and are not individually accredited parameters. This report

Date:

Oct 12, 2022 12:01 PM

may not be reproduced, except in its entirety, without the written approval of the laboratory.

Analyst: Cara Shurgot, Kyle Monaghan, Tami Horvath

Verified By : Chelsea Tessier, Ecotoxicology Supervisor

RESULTS OF RAINBOW TROUT LC50 MULTI-CONCENTRATION

Client: 70036 ALS ENVIRONMENTAL, CALGARY Job Number: C277285

Client Project Name & Number: EO2208443

Test Result:

96 hrs LC50 % vol/vol (95% CL): >100% (N/A) Statistical Method: Visual

<u>Sample Name:</u> EO2208443-002 - POND C Sample Matrix: Water

Description: Yellow, cloudy Sample Number: BDO096-01

Sample Collected: Oct 03, 2022 Sampling Method: N/A Site Collection: N/A
Sample Collected By: N/A Volume Received: 40 L Avg Temp Arrival: 5 °C Storage: 2-6°C

Sample Received: Oct 04, 2022 05:03 PM pH: 8.0 Dissolved Oxygen: 8.6 mg/L
Analysis Start: Oct 06, 2022 09:20 AM Temperature: 14 °C Sample Conductance: 1088 μS/cm

,			•		•				•			
Concentration	Temperature (°C)	pH (pH)	Conductivity (uS/cm)	Dissolved Oxygen (mg/L)	Mortality (#)	Mortality (%)	Atypical Behaviour (#)	Atypical Behaviour (%)	Mortality (#)	Mortality (%)	Atypical Behaviour (#)	Atypical Behaviour (%)
% vol/vol	Start	Start	Start	Start	24 hrs	24 hrs	24 hrs	24 hrs	48 hrs	48 hrs	48 hrs	48 hrs
0	15	7.5	282	9.1	0	0	0	0	0	0	0	0
6.25	15	7.7	337	9.1	0	0	0	0	0	0	0	0
12.5	15	7.6	392	9.0	0	0	0	0	0	0	0	0
25	15	7.7	490	9.0	0	0	0	0	0	0	0	0
50	15	8.0	666	9.0	0	0	0	0	0	0	0	0
100	15	8.0	1095	8.9	0	0	0	0	0	0	0	0

Concentration	Mortality (#)	Mortality (%)	Atypical Behaviour (#)	Atypical Behaviour (%)	Temperature (°C)	pH (pH)	Conductivity (uS/cm)	Dissolved Oxygen (mg/L)	Mortality (#)	Mortality (%)	Atypical Behaviour (#)	Atypical Behaviour (%)
% vol/vol	72 hrs	72 hrs	72 hrs	72 hrs	96 hrs	96 hr	96 hrs	96 hrs	96 hrs	96 hrs	96 hrs	96 hrs
0	0	0	0	0	14	7.8	285	8.7	0	0	0	0
6.25	0	0	0	0	14	7.7	339	8.6	0	0	0	0
12.5	0	0	0	0	14	7.5	397	8.5	0	0	0	0
25	0	0	0	0	14	7.4	496	8.1	0	0	0	0
50	0	0	0	0	15	7.1	709	6.7	0	0	0	0
100	0	0	0	0	15	7.8	1105	8.5	0	0	0	0

Comments: None

<u>Culture/Control/Dilution Water</u> City of Edmonton dechlorinated tap water

Hardness: 160 mg/L CaCO₃ Other parameters available on request.

Test Conditions Test concentration: 0,6.25,12.5,25,50,100 (% vol/vol)

Organisms per Vessel : 10 Test Temperature : 15 ± 1 °C Solution Depth : >15 cm

Total # of Organisms Used: 60 Pre-aeration Time: 30 min. Rate of Aeration 6.5±1 mL/min/L

Test Volume : 20 L Vessel Volume : 38L Test pH Adjusted: No

Loading Density: 0.3 g/L Photoperiod: 16:8 (light: dark)

<u>Test Organism</u>: Rainbow Trout (Oncorhynchus mykiss) Source: LSL Trout Hatchery

Culture Temperature : 15 ± 2 °C Weight (Mean) +- SD : 0.7 ± 0.1 g Length (Mean) +- SD : 4.15 ± 0.25 cm Culture Water Renewal : ≥ 1.0 L/min/kg fish Weight (Range) : 0.5 - 0.9 g Length (Range) : 3.70 - 4.40 cm

Culture Photoperiod: 16:8 (light: dark) % Mortality within 7 days: 0%

Feeding rate and frequency: daily: 1-5% biomass of trout. Acclimation Time: >14 days

Reference chemical:PhenolTest Date:Sep 27, 2022

Test Endpoint 96 hrs LC50 (95% confidence interval): 10.2 (9.01, 11.4)mg/L Statistical Method: Probit Historical Mean LC50 (warning limits): 9.77 (8.63, 11.1) mg/L Concentration: 0,8,10,12,15,20 mg/L

RESULTS OF RAINBOW TROUT LC50 MULTI-CONCENTRATION

Client:70036ALS ENVIRONMENTAL, CALGARYJob Number:C277285Client Project Name & Number:EO2208443Sample Number:BD0096-01

<u>Test Method</u> EPS 1/RM/13

Method Deviations : None

Note:

The results contained in this report refer only to the testing of the sample submitted. Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation, including the toxicity parameters reported herein. The conductivity, dissolved oxygen and pH data contained within the toxicity report are provided for information purposes and are not individually accredited parameters. This report may not be reproduced, except in its entirety, without the written approval of the laboratory.

Analyst: Cara Shurgot, Chelsea Tessier, Kaylie Lyons, Kyle Monaghan, Tami Horvath

Verified By: Cara Shurgot, Analyst 2 Date: Oct 14, 2022 09:56 AM

ALS ENVIRONMENTAL

Client Project #: EO2208443

Report Date: 2022/10/14

Bureau Veritas Job Number: C277285

Your P.O. #: EO2208443

RESULTS OF CHEMICAL ANALYSES OF WATER

Bureau Veritas ID		BDO096	
Sampling Date		10/3/2022	
COC Number		80505	
	UNITS	EO2208443-002 - POND C	QC Batch
Dankais Massa Diagona			
Daphnia Magna Bioassay			

RDL = Reportable Detection Limit

N/A = Not Applicable

Results relate only to the items tested.

Your P.O. #: EO2208443 Your Project #: EO2208443 Your C.O.C. #: 80505

Attention: ALS Reporting Edmonton

ALS ENVIRONMENTAL Bay 7, 1313 44th ave NE CALGARY, AB CANADA T2E 6L5

Report Date: 2022/10/14

Report #: R3247811 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C277285 Received: 2022/10/04, 17:03

Sample Matrix: Water # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Daphnia magna LC50 Multi-Concentration	1	N/A	2022/10/05	EENVSOP-00154	EPS 1 RM14 2nd ed m
Rainbow Trout LC50 Multi-Concentration	1	N/A	2022/10/06	EENVSOP-00160	EPS 1 RM13 2nd ed m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

 $Reference\ Method\ suffix\ "m"\ indicates\ test\ methods\ incorporate\ validated\ modifications\ from\ specific\ reference\ methods\ to\ improve\ performance.$

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Your P.O. #: EO2208443 Your Project #: EO2208443 Your C.O.C. #: 80505

Attention: ALS Reporting Edmonton

ALS ENVIRONMENTAL Bay 7, 1313 44th ave NE CALGARY, AB CANADA T2E 6L5

Report Date: 2022/10/14

Report #: R3247811 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C277285 Received: 2022/10/04, 17:03

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Customer Solutions, Western Canada Customer Experience Team Email: customersolutionswest@bureauveritas.com Phone# (780) 577-7100

This report has been generated and distributed using a secure automated process.

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

RESULTS OF CHEMICAL ANALYSES OF WATER

Bureau Veritas ID		BDO096	
Sampling Date		2022/10/03 00:00	
COC Number		80505	
	UNITS	EO2208443-002 - POND	QC Batch
		J	_
Daphnia Magna Bioassay		C	

TOXICOLOGY (WATER)

Bureau Veritas ID		BDO096	
Sampling Date		2022/10/03 00:00	
COC Number		80505	
	UNITS	EO2208443-002 - POND C	QC Batch
Painhour Trout Pigassay			
Rainbow Trout Bioassay			

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	5.3°C
Package 2	5.0°C
Package 3	5.0°C
Package 4	6.0°C
Package 5	5.7°C

Results relate only to the items tested.

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Long Shorger
Cara Shurgot, Analyst 2
Chelsea Tessin
Chelsea Tessier, Ecotoxicology Supervisor

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

80505

Receipt Temp

Destination Lab:

Bureau Veritas (Edmonton)

Address:

9331 - 48th Street Edmonton AB Canada

T6B 2R4

Work Order Number: EO2208443

Original Receipt Date/Time

Instructions Received

03/10/2022 15:30

Relinquished By
Date/Time
Received By
Date/Time

Return as Indicated			@alsglobal.com	Invoice: ALSEDClier	ntServices@alsglobal.com	Electronic [Data: ALSEDClientServices	@alsglobal.com
	Attention: Pame	ela Toledo						
ALS Sample ID	Client ID	Matrix	Container Type	Test Codes	Method Description	Due Date	Sampling Date and Time	Remarks
EO2208443-002	Pond C	Water	LDPE carboy	TRT-LC50-96	Survival/LC50 Rainbow Trout (96 hours)	11-10-2022	03/10/2022 00:00	
EO2208443-002	Pond C	Water	LDPE carboy			11-10-2022	03/10/2022 00:00	
EO2208443-002	Pond C	Water	LDPE carboy			11-10-2022	03/10/2022 00:00	
EO2208443-002	Pond C	Water	LDPE carboy			11-10-2022	03/10/2022 00:00	
EO2208443-002	Pond C	Water	LDPE carboy	DAP-LC50-48	Survival/LC50 Daphnia Magna 48 hours	11-10-2022	03/10/2022 00:00	
F02208443-002	Pond C	Water	LDPE carboy			11-10-2022	03/10/2022 00:00	

1 Iulia Syrenova 2022/10/04 17:03 see ACTR

C277285

Destination Lab:

Bureau Veritas (Edmonton)

Address:

9331 - 48th Street Edmonton AB Canada T6B 2R4

Original Receipt Date/Time

Instructions Received Date/Time

03/10/2022 15:30

Consignment company and Number YELLOWCAB

П	Number of Coolers
- 1	Number of Coolers
-	5

Relinquished By Date/Time

Received By

Date/Time

Receipt Temp

ALS Lab ID	Bottle Code	Matrix	Submatrix	Container Type	Test Codes	Due Date	Holding Time	Remarks
EO2208443	002-AI	Water	Water	LDPE carboy	TRT-LC50-96	14/10/2022	The manufacture	
EO2208443	002-AJ	Water	Water	LDPE carboy		14/10/2022	one make	
EO2208443	002-AK	Water	Water	LDPE carboy		14/10/2022		
EO2208443	002-AL	Water	Water	LDPE carboy		14/10/2022		
EO2208443	002-AM	Water	Water	LDPE carboy	DAP-LC50-48	14/10/2022		
E02208443	002-AN	Water	Water	LDPE carboy		14/10/2022		

Jaliia Syrenova 2022/10/04

17:03

see ACTR

C277285

and the second production of

* 1981 1.0 to 1988 beneficial

Page 1 of 1

Service Request No:K2211750

Pamela Toledo ALS Environmental - Canada 9450-17 Ave. NW Edmonton, AB T6N 1M9

Laboratory Results for: EO2208443

Dear Pamela,

Enclosed are the results of the sample(s) submitted to our laboratory October 07, 2022 For your reference, these analyses have been assigned our service request number **K2211750**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3260. You may also contact me via email at Luke.Rahn@alsglobal.com.

Respectfully submitted,

ALS Group USA, Corp. dba ALS Environmental

Luke Rahn

Project Manager

Narrative Documents

Client: ALS Environmental - Canada Service Request: K2211750

Project: EO2208443 Date Received: 10/07/2022

Sample Matrix: Water

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier II level requested by the client.

Sample Receipt:

Two water samples were received for analysis at ALS Environmental on 10/07/2022. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

General Chemistry:

No significant anomalies were noted with this analysis.

Approved by authority

Date 10/11/2022

SAMPLE DETECTION SUMMARY

This form includes only detections above the reporting levels. For a full listing of sample results, continue to the Sample Results section of this Report.

CLIENT ID: EO2208443-002		Lab	ID: K2211	750-002		
Analyte	Results	Flag	MDL	MRL	Units	Method
Halides, Total Organic (TOX)	20			20	ug/L	9020B


Sample Receipt Information

Client: ALS Environmental - Canada Service Request: K2211750

Project: EO2208443

SAMPLE CROSS-REFERENCE

SAMPLE #	CLIENT SAMPLE ID	<u>DATE</u>	<u>IIME</u>
K2211750-001	EO2208443-001	10/2/2022	2300
K2211750-002	EO2208443-002	10/2/2022	2300

K1211750

Destination Lab:

USA - Kelso

Address:

1317 South 13th Avenue Kelso DC United

States 98626

Client:

Clean Harbors Environmental Services, Inc.

Work Order Number: EO2208443

Original Receipt Date/Time

Instructions Received

03/10/2022 14:30

Relinquished By

Date/Time

Received By

Return as Indicated: Results: ALSEDClientServices@alsglobal.com

Invoice: ALSEDClientServices@alsglobal.com

Electronic Data; ALSEDClientServices@alsglobal.com

Attention: Pamela Toledo

ALS Sample ID	Client ID	Matrix	Container Type	Test Codes	Method Description	Due Date	Sampling Date and Time	Remarks
EO2208443-001	Pond B	Water	Amber glass/Teflon lined cap	AOX	Adsorbable Organic Halides (AOX) by Adsortption and Coulometric Titration	14-10-2022	02/10/2022 23:00	
EO2208443-002	Pond C	Water	Amber glass/Tefion lined cap	AOX	Adsorbable Organic Halides (AOX) by Adsortption and Coulometric Titration	14-10-2022	02/10/2022 23:00	

X	Method	9020B	Separate Control of the Control of t	1/OX
	*C85;			

PM Luke

Client 7L3 CANADA								
Received: 10:4:22 Opened: 10:4	7-22 B	v: NV	1	ce Request Unloaded:	10.7	-22 By:	VIII	
	Fed Ex UPS Box VIUN If ye	Envèlope s, how man	HL y and wh	PDX Other	Cour	ier Hand De		
Temp Blank Sample Temp IR Gun Cool	ler #/COC ID / NA		f temp with "X"	Notifi Hout of	ed	Tracking Num 1701 3804	ber NA	Filed
						,		
If no, were they received within the method specified If no, were they received on ice and same day as coll applicable, tissue samples were received: Frozen Begies Bubble M Received in good condition (unbroke good samples received in good condition (unbroke good all sample labels complete (ie, analysis, present). Did all sample labels and tags agree with custody good labels and tags agree with custody good labels. Were appropriate bottles/containers and volumes row where the pH-preserved bottles (see SMO GEN SOO). Were VOA vials received without headspace? Ind. Was C12/Res negative?	Partially Thawes Gel Packs d, etc.)? cn) crvation, etc.)? papers? received for the tests in P) received at the applicate in the table below	d Thawa Wet Ice D indicated? propriate pl	ed Try Ice	Sleeves	÷	NA Y	N N N N N N N N N N N N N N N N N N N) }
Sample ID on Bottle	Sample ID					identified by:		
						*		
Sample ID	Bottle Count Her spe	ad- Broke	pH	Respent	Volume added	Reagent Lot Number	initials	Time
Notes, Discrepancies, Resolutions:		00	10	<u> </u>	egn			

Miscellaneous Forms

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- F. The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

Metals Data Qualifiers

- # The control limit criteria is not applicable.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
 DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

Additional Petroleum Hydrocarbon Specific Qualifiers

- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

Agency	Web Site	Number
Alaska DEH	http://dec.alaska.gov/eh/lab/cs/csapproval.htm	UST-040
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0339
Arkansas - DEQ	http://www.adeq.state.ar.us/techsvs/labcert.htm	88-0637
California DHS (ELAP)	http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx	2795
DOD ELAP	http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm	L16-58-R4
Florida DOH	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E87412
Hawaii DOH	http://health.hawaii.gov/	-
ISO 17025	http://www.pjlabs.com/	L16-57
Louisiana DEQ	http://www.deq.louisiana.gov/page/la-lab-accreditation	03016
Maine DHS	http://www.maine.gov/dhhs/	WA01276
Minnesota DOH	http://www.health.state.mn.us/accreditation	053-999-457
Nevada DEP	http://ndep.nv.gov/bsdw/labservice.htm	WA01276
New Jersey DEP	http://www.nj.gov/dep/enforcement/oqa.html	WA005
New York - DOH	https://www.wadsworth.org/regulatory/elap	12060
	https://deq.nc.gov/about/divisions/water-resources/water-resources-data/water-sciences-home-page/laboratory-certification-branch/non-field-lab-	
North Carolina DEQ	certification	605
Oklahoma DEQ	http://www.deq.state.ok.us/CSDnew/labcert.htm	9801
Oregon – DEQ (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaboratoryAccreditation/Pages/index.aspx	WA100010
South Carolina DHEC	http://www.scdhec.gov/environment/EnvironmentalLabCertification/	61002
Texas CEQ	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704427
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C544
Wyoming (EPA Region 8)	https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water-	-
Kelso Laboratory Website	www.alsglobal.com	NA

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LOD Limit of Detection
LOO Limit of Quantitation

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a substance

allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater than or

equal to the MDL.

ALS Group USA, Corp. dba ALS Environmental

Analyst Summary report

Client: ALS Environmental - Canada Service Request: K2211750

Project: EO2208443/

Sample Name: EO2208443-001 **Date Collected:** 10/2/22

Lab Code: K2211750-001 **Date Received:** 10/7/22

Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

9020B KABROWN

Sample Name: EO2208443-002 **Date Collected:** 10/2/22

Lab Code: K2211750-002 **Date Received:** 10/7/22

Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

9020B KABROWN

Sample Results

General Chemistry

ALS Group USA, Corp. dba ALS Environmental

Analytical Report

Client: ALS Environmental - Canada

K2211750-001

Lab Code:

Service Request: K2211750 **Date Collected:** 10/02/22 23:00 **Project:** EO2208443

Date Received: 10/07/22 10:10 **Sample Matrix:** Water

Basis: NA **Sample Name:** EO2208443-001

General Chemistry Parameters

Analysis Analyte Name Method Result Units MRL Dil. **Date Analyzed** Q 9020B Halides, Total Organic (TOX) ND U ug/L 20 10/10/22 11:29

ALS Group USA, Corp. dba ALS Environmental

Analytical Report

Client: ALS Environmental - Canada

Service Request: K2211750 **Project:** EO2208443

Date Collected: 10/02/22 23:00

Date Received: 10/07/22 10:10 **Sample Matrix:** Water

Sample Name: EO2208443-002 Basis: NA

Lab Code: K2211750-002

General Chemistry Parameters

Analysis Analyte Name Method Result Units MRL Dil. **Date Analyzed** Q 9020B 20 Halides, Total Organic (TOX) ug/L 20 10/10/22 11:29

ALS Group USA, Corp. dba ALS Environmental

Analytical Report

Client: ALS Environmental - Canada

S Environmental - Canada Service Request: K2211750

Project:EO2208443Date Collected:NASample Matrix:WaterDate Received:NA

Sample Name: Batch QC Basis: NA

Lab Code: KQ2217532-09

General Chemistry Parameters

Analyte Name Method Result Units MRL Dil. Date Analyzed Q
Halides, Total Organic (TOX) 9020B 2160 ug/L 500 25 10/10/22 11:29

QC Summary Forms

General Chemistry

ALS Group USA, Corp. dba ALS Environmental

Analytical Report

Client: ALS Environmental - Canada

Service Request: K2211750

Project: EO2208443

Date Collected: NA

Sample Matrix: Water

Date Received: NA

Sample Name:

Method Blank

Basis: NA

Lab Code: K2211750-MB

General Chemistry Parameters

Analysis

Analyte Name	Method	Result	Units	MRL	Dil.	Date Analyzed	Q
Halides, Total Organic (TOX)	9020B	ND U	ug/L	20	1	10/10/22 11:29	

ALS Group USA, Corp. dba ALS Environmental

QA/QC Report

Client: ALS Environmental - Canada

Project: EO2208443/ **Sample Matrix:** Water

Service Request: K2211750

Date Collected: NA **Date Received:** NA

Date Analyzed: 10/10/2022 **Analysis Lot:** 780627

Calibration and Method Blank Summary Halides, Total Organic (TOX)

9020B

	Halide Check Standard (ug)	Instrument Calibration Standard (ug)	PAR Standard (ug/L)
True Value	3.64	10.0	100
Run A Percent Recovery A Run B Percent Recovery B	3.53 97 3.39 93	9.16 92 9.60 96	100 100

ALS Group USA, Corp. dba ALS Environmental

QA/QC Report

Client: ALS Environmental - Canada **Service Request:**

K2211750

Project:

EO2208443

N/A

Sample Matrix:

Water

Date Collected: Date Received:

N/A

Date Analyzed:

10/10/22

Date Extracted:

NA

Duplicate Matrix Spike Summary Halides, Total Organic (TOX)

Sample Name:

Batch QC

Units:

ug/L

Lab Code:

Prep Method:

KQ2217532-09

Basis:

NA

Analysis Method:

9020B

None

Matrix Spike

Duplicate Matrix Spike

KQ2217532-09MS

KQ2217532-09DMS

	Sample		Spike			Spike		% Rec		RPD
Analyte Name	Result	Result	Amount	% Rec	Result	Amount	% Rec	Limits	RPD	Limit
Halides, Total Organic (TOX)	2160	6900	5000	94	7000	5000	96	82-121	2	20

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Matrix Spike and Matrix Spike Duplicate Data is presented for information purposes only. The matrix may or may not be relevant to samples reported in this report. The laboratory evaluates system performance based on the LCS and LCSD control limits.

Chain of Custody (COC) / Analytical Request Form

Canada Toll Free: 1 800 668 9878

COC Number: 22 -

Page of

CHECT CORY	VELLOW CHEAT	11	WHITE I ABOBATORY CORY	NAC I	14:00	ADI INIC INICODMATION	FEED TO BACK DAGE FOR STORATIONS AND SAMPLING INCOMMATION	1000
Received by:	Time: 217	2000	Date:		Time: Received	3-Oct-22	Tord Webb Date:	Released by:
FINAL SHIPMENT RECEPT		ALS use only	RECEPTION	INITIAL SHIPMENT RECEPTION (ALS use only)		t use)	SHIPMENT RELEASE (client use)	
10.9 13.8	10			ioassays.	(attached), including trout and Daphnia bioassays	(attached), inclu	☐ YES ☐ NO	
PERATURES °C		Table 4.3E	Table 4.3B and	yze Pond C as per	Analyze Pond B as per Table 4.3E. Analyze Pond C as per Table 4.3B and Table 4.3E	Analyze Pond I	re samples for human consumption/ use?	samples f
Cooler Custody Seals Intact: YES N/A	Coole						YES NO	
ments identified on Sarr	Subm						re samples taken from a Regulated DW System?	e samples t
Cooling Method: NONE ICE A CE PACKS	Cooli	Moladilla	ag iroin arop-ao	(Excel COC only)	Notes / specify Limits for result evaluation by selecting from drop-down below (Excel COC only)	Notes	Drinking Water (DW) Samples ¹ (client use)	Drinki
SAMPLE RECEIPT DETAILS (A		holow.	from drop do	reliention by colocti	Specific I imite for recult of	Notes	*	
	1							
77 77 77 77	ter	Surface Water	12:00	3-Oct-22			Pond C	
70	ter	Surface Water	12:00	3-Oct-22			Pond B	
Tro	-	Sample Type	(hh:mm)	(dd-mmm-yy)	port)	(This description will appear on the report)		ALS use only)
_	_	Sample Tu	Time	Date	nates	Sample Identification and/or Coordinates		ALS Sample #
6 hr mul a 48 hr 9	BER	Todd Webb	Sampler:	Pamela Toledo	3 ALS Contact:	02208443	ALS Lab Work Order # (ALS use only):	LS Lab W
_	OF				Location:		Table 4 ,3B + Table 4 ,3E	SD:
-	С				Requisitioner:			O / AFE:
_	01		Routing Code:		Major/Minor Code:		Pond B and C Oct 3	ob #:
_	ITA		PO#		AFE/Cost Center:	ile 4.3B)	LS Account # / Quote #: Q82442 (Table 4.3B)	S Accoun
\dashv	AIN	use)	Fields (client	Oil and Gas Required Fields (client use)	liO		Project Information	
	IEI				Email 2		Robbi Gooding	ontact:
Indicate Filtered (F), Preserved (P) or Filtered and Preserved (F/P) below	28		anharbors.com	gooding.robbi@cleanharbors.com	Email 1 or Fax		Clean Harbors Canada	ompany:
Analysis Request		FAX		Select Invoice Distribution: 🔽 EMAIL 🗌 MAIL	Select Invoice D	YES NO	Copy of Invoice with Report	
For all tests with rush TATs requested, please contact your AM to confirm availability.			cipients	Invoice Recipients		YES NO	Same as Report To	voice To
Date and Time Required for all E&P TATs:	0				Email 3		T0B 4A0	ostal Code:
Additional fees may apply to rush requests on weekends, statutory holidays and for non-routine tests			arbors.com	yuha.stan@cleanharbors.com	Email 2		Ryley, AB	ity/Province:
Same day [E2] if received by 10am M-S - 200% rush surcharge.	San		arbors.com	Email 1 or Fax webb.todd@cleanharbors.com	Email 1 or Fax	ω	PO Box 390, 50114 Range Road 173	treet:
2 day [F2] if received by 3pm M-F - 100% rush surcharge minimum. 1 day [E] if received by 3pm M-F - 100% rush surcharge minimum.		FAX	☐ MAIL ☐ FAX	on: I EMAIL	Select Distribution:	the final report	Company address below will appear on the final report	
3 day [P3] if received by 3pm M-F - 25% rush surcharge minimum	3 0	low if box checked	provide details be	Compare Results to Criteria on Report - provide details below if box checked	☐ Compare Result		(780) 663-2513	hone:
4 day [P4] if received by 3pm M-F - 20% rush surcharge minimum	1 D	IO N/A	☐ YES ☐ N	Merge QC/QCI Reports with COA ☐ YES ☐ NO ☐ N/A	Merge QC/QCI		Todd Webb, Stan Yuha	ontact:
Routine [R] if received by 3pm M-F - no surcharges apply	√ Ro⊔	EDD (DIGITAL)	☑ EXCEL □ E	∠ PDF	Select Report Format:		Clean Harbors Canada	ompany:
Turnaround Time (TAT) Requested			ecipients	Reports / Recipients	ort _	vill appear on the final repo	Contact and company name below will appear on the final report	eport To

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy.

1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.