

February 22, 2022

Alberta Environment and Parks (AEP) Monitoring Branch 11th Floor Oxbridge Place 9820-106 Street Edmonton, Alberta T5K 2J6

RE: Annual Ambient Air Monitoring Report (IAM-00010348-2021) Calendar Year 2021 Clean Harbors Canada, Inc. Approval 10348-03-00

To whom it may concern:

Clean Harbors Canada, Inc. (Clean Harbors) is presenting this Annual Ambient Air Monitoring Report, which was prepared by GHD Limited (Consultant), for the 2021 calendar year to Alberta Environment and Parks (AEP). The Clean Harbors Ryley Industrial Waste Management Facility (Facility) is located in SE 09-050-17 W4M near Ryley, Alberta.

This ambient air-monitoring program at the Facility is conducted in accordance with the requirements outlined in the Facility's Environmental Protection and Enhancement Act (EPEA) Approval, Approval Number: 10348-02-00 (Approval). As part of the Approval requirements, the Facility submitted a Proposal for a new Ambient Air Monitoring Program, which was subsequently approved on June 24, 2009 by the AEP (formally AENV). Operating under the Approval and the approved proposal, Clean Harbors operates two ambient air-monitoring stations: AEP Station ID 00010348-I-1 and AEP Station ID 00010348-C-1. There have been no changes to the monitoring locations, monitoring methods or significant changes to monitoring equipment during the 2021 calendar year.

During the 2021 calendar year, the meteorological station (AEP Station ID 00010348-C-1) operated at 93.78% percent annual uptime, which is above the 90 percent uptime threshold required by the Air Monitoring Directive, 2016.

Included in this report are the following:

- Summary of the ambient air monitoring program undertaken at the Facility for 2021
- Summary of AMD Electronic Transfer System Submittals
- Results for Particulate Matter < 10 microns (PM₁₀) reported in ug/m³
- Results for water-soluble cations; metals or anions if the PM₁₀ results were >50 ug/m³
- Results for Total Non-Methane Organic Compounds (TNMOC) and Volatile Organic Compounds (VOC)
- 5-year average plots for measured compounds outlined in the approval
- Annual wind rose and monthly uptime summary
- Any sampling issues or data issues that occurred during the 2021 calendar year

Should there be any questions and comments regarding this report, please do not hesitate to contact the undersigned.

Yours truly,

CLEAN HARBORS CANADA INC.

Stan Yuha

Stan Yuha Plant Manager

Alberta Environment and Parks (AEP) 2021 Annual Ambient Air Monitoring Report (IAM-00010348-2021)

Approval Number: 10348-03-00 Ryley Facility, Alberta

Clean Harbors Environmental Services Inc.

Table of Contents

1.	Introc	duction		1							
	1.1	Backgrou	nd	1							
	1.2	Contact I	nformation	1							
	1.3	3 Summary of Electronic Transfer System (ETS) Submittals									
	1.4	Monitorin	g Locations and Methodology	2							
		1.4.1 1.4.2	Clean Harbors AEP Mandated Air Monitoring Program Clean Harbors Voluntary Air Monitoring Program	2 5							
2.	Results and Discussions										
	2.1	Meteorolo and Discu	Meteorological Data for Wind Speed and Direction (AEP Station ID 00010348-C-1) Results and Discussion.								
		2.1.1	Meteorological Data Verification, Validation and Uptime	6							
	2.2	PM10 Monitoring Station (AEP Station ID 00010348-I-1) Results and Discussion									
	2.3	Metal Concentrations									
	2.4	VOC and TNMOC Station (AEP Station ID 00010348-I-1) Results and Discussion6									
	2.5	Dust Suppression Activities									
3.	Certif	ication		7							

Figure Index

Figure 1 Site Location and Air Monitoring Location Map

Table Index

Table 1.1	Metal Parameters	3
Table 1.2	VOCs	4

Table Index (Following Text)

Table 1	2021 Calendar Year - Particulate Matter Results
Table 2	2021 Calendar Year - Volatile Organic Compounds and Total Non-Methane Organic Compounds Analytical Results
Table 3	2021 Calendar Year – Metal Analysis Results
Table 4	2021 Calendar Year – Meteorological Station Uptime Summary

Appendix Index

Appendix A	Annual Wind Rose

- Appendix B Quarterly Calibration Records for Partisol
- Appendix C 5-Year Averages for PM₁₀, VOC and TNMOC Concentrations

1. Introduction

1.1 Background

GHD Limited (GHD), on behalf of Clean Harbors Canada (Clean Harbors), is presenting to Alberta Environment and Parks (AEP) the Annual Clean Harbors Ambient Air Monitoring Report for the 2021 calendar year. The Clean Harbors Ryley Industrial Waste Management Facility (Facility) is located in SE 09-050-17 W4M near Ryley, Alberta. Figure 1 presents the site location and air monitoring station location map.

The ambient air monitoring program at the Facility is conducted in accordance with the requirements outlined in the Facility's Environmental Protection and Enhancement Act (EPEA) Approval, Approval Number: 10348-03-00 (Approval). As part of the Approval requirements, the Facility submitted a proposal for a new ambient air monitoring program, which was subsequently approved on June 24, 2009 by the AEP (formally AENV).

1.2 Contact Information

As required by AMD Chapter 9, Section 2, contact information is provided for the following Facility personnel and Contractors that assisted with the performance of the Facility's Air Monitoring Program.

Name:	Mr. Stan Yuha
Title:	Plant Manager
Company:	Clean Harbors
Responsibilities:	ETS Submitter/Report Certifier
Address:	PO Box 390, Ryley, AB T0B 4A0
Phone:	780-663-2509
Email:	yuha.stan@cleanharbors.com

Name:	Mr. Todd Webb
Title:	Laboratory Chemist
Company:	Clean Harbors
Responsibilities:	Station Field Operator and Field Sampler
Address:	PO Box 390, Ryley, AB T0B 4A0
Phone:	780-663-2513
Email:	webb.todd@cleanharbors.com

Name:	Mr. Pooya Shariaty
Title:	Senior Air Quality Engineer
Company:	GHD Limited
Responsibilities:	Senior QA/QC
Address:	3445-114 th Ave. SE, Suite 103 Calgary, AB
Phone:	403-271-2000
Email:	pooya.shariaty@ghd.com
Name:	Mr. Trevor Lewis
Title:	Air Quality Scientist/Project Manager
Company:	GHD Limited
Responsibilities:	Maintenance/Calibration Services/Report Preparer/Project Manager
Address:	3445-114 th Ave. SE, Suite 103 Calgary, AB
Phone:	403-271-2000
Email:	trevor.lewis@ghd.com
Company:	InnoTech
Responsibilities:	Laboratory Analytical Services
Address:	PO Bag 4000, Vegreville, Alberta
Phone:	780-632-8211
Email:	EAS.Results@albertainnovates.ca

1.3 Summary of Electronic Transfer System (ETS) Submittals

The "Alberta Environment and Parks (AEP) 2021 Annual Ambient Air Monitoring Report for Approval Number: 10348-03-00" for the Clean Harbors, Ryley Alberta Facility was submitted to the ETS as IAM-00010348-2021.pdf, by March 31, 2022.

1.4 Monitoring Locations and Methodology

Clean Harbors undertakes ambient air monitoring at three locations to assess ambient air quality at and around the Facility. These locations include two AEP mandated stations; AEP Station ID 00010348-I-1 and AEP Station ID 00010348-C-1 and one voluntary ambient air monitoring station. The locations of the air monitoring stations are identified on Figure 1.

A full description of the monitoring locations and methodology for the AEP mandated air monitoring program is outlined in Section 1.4.

In addition to the two AEP mandated stations, Clean Harbors operates a voluntary air monitoring program for the Village of Ryley. The voluntary air monitoring program utilizes a hi-volume sampler station located at the same location as AEP Station ID 00010348-C-1, and an additional hi-volume sampler/meteorological station that is located at the Ryley School and is described in Section 1.4.2.

1.4.1 Clean Harbors AEP Mandated Air Monitoring Program

The intermittent monitoring station, known as the Ryley Lift Station (AEP Station ID 00010348-I-1), is located on Secondary Road 854, approximately 350 metres southeast of the Facility. At this location, samples are collected and analyzed for the following: particulate matter less than or equal to 10 micrometers (μ m) in diameter (PM₁₀), volatile organic compounds (VOCs), and total non-methane organic compounds (TNMOC). Additionally, PM₁₀ samples that exceed 50 micrograms per

cubic metre (50 μ g/m³) are analyzed for a target list of metals, anions, and cations. Sampling is conducted every 12-days as required by the Facility's Approval.

The second station, located on the roof of the administration building at the Facility (AEP Station ID 00010348-C-1), is a continuous meteorological station that collects wind speed and wind direction data.

1.4.1.1 PM₁₀ Sampling Station (AEP Station ID 00010348-I-1)

PM₁₀ is sampled over a 24-hour period at a volumetric flow rate of 16.7 litres per minute. PM₁₀ samples are collected on a Teflon[®] filter using a federal reference method (FRM) sampler called a Partisol air sampler. Calibration of the Partisol sampler is conducted and documented on a quarterly basis. The filter samples are collected and sent to InnoTech Alberta (Laboratory) under chain of custody procedures. The filters are analyzed gravimetrically utilizing laboratory method AC-029. Should it be determined that the PM₁₀ threshold of 50 μ g/m³ is exceeded, the laboratory would proceed with the metal analysis using accepted methodology. The following is a list of the metal parameters that are analyzed when the PM₁₀ threshold is exceeded.

Table 1.1 Metal Parameters

Parameter	CAS No.
Particulate Matter (PM ₁₀)	Not available
Antimony	7440-36-0
Arsenic	7440-38-2
Beryllium	7440-41-4
Cadmium	7440-43-9
Chromium	7440-47-3
Cobalt	7440-48-4
Copper	7440-50-8
Lead	7439-92-1
Manganese	7439-96-5
Mercury	7439-97-6
Nickel	7440-02-0
Silver	7782-49-2
Thallium	7440-28-0
Tin	7440-31-5
Ammonia-N	Not available
Calcium Ion	Not available
Chloride	Not available
Magnesium Ion	Not available
Nitrate	Not available
Potassium Ion	Not available
Sodium Ion	Not available
Sulphate	Not available

1.4.1.2 Volatile Organic Compound (VOC) and Total Non-Methane Organic Compound (TNMOC) Station (AEP Station ID 00010348-I-1)

For VOC and TNMOC sampling and analysis, 6 litre evacuated SUMMA[®] canisters are used to collect the sample over a 24-hour period. Flow controllers and pressure gauges supplied by the laboratory are used to maintain a constant sample flowrate over the 24-hour sampling period. The VOC analysis is conducted utilizing laboratory method AC-058 by gas chromatography mass spectrometry. The TNMOC analysis is conducted utilizing laboratory method NA-028 by gas chromatography flame ionization detector. The following is a list of VOCs that are analyzed:

Compound	CAS No.	Compound	CAS No.
1,2,3-Trimethylbenzene	526-73-8	Isoprene	78-79-5
1,2,4-Trimethylbenzene	95-63-6	Isopropylbenzene	98-82-8
1,3,5-Trimethylbenzene	108-67-8	m, p-Xylene	108-38-3/ 106-42-3
1-Butene/Isobutylene	106-98-9	m-Diethylbenzene	141-93-5
1-Hexene/2-Methyl-1- pentene	592-41-6	Methylcyclohexane	108-87-2
1-Pentene	109-67-1	Methylcyclopentane	96-37-7
2,2,4-Trimethylpentane	540-84-1	m-Ethyltoluene	620-14-4
2,2-Dimethylbutane	75-83-2	n-Butane	106-97-8
2,3,4-Trimethylpentane	565-75-3	n-Decane	124-18-5
2,3-Dimethylbutane	79-29-8	n-Dodecane	112-40-3
2,3-Dimethylpentane	565-59-3	n-Heptane	142-82-5
2,4-Dimethylpentane	108-08-7	n-Hexane	110-54-3
2-Methylheptane	592-27-8	n-Nonane	111-84-2
2-Methylhexane	591-76-4	n-Octane	111-65-9
2-Methylpentane	107-83-5	n-Pentane	109-66-0
3-Methylheptane	589-81-1	n-Propylbenzene	103-65-1
3-Methylhexane	589-34-4	n-Undecane	1120-21-4
3-Methylpentane	96-14-0	o-Ethyltoluene	611-14-3
Benzene	71-43-2	o-Xylene	95-47-6
cis-2-Butene	590-18-1	p-Ethyltoluene	622-96-8
cis-2-Pentene	627-20-3	Styrene	100-42-5
Cyclohexane	110-82-7	Toluene	108-88-3
Cyclopentane	287-92-3	trans-2-Butene	624-64-6
Ethylbenzene	100-41-4	trans-2-Pentene	646-04-8
Isobutane	75-28-5	p-Diethylbenzene	105-05-5
Isopentane	78-78-4		

Table 1.2 VOCs

Meteorological Station (AEP Station ID 00010348-C-1)

Clean Harbors operates a RM Young 05305-10A metrological station at the Facility. The meteorological station continuously collects wind speed and wind direction at the site. Reporting for this station is conducted on a monthly and annual basis where 24-hour wind speed and wind direction, wind class frequency distribution and wind roses are presented. As part of the Approval Clean Harbors is also required to ensure that operation of the station is maintained at no less than 90 percent uptime. The uptime data is also presented on a monthly and annual basis.

1.4.2 Clean Harbors Voluntary Air Monitoring Program

Clean Harbors operates two hi-volume sampler stations that collect total particulate matter. One hivolume sampler station is located on the roof of the administration building at the Facility, near the AEP Station ID 00010348-C-1, and is intended to collect background ambient air data. The second hi-volume sampler station is located at the Ryley School with a meteorological station and is intended to collect sample data. The samples collected are measured gravimetrically for total particulate and then analyzed for metals by the laboratory when the particulate weight is greater than 50 mg. The two air monitoring stations are configured such that the stations only collect air samples when the wind direction is oriented in a north-east to south-west direction and the wind speed is greater than 5 km/hour. The objective of the voluntary program is to determine airborne particulates from landfill operations that could potentially impact the Village of Ryley.

The results of this voluntary air monitoring program are communicated in a letter presented to the Village of Ryley on an annual basis.

2. **Results and Discussions**

The following section presents the results from the ambient air monitoring program that was conducted by Clean Harbors in 2021. Where applicable, comparisons were made to Alberta Ambient Air Quality Objectives (AAAQO) for parameters that had 24-hour average objectives and annual objectives. These parameters include m,p,o-xylene, hexane, toluene and benzene. For all other parameters, AAAQO have not been established limits or the limits have averaging periods other than 24-hours or annual.

2.1 Meteorological Data for Wind Speed and Direction (AEP Station ID 00010348-C-1) Results and Discussion

In accordance with the Approval, the Facility is required to collect wind data continuously when operations are occurring at the Facility. In 2021, the wind station collected 93.78 percent of usable data. Appendix A presents the wind data that was collected and also wind rose plots. As illustrated in the wind rose and frequency distribution chart for 2021, the predominant wind direction is from the Northwest, which is consistent with historical information and data.

The 2021 annual wind rose and frequency distribution chart is presented in Appendix A.

2.1.1 Meteorological Data Verification, Validation and Uptime

In the 2021 calendar year, the meteorological station had an annual uptime of 93.78 percent, above the 90 percent uptime required. The station maintained an uptime above 90 percent for 10 out of the 12-months in the calendar year.

2.2 PM₁₀ Monitoring Station (AEP Station ID 00010348-I-1) Results and Discussion

In 2021, 31 samples were collected for PM_{10} analysis at 12-day intervals. No samples were discarded during the year.

The PM₁₀ samples in 2021 had a minimum concentration of 1.67 μ g/m³, a maximum concentration of 80.99 μ g/m³, and an average concentration of 22.05 μ g/m³. There is currently no AAAQO is specified for PM₁₀ over a 24-hour or 1-hour averaging period; however, the Facility is required to analyze for metals should the PM₁₀ concentration exceed 50 μ g/m³. Test 772, 780 and 782 that occurred on July 15, October 19, and November 12 respectively required metals analysis due to elevated PM₁₀ results above 50 μ g/m³. Metal results are discussed in Section 2.3. The 2021 test results from the PM₁₀ monitoring are presented in Table 1 and include maximum, minimum, and average values for the reporting period. The previous 5-year averages for PM₁₀ concentrations can be found in Appendix C.

The Partisol sampling instrument was calibrated on a quarterly basis in 2021. The quarterly calibration records are included in Appendix B.

2.3 Metal Concentrations

28 of the 31 samples collected in 2021 returned concentrations of PM₁₀ below the 50 μ g/m³ threshold. Test 772, 780, and 782 returned PM₁₀ concentrations of 66.97 μ g/m³, 80.99 μ g/m³, 64.75 μ g/m³ respectively. These samples were sent for additional analysis and the results can be found in Table 3 of this report.

AAAQO are specified for arsenic (0.01 μ g/m³ annual average and 0.1 μ g/m³ 1-hour average) and chromium (1.00 μ g/m³ 1-hour average) but there are currently no AAAQO for either substance for a 24-hour averaging period in Alberta. The lab results for all samples were the result of a 24-hour sampling period and therefore could not be directly compared to an AAAQO. However, when comparing the 24-hour results for both arsenic and chromium to the hourly AAAQO, both were still below the thresholds.

2.4 VOC and TNMOC Station (AEP Station ID 00010348-I-1) Results and Discussion

In 2021, 31 samples were collected for VOC and TNMOC analysis at 12-day intervals. All samples were deemed valid.

There are three VOC parameters that that have corresponding AAAQO with 24-hour averaging periods including o,p,m-xylene, hexane and toluene. There is one VOC parameter (benzene) that

has a corresponding annual AAAQO. The annual AAAQO for benzene is 0.9 ppbv. The annual result for benzene samples at the lift station was 0.63 ppbv.

The 2021 sample results from the VOC and TNMOC monitoring are presented in Table 2 and include maximum, minimum, and average values. The previous 5-year averages for VOC and TNMOC parameters can be found in Appendix C.

2.5 Dust Suppression Activities

In 2021, Clean Harbors did not conduct dust suppression activities at the Facility.

3. Certification

Per the requirements of AMD, Chapter 9, the following certification is provided for the 2021 Annual Ambient Air Monitoring Report.

"I certify that I have reviewed and verified this report and that the information is complete, accurate and representative of the monitoring results, reporting timeframe and the specified analysis, summarization and reporting requirements."

Stan Yuka

Stan Yuha Plant Manager/Report Certifier

Table 12021Calendar YearPM10 Analytical ResultsAEP Station ID 00010348-I-1Clean Harbors Canada, Inc.

	Parameter	PM ₁₀	Particulate Weight				
	Units	µg/m³ ⁽¹⁾⁽²⁾	mg				
Date	Test ID						
21/01/04	756	7.82	0.19				
21/01/16	757	7.60	0.18				
21/01/28	758	20.00	0.52				
21/02/09	759	33.03	0.90				
21/02/21	760	2.31	0.05				
3/5/2021	761	1.67	0.04				
3/17/2021	762	21.42	0.51				
3/29/2021	763	15.87	0.39				
4/10/2021	764	15.84	0.38				
4/22/2021	765	9.22	0.23				
5/4/2021	766	21.71	0.51				
5/16/2021	767	24.18	0.54				
5/28/2021	768	26.04	0.60				
6/9/2021	769	7.04	0.16				
6/21/2021	770	23.29	0.52				
7/3/2021	771	17.94	0.4				
7/15/2021	772	66.97	1.48				
7/27/2021	773	22.88	0.52				
8/8/2021	774	17.94	0.41				
8/20/2021	775	20.31	0.47				
9/1/2021	776	6.70	0.15				
9/13/2021	777	16.54	0.38				
9/25/2021	778	18.07	0.41				
10/7/2021	779	46.84	1.11				
10/19/2021	780	80.99	1.96				
10/31/2021	781	9.55	0.24				
11/12/2021	782	64.75	1.58				
11/24/2021	783	18.24	0.47				
12/6/2021	784	13.66	0.35				
12/18/2021	785	12.65	0.33				
12/30/2021	786	12.35	0.33				
	Maximum	80.99	1.96				
	Minimum	1.67	0.04				
	Average	22.05	0.53				

Note:

(1) Alberta Ambient Air Quality Objectives do not currently provide an objective fo PM_{10} .

(2) In accordance with the Facility's Approval, PM_{10} samples that exceed 50 μ g/m³ are analyzed for a target list of metals, anions, and cations.

Date 1/4/2021 1/16/2021 1/28/2021 2/9/2021 2/21/2021 3/5/2021 3/17/2021 3/29/2021 4/10/2021 4/22/2021 5/4/2021 5/16/2021 5/28/2021 6/9/2021 6/21/2021 7/3/2021

		Test ID	756	757	758	759	760	761	762	763	764	765	766	767	768	769	770	771	772	773	774
Parameter	Units	AAAQO ⁽¹⁾⁽²⁾																			
1,2,3-Trimethylbenzene	ppbv	-	< 0.06	0.19	< 0.09	< 0.09	< 0.10	< 0.10	< 0.08	< 0.08	< 0.08	< 0.08	0.15	< 0.09	< 0.08	< 0.08	< 0.09	< 0.09	< 0.10	< 0.08	< 0.08
1,2,4-Trimethylbenzene	ppbv	-	< 0.06	< 0.08	< 0.09	< 0.09	< 0.10	< 0.10	< 0.08	< 0.08	< 0.08	< 0.08	0.59	< 0.05	0.49	< 0.05	< 0.05	< 0.05	< 0.06	< 0.05	< 0.05
1,3,5-Trimethylbenzene	ppbv	-	< 0.02	< 0.03	< 0.04	< 0.03	< 0.04	< 0.04	< 0.03	< 0.03	< 0.03	< 0.03	0.42	< 0.05	0.30	< 0.05	< 0.05	< 0.05	< 0.06	< 0.05	< 0.05
1-Butene/Isobutylene	ppov	-		0.54	0.72	0.95	1.20	1.41	0.96	0.95	< 0.03	1.03	0.86	1.11	1.24	1.21	< 0.11	< 0.11	< 0.12	1.50	1.48
1-Pentene	ppov	-	< 0.02	0.03	< 0.04 0.18	< 0.03	0.04	0.04	< 0.03	< 0.03	< 0.03	< 0.03	0.18	< 0.12	0.11	< 0.05	< 0.13	0.13	0.14	< 0.12 0.13	< 0.12
2,2,4-Trimethylpentane	vdqq	-	< 0.01	0.24	< 0.02	< 0.02	< 0.02	0.2	< 0.02	0.07	< 0.02	0.16	0.09	0.11	3.91	< 0.03	< 0.04	< 0.04	0.12	0.12	0.16
2,2-Dimethylbutane	ppbv	-	< 0.01	0.15	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.08	< 0.04	< 0.03	< 0.03	0.19	< 0.04	< 0.04	< 0.03	0.07
2,3,4-Trimethylpentane	ppbv	-	< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.06	0.13	0.32	< 0.03	< 0.04	< 0.04	< 0.04	< 0.03	< 0.03
2,3-Dimethylbutane	ppbv	-	< 0.02	0.24	< 0.04	0.2	< 0.04	0.27	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.16	< 0.15	< 0.15	< 0.16	0.23	0.36	< 0.15	< 0.15
2,3-Dimethylpentane	ppbv	-	< 0.02	< 0.03	< 0.04	< 0.03	< 0.04	< 0.04	< 0.03	< 0.03	< 0.03	< 0.03	0.10	0.14	0.94	< 0.03	0.21	< 0.04	< 0.04	0.07	< 0.03
2,4-Dimethylpentane	ppbv	-	< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.04	0.07	0.34	< 0.05	< 0.05	< 0.05	< 0.06	< 0.05	< 0.05
2-Methylheptane	ppbv	-	< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.04	< 0.03	< 0.03	< 0.04	< 0.04	< 0.04	< 0.03	< 0.03
2-Methylnexane	pppv	-	< 0.01	0.26	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.08	< 0.02	< 0.02	< 0.02	< 0.05	0.68	< 0.05	0.24	< 0.05	< 0.06	< 0.05	0.1
2-Methylbentane	pppv	-	< 0.01	0.08	0.24	0.21	< 0.02	0.41	< 0.02	0.08	< 0.02	0.23	0.10	< 0.04	< 0.03	< 0.03	< 0.04	< 0.04	< 0.04	< 0.03	< 0.03
3-Methylhexane	ppbv	-	< 0.02	0.05	< 0.04	< 0.03 0.2	< 0.04	0.04	< 0.03	0.06	< 0.03	< 0.03	0.10	< 0.03	0.58	< 0.03	0.00	< 0.03	< 0.00	< 0.03	< 0.03
3-Methylpentane	ppby	-	< 0.02	1 24	0.21	0.26	< 0.02	0.35	< 0.02	0.00	< 0.02	0.21	0.10	0.13	0.61	0.14	0.27	< 0.04	0.21	0.17	0.1
Benzene	ppbv	0.9	< 0.01	0.4	< 0.02	0.31	0.24	0.28	< 0.02	0.22	< 0.02	< 0.02	0.04	0.13	0.45	< 0.05	0.17	0.22	0.38	0.16	0.15
cis-2-Butene	vdqq	-	< 0.02	0.13	< 0.04	< 0.03	< 0.04	< 0.04	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.06	< 0.05	< 0.05
cis-2-Pentene	vdqq	-	< 0.02	< 0.03	< 0.04	< 0.03	< 0.04	< 0.04	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.04	< 0.03	< 0.03	< 0.04	< 0.04	< 0.04	< 0.03	< 0.03
Cyclohexane	ppbv	-	< 0.02	0.81	< 0.04	0.41	< 0.04	0.45	< 0.03	0.15	0.43	< 0.03	0.22	0.16	0.36	< 0.06	0.20	0.16	0.29	< 0.07	0.23
Cyclopentane	ppbv	-	< 0.01	0.2	< 0.02	< 0.02	0.21	0.28	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.04	< 0.03	< 0.03	< 0.04	0.15	< 0.04	< 0.03	0.1
Ethylbenzene	ppbv	-	< 0.01	1.24	< 0.02	0.24	< 0.02	< 0.02	< 0.02	0.21	< 0.02	< 0.02	0.59	< 0.05	0.57	< 0.05	0.20	0.45	< 0.06	< 0.05	0.18
Isobutane	ppbv	-	1.75	0.92	1.87	1.16	1.6	3.65	1.5	0.54	< 0.03	0.62	0.58	0.74	0.52	0.73	2.68	1.78	1.78	0.94	0.55
Isopentane	ppbv	-	1.05	1.23	1.14	0.94	0.71	2.08	0.61	0.39	< 0.05	0.49	0.88	1.02	2.65	0.23	1.28	0.92	0.87	0.43	0.29
Isoprene	ppbv	-	< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.04	0.12	< 0.03	2.85	0.73	2.66	0.35	0.25
m n Yylono	pppv	-	< 0.01	< 0.02 5 20	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.20	< 0.07	< 0.07	< 0.06	< 0.07	< 0.07	< 0.06	< 0.07	< 0.07
m_Diethylbenzene	ppov	101	< 0.04	0.15	< 0.05	< 0.01	< 0.00	< 0.00	< 0.05	< 0.47	< 0.05	< 0.07	< 0.06	< 0.07	< 0.03	< 0.00	< 0.04	< 0.04	< 0.04	< 0.07	< 0.03
Methylcyclohexane	ppbv	-	< 0.05	0.13	< 0.07	< 0.07	< 0.00	< 0.00	< 0.00	< 0.00	< 0.07	< 0.07	0.00	< 0.04	0.00	< 0.05	< 0.04	< 0.04	< 0.04	< 0.05	0.05
Methylcyclopentane	vdqq	-	0.11	0.47	< 0.02	< 0.02	< 0.02	0.17	< 0.02	0.1	< 0.02	0.12	0.16	< 0.04	0.44	< 0.03	1.01	0.19	0.20	0.10	< 0.03
m-Ethyltoluene	ppbv	-	< 0.02	0.79	0.2	0.24	0.17	0.33	< 0.03	0.08	< 0.03	0.2	0.09	0.13	0.58	0.15	0.21	0.17	0.21	0.20	0.11
n-Butane	ppbv	-	2.14	0.94	2.46	1.42	1.55	4.28	2	0.45	< 0.05	0.31	0.49	0.74	0.56	0.45	0.91	0.95	0.73	0.53	0.33
n-Decane	ppbv	-	< 0.07	< 0.10	< 0.10	< 0.10	< 0.12	< 0.12	< 0.10	< 0.09	< 0.10	< 0.10	0.16	< 0.11	< 0.10	< 0.10	< 0.11	< 0.11	< 0.12	< 0.10	0.13
n-Dodecane	ppbv	-	< 0.5	< 0.7	< 0.7	< 0.7	< 0.8	< 0.8	< 0.6	< 0.6	< 0.7	< 0.7	< 0.6	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.6	< 0.5	< 0.5
n-Heptane	ppbv	-	< 0.01	0.61	< 0.02	< 0.02	< 0.02	0.42	< 0.02	0.2	< 0.02	< 0.02	0.20	0.24	0.58	< 0.06	< 0.07	0.22	0.31	< 0.07	< 0.07
n-Hexane	ppbv	1990	0.46	3.06	0.4	0.58	< 0.02	0.75	0.02	0.2	< 0.02	0.48	0.20	< 0.05	0.62	0.26	0.27	0.30	0.34	0.49	0.2
n-Nonane	ppbv	-	< 0.01	0.39	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.11	< 0.02	< 0.02	0.13	< 0.07	0.20	< 0.06	0.19	< 0.07	< 0.08	< 0.07	0.09
n-Octane	ppov	-	< 0.02	0.43	< 0.04	< 0.03	< 0.04	0.23	0.04	0.09	< 0.03	0.12	0.11	< 0.04	< 0.03	< 0.03	0.30	0.20	0.23	0.14	< 0.03
n-Propylbenzene	ppov	-	< 0.06	< 0.08	< 0.0	< 0.0	< 0.10	< 0.10	< 0.08	< 0.08	< 0.2	< 0.08	0.11	< 0.11	0.18	< 0.1	< 0.06	< 0.11	< 0.12	< 0.10	< 0.1
n-Undecane	vdqq	-	< 0.6	< 0.8	< 0.9	< 0.9	< 1.0	< 1.0	< 0.8	< 0.8	< 0.8	< 0.8	< 0.8	< 0.9	< 0.8	< 0.8	< 0.5	< 0.9	< 1.0	< 0.8	< 0.8
o-Ethyltoluene	ppbv	-	< 0.01	0.23	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.04	< 0.02	< 0.02	0.15	< 0.04	0.21	< 0.03	< 0.02	< 0.04	< 0.04	< 0.03	< 0.03
o-Xylene	ppbv	161	< 0.01	1.7	< 0.02	0.23	< 0.02	< 0.02	< 0.02	0.24	< 0.02	0.28	0.66	< 0.05	0.68	< 0.05	< 0.03	0.59	0.30	< 0.05	0.16
p-Ethyltoluene	ppbv	-	< 0.05	0.32	< 0.07	< 0.07	< 0.08	< 0.08	< 0.06	< 0.06	< 0.07	< 0.07	< 0.06	< 0.04	0.59	< 0.03	< 0.02	< 0.04	< 0.04	< 0.03	< 0.03
Styrene	ppbv	-	< 0.08	< 0.12	< 0.12	< 0.12	< 0.14	< 0.14	< 0.11	< 0.11	< 0.11	< 0.11	0.42	< 0.07	< 0.07	< 0.06	< 0.04	< 0.07	< 0.08	< 0.07	< 0.07
Toluene	ppbv	106	< 0.05	0.59	< 0.07	< 0.07	< 0.08	< 0.08	< 0.06	< 0.06	< 0.07	< 0.07	< 0.06	< 0.07	0.52	< 0.06	< 0.04	< 0.07	< 0.08	< 0.07	< 0.07
trans-2-Butene	ppbv	-	0.16	5.78	< 0.02	6.54	< 0.02	0.35	0.16	0.74	0.17	0.36	1.54	0.59	3.26	0.21	0.21	0.79	1.02	0.29	0.30
trans-2-Pentene	ppbv	-	< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.05	0.14	< 0.05	< 0.03	< 0.05	< 0.06	< 0.05	< 0.05
p-Diethylbenzene	ppbv	-	< 0.02	< 0.03	< 0.04	< 0.03	< 0.04	< 0.04	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.04	0.57	< 0.03	< 0.02	< 0.04	< 0.04	< 0.03	< 0.03
I otal Non-Methane Organic	ppmv	-	< 0.06	< 0.08	< 0.09	< 0.09	< 0.10	< 0.10	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.09	< 0.09	< 0.08	< 0.09	< 0.09	< 0.10	< 0.08	< 0.08
Compounds Total VOCo			0 100	22 740	11 510	10.40	10.10	21 /10	9 420	0 250	4.05	7.04	15.04	0.45	20.20	6.61	15 14	12.00	14.00	0.40	0.00
	vaqq	-	9.100	33.740	11.510	10.40	10.19	21.410	0.430	0.330	4.05	1.21	10.01	9.40	29.20	0.01	15.14	13.20	14.82	9.12	ö.23

Notes:

(1) Alberta Ambient Air Quality Objectives (Over a 24 hour averaging period for o,m,p-Xylene, n-Hexane, Toluene)

(2) Alberta Ambient Air Quality Objectives (Over an Annual period for Benzene)

(3) Minimum values are the lowest values above the lab detection limit

(4) Averages are taken with the assumption that values under the lab detection limit are equal to the lab dection limit, as required by the AMD

7/15/2021 7/27/2021 8/8/2021

		Date	8/20/2021	9/1/2021	9/13/2021	9/25/2021	10/7/2021	10/19/2021	10/31/2021	11/12/2021	11/24/2021	12/6/2021	12/18/2021	12/30/2021	Maximum	Minimum ⁽³⁾	Average ⁽⁴⁾	Median	% of AAAQO
		Test ID	775	776	777	778	779	780	781	782	783	784	785	786					
Parameter	Units	AAAQO ⁽¹⁾⁽²⁾																	
1,2,3-Trimethylbenzene	ppbv	-	< 0.08	< 0.07	0.27	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	0.18	< 0.08	< 0.08	< 0.08	0.27	0.06	0.10	0.08	
1,2,4-Trimethylbenzene	ppbv	-	< 0.05	0.27	0.66	< 0.05	< 0.05	< 0.05	< 0.05	0.32	0.27	< 0.05	0.23	< 0.05	0.66	0.05	0.14	0.08	
1,3,5-Trimethylbenzene	ppbv	-	< 0.05	0.15	0.42	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.22	< 0.05	< 0.05	< 0.05	0.42	0.02	0.09	0.05	
1-Butene/Isobutylene	ppbv	-	2.05	0.39	0.90	0.15	2.48	1.24	2.68	0.19	2.29	0.35	< 0.09	0.21	2.68	0.03	0.94	0.93	
1-Hexene/2-Methyl-1-pentene	ppbv	-	< 0.12	0.26	< 0.12	< 0.11	< 0.12	< 0.12	< 0.11	< 0.12	< 0.11	< 0.11	< 0.11	< 0.11	0.26	0.02	0.10	0.11	
7-Feillelle 2.2.4-Trimethylpentane	ppbv	-	0.44	0.10	0.30	0.10	< 0.05	< 0.05	< 0.05	< 0.05 0.15	< 0.05	< 0.05 0.17	< 0.05	< 0.05 0.10	0.44	0.01	0.12	0.03	
2,2,4-11iiieiiiyipentane 2 2-Dimethylbutane	ppbv		0.17	0.03	< 0.03	0.03	< 0.12	< 0.03	< 0.03	< 0.13	< 0.03	< 0.03	< 0.03	0.13	0.30	0.01	0.27	0.03	
2.3.4-Trimethylpentane	ppbv	-	0.30	0.07	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	0.05	< 0.03	< 0.03	< 0.03	0.32	0.01	0.00	0.03	
2.3-Dimethylbutane	vdqq	-	< 0.15	< 0.13	< 0.15	< 0.14	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.14	< 0.14	0.14	0.36	0.02	0.14	0.15	
2,3-Dimethylpentane	ppbv	-	< 0.03	0.38	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	0.13	< 0.03	0.13	0.94	0.02	0.09	0.03	
2,4-Dimethylpentane	ppbv	-	< 0.05	0.12	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.13	< 0.05	< 0.05	0.34	0.01	0.05	0.05	
2-Methylheptane	ppbv	-	< 0.03	0.77	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	0.77	0.01	0.05	0.03	
2-Methylhexane	ppbv	-	< 0.05	1.03	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.14	0.18	0.14	< 0.05	1.03	0.01	0.12	0.05	
2-Methylpentane	ppbv	-	0.33	0.34	0.27	< 0.03	< 0.03	< 0.03	0.23	0.14	0.14	0.24	0.18	0.23	0.68	0.01	0.15	0.08	
3-Methylheptane	ppbv	-	< 0.05	0.17	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.33	0.02	0.06	0.05	
3-Methylhexane	ppbv	-	0.17	1.48	0.27	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	0.2	0.16	0.19	1.48	0.02	0.16	0.04	
3-Methylpentane	ppbv	-	0.26	0.69	0.29	0.23	0.17	0.13	0.24	0.19	0.27	0.24	0.18	0.26	1.24	0.01	0.24	0.21	
Benzene	ppbv	0.9	12.90	0.9	< 0.05	0.21	0.27	< 0.05	0.32	0.21	0.24	0.36	0.3	0.32	12.90	0.01	0.63	0.22	69.61%
cis-2-Butene	ppbv	-	< 0.05	< 0.04	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.13	0.02	0.05	0.05	
cis-2-Pentene	ppbv	-	< 0.03	0.11	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	0.11	0.02	0.03	0.03	
Cyclohexane	ppbv	-	0.26	0.28	0.43	0.45	0.33	0.30	0.41	< 0.07	< 0.07	0.35	0.31	0.36	0.81	0.02	0.25	0.26	
Cyclopentane	ppbv	-	150.00	0.13	0.24	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	0.16	< 0.03	0.15	150.00	0.01	4.91	0.03	
Ethylbenzene	ppov	-	0.45	0.54	1.19	< 0.05	0.44	< 0.05	0.38	0.32	0.28	0.25	0.2	0.50	1.24	0.01	0.28	0.20	
	ppov	-	0.70	0.77	0.40	0.72	1.07	0.31	1.20	0.94	0.92	1.32	1.1	1.22	3.00	0.03	1.12	0.94	
Isoprene	ppbv	-	0.51	0.9	0.04	0.10	< 0.00	< 0.03	< 0.94	< 0.02	< 0.07	< 0.95	< 0.75	< 0.03	2.85	0.05	0.27	0.00	
Isopronvlbenzene	ppbv		< 0.07	< 0.06	< 0.14	< 0.10	< 0.03	< 0.03	< 0.05	< 0.03	< 0.03	< 0.05	< 0.05	0.05	0.41	0.01	0.27	0.05	
m n-Xvlene	ppsv	161	0.98	1 99	7 04	1 94	0.77	< 0.07	< 0.06	0.43	0.39	0.00	0.00	0.41	7 04	0.04	0.94	0.00	4 37%
m-Diethylbenzene	nnby	-	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.40	< 0.00	< 0.00	0.15	0.03	0.05	0.03	1.07 /0
Methylcvclohexane	ppbv	-	0.19	0.18	0.38	0.27	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.00	< 0.00	< 0.00	0.48	0.05	0.13	0.12	
Methylcyclopentane	vdqq	-	0.16	0.93	0.31	0.22	0.18	< 0.03	< 0.03	< 0.03	0.18	0.29	0.19	0.24	1.01	0.02	0.20	0.16	
m-Ethyltoluene	ppbv	-	0.30	0.91	0.26	0.19	0.18	0.15	0.22	< 0.08	0.32	0.26	0.18	0.24	0.91	0.02	0.23	0.20	
n-Butane	ppbv	-	0.65	1.22	0.64	0.68	0.93	0.30	2.06	1.11	1.17	4.6	1.61	2.10	4.60	0.05	1.24	0.93	
n-Decane	ppbv	-	0.40	< 0.09	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	0.19	< 0.10	< 0.09	< 0.09	0.40	0.07	0.12	0.10	
n-Dodecane	ppbv	-	< 0.5	< 0.4	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.80	0.40	0.56	0.50	
n-Heptane	ppbv	-	0.31	3.26	< 0.07	< 0.06	< 0.07	< 0.07	< 0.06	< 0.07	0.28	0.38	0.3	0.34	3.26	0.01	0.27	0.07	
n-Hexane	ppbv	1990	0.86	3.38	< 0.05	0.21	0.37	0.23	0.39	0.42	0.85	0.5	0.31	0.47	3.38	0.02	0.54	0.37	0.17%
n-Nonane	ppbv	-	0.18	0.15	0.30	0.22	< 0.07	< 0.07	< 0.06	< 0.07	< 0.07	0.19	< 0.06	< 0.06	0.39	0.01	0.10	0.07	
n-Octane	ppbv	-	0.23	0.21	0.31	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	0.19	0.24	0.19	< 0.03	0.43	0.02	0.12	0.04	
n-Pentane	ppbv	-	1.40	0.71	0.88	0.42	0.44	0.24	0.74	0.57	0.50	0.81	0.67	0.89	1.70	0.10	0.64	0.60	
n-Propylbenzene	ppbv	-	< 0.10	0.13	0.25	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.09	< 0.09	0.25	0.06	0.10	0.10	
n-Undecane	ppov	-	< 0.02	< 0.7	< 0.9	< 0.8	< 0.8	< 0.02	< 0.8	< 0.02	< 0.02	< 0.8	< 0.8	< 0.8	1.00	0.50	0.82	0.80	
o-Ethyltoluene	ppov	-	< 0.03	0.13	0.20	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	0.20	0.01	0.05	0.03	1 00%
u-Aylelle n Ethyltaluana	hbby	101	0.40	0.02	C1.1		0.30	< 0.00	< 0.00	0.27	0.20	0.24	0.10	U.30	1.73	0.01	0.34	0.24	1.09%
p-⊑triyitoiuerie Stvrono	pppy	-	< 0.03		 0.03 0.26 	< 0.03 0.12	< 0.03	< 0.03	< 0.03	< 0.03	< U.U3 0.10	< 0.03	< 0.03	< 0.03	0.09	0.02	0.07	0.03	
Toluopo	hhna	-	< 0.07	0.00	0.20	0.13	< 0.07	< 0.07		< 0.07	0.10				0.42	0.04	0.10	0.07	0 0.204
rouelle trans_2_Butons	hhna	100	0.97 3.91	0.37	 0.07 1.27 	> U.UO	< 0.07 0 EE	< 0.07 < 0.05	 0.00 0.04 	 0.07 0.22 	0.30	0.00	> 0.00		0.97	0.04	0.10	0.07	0.92%
trans-2-Dutene	hhny	-	3.01 < 0.05	1.44 < 0.04	4.37 < 0.05	0.09 < 0.05	0.00	< 0.00 < 0.05	0.04 < 0.05	0.32 < 0.05	0.04 < 0.05	U.1 < 0.05	0.33 2 0 05	0.74 < 0.05	0.04	0.02	1.22 0.04	0.57	
p-Diethvlbenzene	nnhv	-	< 0.03	0.11	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	0.57	0.01	0.04	0.03	
Total Non-Methane Organic	6604	-	- 0.00	0.11	- 0.00	• 0.00	- 0.00	- 0.00	- 0.00	- 0.00	- 0.00	- 0.00	- 0.00	- 0.00	0.07	0.02	0.00	0.00	
Compounds	ppmv	-	< 0.08	< 0.07	< 0.09	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08					
Total VOCs	ppbv	-	188.03	28.09	27.46	11.54	14.04	14.85	14.05	9.37	13.43	16.48	10.72	14.38	188.03	4.05	20.17	13.20	

Notes:

(1) Alberta Ambient Air Quality Objectives (Over a 24 hour averagir

(2) Alberta Ambient Air Quality Objectives (Over an Annual period 1

(3) Minimum values are the lowest values above the lab detection I

(4) Averages are taken with the assumption that values under the la

TABLE 3

Metals Analytical Results AEP Station ID 00010348-I-1 Clean Harbors Canada, Inc. Annual Ambient Air Monitoring Report 2021 Metal Analysis Results

Date		15-Jul-21		19-Oct-21			12-Nov-21													
Sample ID			772		780			782												
Parameter	AAAQO ⁽²⁾ (ug/m ³)	Lab Re	sults ⁽¹⁾	(ug/m³)	Lab Results ⁽¹⁾		Lab Results ⁽¹⁾		Lab Results ⁽¹⁾		Lab Results ⁽¹⁾		Lab Results ⁽¹⁾		Lab Results ⁽¹⁾		(ug/m³)	Lab Re	sults ⁽¹⁾	(ug/m ³)
Antimony	-	3.3	ng/Filter	1.49E-04	2.74	ng/Filter	0.00	3.54	ng/Filter	1.45E-04										
Arsenic	0.01 (Annual Average)	12.8	ng/Filter	5.79E-04	15.8	ng/Filter	0.00	11.2	ng/Filter	4.59E-04										
Barium	-	560	ng/Filter	2.53E-02	1700	ng/Filter	0.07	1340	ng/Filter	5.49E-02										
Beryllium	-	0.86	ng/Filter	3.89E-05	1.94	ng/Filter	0.00	1.12	ng/Filter	4.59E-05										
Boron	-	285	ng/Filter	1.29E-02	232	ng/Filter	0.01	176	ng/Filter	7.21E-03										
Cadmium	-	3.4	ng/Filter	1.54E-04	1.16	ng/Filter	0.00	1.78	ng/Filter	7.30E-05										
Chromium	1.00 (1-Hour Average)	357	ng/Filter	1.62E-02	2	ng/Filter	0.00	37	ng/Filter	1.52E-03										
Cobalt	-	11.7	ng/Filter	5.29E-04	13.4	ng/Filter	0.00	11.3	ng/Filter	4.63E-04										
Copper	-	2.00	ng/Filter	9.05E-05	46	ng/Filter	0.00	37	ng/Filter	1.52E-03										
Ammonium	-	10.6	ug/Filter	4.80E-04	6	ug/Filter	0.00	15.4	ug/Filter	6.31E-04										
Chloride	-	0.224	ug/Filter	1.01E-05	0.461	ug/Filter	0.00	0.63	ug/Filter	2.58E-05										
Nitrate	-	8.96	ug/Filter	4.05E-04	5.35	ug/Filter	0.00	23.8	ug/Filter	9.75E-04										
Sulfate	-	21.9	ug/Filter	9.91E-04	23.2	ug/Filter	0.00	29.6	ug/Filter	1.21E-03										
Iron	-	38500	ng/Filter	1.74E+00	40500	ng/Filter	1.67	27200	ng/Filter	1.11E+00										
Lead	-	41.5	ng/Filter	1.88E-03	32.6	ng/Filter	0.00	29.3	ng/Filter	1.20E-03										
Magnesium	-	9.89	ug/Filter	4.48E-04	-	-	-	2.58	ug/Filter	1.06E-04										
Mercury	-	0.07	ng/Filter	3.17E-06	0.09	ug/Filter	0.00	0.09	ug/Filter	3.69E-06										
Nickel	-	37.7	ng/Filter	1.71E-03	44.3	ng/Filter	0.00	44.9	ng/Filter	1.84E-03										
Selenium	-	26.8	ng/Filter	1.21E-03	7.4	ng/Filter	0.00	1.8	ng/Filter	7.38E-05										
Silver	-	0.64	ng/Filter	2.90E-05	0.56	ng/Filter	0.00	0.57	ng/Filter	2.34E-05										
Thallium	-	0.32	ng/Filter	1.45E-05	0.59	ng/Filter	0.00	0.51	ng/Filter	2.09E-05										
Tin	-	3.42	ng/Filter	1.55E-04	-	-	-	-	-	-										
Uranium	-	1.79	ng/Filter	8.10E-05	3.5	ng/Filter	0.00	2.69	ng/Filter	1.10E-04										
Vanadium	-	93.1	ng/Filter	4.21E-03	104	ng/Filter	0.00	78.1	ng/Filter	3.20E-03										
Calcium	-	26.3	ug/Filter	1.19E-03	7.94	ug/Filter	0.00	8.16	ug/Filter	3.34E-04										
Magnesium	-	4.31	ug/Filter	1.95E-04	2.9	ug/Filter	0.00	2.58	ug/Filter	1.06E-04										
Potassium	-	5.58	ug/Filter	2.52E-04	4.24	ug/Filter	0.00	3.47	ug/Filter	1.42E-04										
Sodium	-	2.02	ug/Filter	9.14E-05	3.32	ug/Filter	0.00	2.73	ug/Filter	1.12E-04										
Zinc	-	480	ng/Filter	2.17E-02	322	ng/Filter	0.01	322	ng/Filter	1.32E-02										
Zirconium	-	53	ng/Filter	2.40E-03	116	ng/Filter	0.00	95.3	ng/Filter	3.91E-03										
Sampling Time	(hours)		24		24			24												
Flow Rate (I/	min)		16.7			16.7			16.7											
Volume Sample	ed (m ³)	23				24.2		24.4												

Notes:

(1) These results are from a 24 hour averaging period

(2) Alberta Ambient Air Quality Objectives

2020 Calendar Year Meteorlogical Station Uptime Summary AEP Station ID 00010348-C-1 Clean Harbors Canada, Inc.

Reporting Month	Hours Expected	Hours Reported	% Uptime
January	744	744	100.0%
February	672	672	100.0%
March	744	744	100.0%
April	720	720	100.0%
May	744	744	100.0%
June	720	720	100.0%
July	744	740	99.5%
August	744	662	89.0%
September	720	681	94.6%
October	744	743	99.9%
November	720	720	100.0%
December	744	325	43.7%
Total	8760	8215	93.78%

Note:

The meteorlogical station monitors wind speed and direction.

Image Source: © (2020) Google. Image Aquisition Date: 09/17/2019.

CLEAN HARBORS CANADA, INC. RANGE ROAD 854, RYLEY, ALBERTA 11114644 Mar 27, 2020

SITE LOCATION AND AIR MONITORING LOCATION MAP FIGURE 1

Appendix A Annual Wind Rose

WRPLOT View - Lakes Environmental Software

Frequency Distribution Report: Ryley, Alberta - 2021 Summary									
			Wind Spe	eed (m/s) and	Number of Oc	ccurences			Total Occurrences
Direction	Angle	< 0.5	0.5 to < 1.5	1.5 to < 2.5	2.5 to < 3.5	3.5 to < 4.5	>= 4.5	%	by Direction
North	> 337.5 - 22.5	8	35	96	122	112	488	9.8%	861
Northeast	> 22.5 - 67.5	2	39	75	73	62	165	4.7%	416
East	> 67.5 - 112.5	2	33	67	121	75	84	4.4%	382
Southeast	> 112.5 - 157.5	6	73	222	240	183	399	12.8%	1123
South	> 157.5 - 202.5	6	103	245	272	223	419	14.5%	1268
Southwest	> 202.5 - 247.5	4	66	160	257	303	383	13.4%	1173
West	> 247.5 - 292.5	10	84	182	289	344	618	17.4%	1527
Northwest	> 292.5 - 337.5	10	52	130	232	265	778	16.7%	1467
Missing/Inv	valid Hours							6.20%	543
Total Occurences by Speed		48	485	1177	1606	1567	3334		8760
Occurent	ces by %	0.5%	5.5%	13.4%	18.3%	17.9%	38.1%	100.00%	

Appendix B Quarterly Calibration Records for Partisol

Quarterly Audit Partisol FRM Model 2000

Clean Harbors 50114 Range Rd. 173 Ryley, Alberta T0B 4A0 Quarterly Audit Date: January 20, 2021

Clean Harbors

Table of Contents

1.	Introc	luction		1		
2.	Audit	Procedure	9	1		
3.	Audit	Results		1		
	3.1	Siting Loo	cation Audit Results (AEP Station ID 00010348-I-1)	1		
	3.2 Pressure and Temperature Audit Results (AEP Station ID 00010348-I-1)					
	3.3	Leak Che	eck Results (AEP Station ID 00010348-I-1)	2		
		3.3.1 3.3.2	Automatic Leak Check External Manual Leak Check	2 2		
	3.4	Flow Aud	it (AEP Station ID 00010348-I-1)	3		
	3.5	Instrumer	nt Condition and Recommendations (AEP Station ID 00010348-I-1)			
		3.5.1	Recommendations	3		

Table Index

Table 3.1	AMD Requirements vs. Current Partisol Sampler Location	. 2
Table 3.2	Reference Results vs. Partisol Sampler Readings	. 2

Appendix Index

Appendix A	Quarterly Audit Form

Appendix B Calibration Certificates

1. Introduction

GHD Limited (GHD) was retained by Clean Harbors to conduct a Quarterly Audit at 50114 Range Road 173 Ryley, Alberta (Facility) on January 20, 2021. The Quarterly Audit was conducted on the Partisol FRM 2000 Particulate Matter less than 10 microns (PM₁₀) Sampler (Partisol Sampler), located on the roof of the Ryley Lift Station (AEP Station ID 00010348-I-1), which is southeast of the Facility. The coordinates of the lift station are 53.297961, -112.416076.

2. Audit Procedure

The Partisol Sampler was audited in accordance with the instrument manual and the Alberta Air Monitoring Directive, 2016 (AMD). Siting location, ambient pressure, ambient temperature, filter temperature, leakage rate and flow rate were audited, as well as overall instrument condition to ensure compliance with the instrument manual and the AMD. Below is a summary of the tasks performed on the Partisol Sampler:

- Siting Location Audit
- Ambient Pressure Audit
- Ambient Temperature Audit
- Filter Temperature Audit
- Leakage Rate Audit
- Flow Rate Audit
- Instrument Condition and Recommendations

GHD verified all of these parameters using calibrated reference instruments. GHD reference instruments either have National Institute of Standards and Technology (NIST) Traceable Certifications, current manufacturer certification, or were verified by a primary standard. The GHD quarterly audit field form can be found in Appendix A. All calibrations and certifications can be found in Appendix B.

3. Audit Results

3.1 Siting Location Audit Results (AEP Station ID 00010348-I-1)

The siting location of the Partisol Sampler meets the requirements of Chapter 3, of the AMD. Table 3.1 of this report compares the AMD Siting Requirements for Intermittent Samplers versus the current Partisol sampler location.

- The current coordinates of the Partisol Sampler are 53.297961, -112.416076.
- The distance from the nearest roadway is 21 m.

Site Characteristics	AMD	Requirements	Current Location	Specification
Sampler Inlet-height above ground (abg)	Minin	num 2 m, Maximum 15 m	Meets Requirement	4.63 m abg
Other Requirements	a.	Distance from an obstacle greater than 2.5 times the height of the obstacle above the sampler.	Meets Requirement	>2.5 times
	b.	At least 2 m from any other samplers or inlets with flow rates greater than 200 litres (L) per minute,	Meets Requirement	None
		Or at least 1 m apart from any other samplers or inlets with flow rates less than or equal of 200 L per minute.	Meets Requirement	None
	C.	Unrestricted air flow in three to four wind quadrants.	Meets Requirement	4/4 Unrestricted Quadrants

Table 3.1 AMD Requirements vs. Current Partisol Sampler Location

3.2 Pressure and Temperature Audit Results (AEP Station ID 00010348-I-1)

The pressure and temperature audit results of the Partisol Sampler meet the requirements of Chapter 4, of the AMD. Table 3.2 of this report compares the reference results versus the Partisol Sampler readings.

Table 3.2 Reference Results vs. Partisol Sampler Readings

Parameter	Partisol	Reference	Difference	Limit	Pass/Fail
Ambient Temperature (°C)	1.5	0.92	0.58	<u>+</u> 2°C	Pass
Barometric Pressure (mmHg)	692.7	693.0	0.3	<u>+</u> 10 mmHg	Pass
Filter Temperature (°C)	2.5	3.2	0.7	<u>+</u> 2°C	Pass
Flow	16.7 L/min	16.8 L/min	0.1	<u>+</u> 1.0 L/min	Pass

3.3 Leak Check Results (AEP Station ID 00010348-I-1)

3.3.1 Automatic Leak Check

The Partisol firmware performs leak checks in automatic mode and indicates either a "pass" or "fail" based on a pressure drop threshold of 127 mmHg per minute. The Partisol Sampler passed the requirements outlined in the service manual with a pressure drop of 9 mmHg per minute during the audit.

3.3.2 External Manual Leak Check

GHD also performs an external manual leak check on the Partisol Sampler as part of the quarterly audit. The external manual leak check measures the pressure drop on a vacuum gauge located on

the sampler. The pressure drop may not exceed more than 8.5 inHg (216 mmHg) over a 30-second span. The Partisol Sampler passed the requirements of the service manual with a pressure drop of 0.0 inHg in a 30-second span.

3.4 Flow Audit (AEP Station ID 00010348-I-1)

The flow audit results of the Partisol Sampler meet the requirements of Chapter 4 of the AMD, refer to Table 3.2.

3.5 Instrument Condition and Recommendations (AEP Station ID 00010348-I-1)

The Partisol Sampler was visually and functionally inspected on the audit day. Audit recommendations and instrument conditions are listed below:

- Liquid crystal display screen is functioning.
- Filter exchange cabinet has been cleaned.
- Ventilation fan filters are clean.
- Filter exchange mechanism is operating normally.
- Filter v-seals are in good condition.
- Ambient temperature and pressure sensor wires in good condition.
- Main power connection wire in good condition.

3.5.1 Recommendations

GHD recommends opening and cleaning PM₁₀ sampling inlet prior to next sampling event.

GHD | Quarterly Audit Partisol FRM Model 2000 | 11114644 (41)

Appendix A Quarterly Audit Form

GHD Quarterly Audit Form

Date		1/20/2021		Weather Cond .:	Ov	ercast/2	°C
Owner		Clean Harbors		Start Time:		10:25	
Station Name		Ryley Lift Station		End Time:		11:15	
Parameter	PM ₁₀			Performed By:	Tre	evor Lev	vis
Partisol FRM Mo	del 2000 Identificatio	n		Sampler Data			
Make/Model:	R & P Partisol FRM	2000		Temperature:	1.5°C		
Unit ID:	Ryley Lift Station			Pressure:	693 mmHg		
S/N:	200FB209860905			Flow Set Point:	16.7 L/min		
GHD Refer	ence Standards						
	FI	ow	Pressure	Temperature	Manome	əter	
Make:	AirN	letrics	TSI	Fluke	Dwye	r	
Model:	F	RM	9565-P	1551A Ex	475-0-F	-M	
Serial Number:	FRM	11218	9565P1818024	3520009	MAN-CAL	-001	
Calibration Date:	5/17	/2016	5/19/2020	12/14/2020	12/14/20)20	
Au	dit Data						
		Sampler Data	Reference Data	Difference	Pass/F	ail	Units
Ambient Temper	ature (+/- 2 °C)	1.5	0.5	1.0	Pass	;	°C
Barometric Press	sure (+/- 10 mmHg)	693	692.7	0.3	Pass	;	mmHg
Filter Temperatu	re (+/- 2 °C)	2.5	3.2	0.7	Pass	i	°C
Flow (+/- 1.0 Litre	es/min)	16.7	16.8	0.1	Pass	i	Litres/min
Lea	k Check						
Manual Ch	neck (-8.5 inHg)						
		Initial Pressure	Final Pressure	Pressure Drop	Pass/F	ail	Units
		14.00	14.00	0.00	Pass	i -	inHG
Automatic Cl	heck (-127 mmHg)						
Leak	check was performed	I in automatic mode,	sampler indicated:	4 mmHg/min	Pass	,	mmHg/min
As For	und/As Left		Yes/No		As Found	As Left	Pass/Fail
Did the ambient te	emperature require adj	ustment?	No		1.5	1.5	Pass
Did the barometric	c pressure require adju	istment?	No		693	693	Pass
Did the filter temp	erature require adjustr	nent?	No		2.5	2.5	Pass
Did the flow audit	require adjustment?		No		16.7	16.7	Pass
Comments							
Partisol sampler w	vas moderately dirty, G	HD cleaned the com	ponents of the sam	npling inlet, inside the ca	binet, all filters	and wip	ped down
all seals.							
Flow Equation							
Set Point	Actual Flow (Qact)	Absolute Difference	e Pass/Fail	Manometer (DH)	4.51	"H2O	
(lpm)	(lpm)	(lpm)	(<u>+</u> 1 lpm)	Actual Temp (Tact)	274.65	°K	1.5°C
				Actual Pres (Pact)	0.924	bar	
16.7	16.8	0.1	Pass	Actual Pres (Pact)	27.28	inHg	
FTS Linear Regre	ession Constants						
(mflo) –	0 4452		$\Omega_{act} - mflox$	$\sqrt{\Delta H \times Tact}$ $\pm hflo$			
(hflo) =	0.4430		Quei – III 10 X	Pact + b) to			
(000) -	0.4430						

Appendix B Calibration Certificates

TORONTO 16975 Leslie Street wmarket, ON L3Y 9A1 Tel: (905) 952-3750 Fax: (905) 952-3751

MONTRÉAL 20800 Boul, Industriel Ste-Anne-de-Bellevue, QC H9X 0A1 Tel: (514) 457-7280

Fax: (514) 457-4329

CALGARY

#209, 4615 112 Ave SE Calgary, A8 T2C 5J3 Tel: (403) 272-9332 Fax: (403) 248-5194

VANCOUVER

1282 Cliveden Av Delta, BC V3M 6G4 Tel: (604) 254-9622 Fax: (604) 254-3123

www.itm.com - information@itm.com

Serial: 3520009

Calibration Conditions

Temperature: 20.9°C

Approved by:

. elis

Barometric Pressure: N/A

Humidity: 15 %

Unit ID: THM-CAL-001

Calibration Certificate

Customer: GHD Ltd.

Certificate: C378442-00-02

Unit Identification

Manufacturer: Fluke Model: 1551A Ex Description: Stik Thermometer

Calibration Date

Calibration Date: 14-Dec-2020

Due Date: 14-Dec-2021

General Information

Remark:N/A

Standards Used

Unit ID	Manufacturer	Model	Cal Date	Due Date
CAL0080	Burns Engineering	12001-A-12-6-2-A	4-Jun-2018	4-Jun-2021
CAL0124	Hart Scientific	1502A	1-Apr-2020	1-Apr-2021
CAL0223	Ametek	RTC-158B	27-Oct-2020	27-Oct-2021

The calibration was performed using measurement standards traceable to the National Measurement Institute Standards (NMIS) part of the National Research Council of Canada (NRC) or the National Institute of Standards and Technology (NIST), or to accepted instrusic standards or measurement, or is derived by ratio type self-calibration techniques. Measurement ancertainties given in this report are based on a coverage factor of k=2 corresponding to a confidence level of approximately 95%.

Calibrated by: A. Atton

And Att

Certificate: C378442-00-02 Asset: ITM0003733

Calibration Certificate

Page 1.2

This calibration certificate may not be reproduced, except in full, unless with the permission of ITM Instruments Inc. Ce certificat ne peut être reproduit autrement qu'en totalité, sauf avec l'autorisation de ITM Instruments Inc.

TORONTO 16975 Leslie Street Newmarket, ON L3Y 9A1 Tel: (905) 952-3750 Fax: (905) 952-3751

MONTRÉAL 20800 Boul. Industriel Ste-Anne-de-Bellevue, QC H9X 0A1

CALGARY

#209, 4615 112 Ave SE Calgary, AB T2C 5J3 Tel: (403) 272-9332 Fax: (403) 248-5194

VANCOUVER

1282 Cliveden Av Delta, BC V3M 6G4 Tel: (604) 254-9622 Fax: (604) 254-3123

ITM INSTRUMENTS INC.

			عرواو ورواو او او او			<u>المرتفا لقا لقا تقا تقا تقا</u>
Test Results						
Procedure: Fluke Stil	k Thermometer /R7	C-158B,1502,PRT	Rev: 1.0			
Data Type: As Found	Results: Pass					
Test Description	True Value	Reading	Lower Limit	Upper Limit	Test Status	Exp Uncert
0.060 °C		0.02 °C	0.01 °C	0.11 °C	Pass	8.3e-003 °C
25.075 °C		25.04 °C	25.02 °C	25.13 °C	Pass	8.8e-003 °C
100.025 °C		100.01 °C	99.98 °C	100.08 °C	Pass	1.0e-002 °C
150.085 °C		150.04 °C	150.03 °C	150.14 °C	Pass	1.2e-002 °C
Certificate: C378447-0	0-02					
Cumunan. C3/0744-0	v v#		net at at stall, a.			

This calibration certificate may not be reproduced, except in full, unless with the permission of ITM Instruments Inc Ce certificat ne peut être reproduit autrement qu'en totalité, sauf avec l'autorisation de UTM Instruments Inc.

NIST Traceable Transfer Standard Calibration

Calibration I Ambient Te Amb Press,	Date: 05/ŕ mp, ⁰K: Atm:	17/2016 295.5 1.0000	Orific Pri SI Mano	e # FRM td # LFE ⁻ ometer # FRM	11218- 774300 11218	By:
Std ∆H (inH₂O)	Manometer ΔH (in H_2O)	Actual Flow (alpm)	Calc Flow (alpm)	Difference* (%diff)		
6.67	6.67	20.179	20.209	-0.15	Manometer	r ∆H vs Act Flow
5.86	5.86	18.988	18.970	0.09	Linear Reg	ression Results:
5.10	5.10	17.733	17.727	0.03	m _{flo} =	0.4452
4.39	4.39	16.490	16.479	0.07	b _{flo} =	0.4430
3.73	3.73	15.233	15.224	0.06	r² =	1.0000
3.12	3.12	13.964	13,962	0.02		
2.56	2.56	12.683	12.688	-0.04		
2.05	2.05	11.390	11.401	-0.10	* all points mu	st be within ± 2%

The MiniFlo calibration is performed with an NIST-traceable standard. Each unit has a unique pair of calibration constants derived from the calibration which are used to calculate the actual air flow rate at all ambient conditions. The unit's calibration should be recertified annually.

The actual flow rate is a function of the pressure drop across the device, the ambient temperature, and the ambient pressure. The relationship of these variables and the unique calibration constants ("m" and "b") for each device is presented in the following equation (Eq.A):

$$Q_{act} = m_{flo} \times \sqrt{\frac{\Delta H \times T_{act}}{P_{act}}} + b_{flo}$$

 Q_{act} = actual flowrate, liters per min ΔH = manometer reading, inches of water T_{act} = ambient temperature, °K P_{act} = ambient pressure, atmospheres

CAUTION: The weather service, most airports, etc, reduce the atmospheric pressure to a common reference (sea level). The equation above requires the atmospheric pressure at the location where the MiniFlo is being used.

The equation below may be used to estimate the ambient atmospheric pressure at any elevation if the sea level pressure is known.

$$P_{act} = P_{sea} \times \left(1 - \frac{E}{145300}\right)^{5.25}$$

 P_{act} = Ambient Atmospheric Pressure P_{sea} = Sea Level Atmospheric Pressure E = Site elevation, feet

Airmetrics 1940 Don St., Suite 300 Springfield, OR 97477 (541) 683-5420

TORONTO **16975 Leslie Street** Newmarket, ON 13Y 9A1 Tel: (905) 952-3750 Fax: (905) 952-3751

MONTRÉAL 20800 Boul. Industriel Ste-Anne-de-Bellevue, QC H9X 0A1 Tel: (514) 457-7280 Fax: (514) 457-4329

CALGARY

#209, 4615 112 Ave SE Calgary, AB T2C SJ3 Tel: (403) 272-9332 Fax: (403) 248-5194

VANCOUVER

1282 Cliveden Av Delta, BC V3M 6G4 Tel: (604) 254-9622 Fax: (604) 254-3123

NSTRUMENTS	INC.	www.itm.com - information@itm.com					
	C	althustion C	autificato				
	C	alloration C	ertificate				
Customer: Gl	HD Ltd.						
Certificate: C37	8442-00-01						
Unit Identification							
Manufacturer Dwver		S	Senal: N/A				
Model: 475-0-FM		ι	Unit ID: MAN-CAL-001				
Description. Digital N	lanometer						
Calibration Date			ibration Conditions				
Calibration Date: 14-I	Dec-2020	Te	Temperature: 20.9°C				
Due Date: 14-Dec-202	1	Н	Humidity: 15 %				
		B	arometric rressure: N/A				
General Information							
Remark:N/A							
Standards Used	N	Medal	Cal Date	Due Date			
Standards Used <u>Unit ID</u> CAL0224	<u>Manufacturer</u> Fluke	<u>Model</u> 750P01	<u>Cal Date</u> 24-Aug-2020	Due Date 24-Feb-2021			
Standards Used <u>Unit ID</u> CAL0224	<u>Manufacturer</u> Fluke	<u>Model</u> 750P01	<u>Cal Date</u> 24-Aug-2020	Due Date 24-Fob-2021			
Standards Used <u>Unit ID</u> CAL0224	<u>Manufacturer</u> Fluke	<u>Model</u> 750P01	<u>Cal Date</u> 24-Aug-2020	<u>Due Date</u> 24-Fob-2021			
Standards Used <u>Unit ID</u> CAL0224	<u>Manufacturer</u> Fluke	<u>Model</u> 750P01	<u>Cal Date</u> 24-Aug-2020	<u>Due Date</u> 24-Føb-2021			
Standards Used <u>Unit ID</u> CAL0224	<u>Manufacturer</u> Fluke	<u>Model</u> 750P01	<u>Cal Date</u> 24-Aug-2020	<u>Due Date</u> 24-Fob-2021			
Standards Used <u>Unit ID</u> CAL0224	<u>Manufacturer</u> Fluke	<u>Model</u> 750P01	<u>Cal Date</u> 24-Aug-2020	<u>Due Date</u> 24-Føb-2021			
Standards Used Unit ID CAL0224 he calibration was performed usin	<u>Manufacturer</u> Fluke g measurement standards traceable Technology (NIST), or to accenter	<u>Model</u> 750P01 e to the National Measurement Institu d instrument standards or measurement	<u>Cal Date</u> 24-Aug-2020 te Standards (NMIS) part of the National R or is derived by ratio type self-calibration	Due Date 24-Fob-2021 escarch Council of Canada (NRC) or the techniques. Measurement uncertainties			
Standards Used Unit ID CAL0224 he calibration was performed usin ational Institute of Standards and typen in this report are based on a c	<u>Manufacturer</u> Fluke g measurement standards traceabl Technology (NIST), or to acceptes overage factor of k=2 correspond	<u>Model</u> 750P01 e to the National Measurement Institu d instrussic standards or measurement ling to a confidence level of approxim	<u>Cal Date</u> 24-Aug-2020 te Standards (NMIS) part of the National R or is derived by ratio type self-calibration i ately 95%	Due Date 24-Fob-2021 esearch Council of Canada (NRC) or the techniques. Measurement uncertainties			
Standards Used Unit ID CAL0224 he calibration was performed usin ational Institute of Standards and oven in this report are based on a c Calibrated by: A. Atton	<u>Manufacturer</u> Fluke g measurement standards traceabl Technology (NIST), or to accepted overage factor of k=2 correspond	Model 750P01 e to the National Measurement Institu d instruisic standards or measurement ing to a confidence level of approxim	<u>Cal Date</u> 24-Aug-2020 te Standards (NMIS) part of the National Re or is derived by ratio type self-calibration (ately 95% Approved by:	Due Date 24-Fob-2021 esearch Council of Canada (NRC) or the techniques. Measurement uncertainties			
Standards Used Unit ID CAL0224 he calibration was performed usin fational Institute of Standards and riven in this report are based on a c Calibrated by: A. Atton	Manufacturer Fluke g measurement standards traceable Technology (NIST), or to accepter overage factor of k=2 correspond	Model 750P01 e to the National Measurement Institu d instruisic standards or measurement ing to a confidence level of approxim	Cal Date 24-Aug-2020 te Standards (NMIS) part of the National R or is derived by ratio type self-calibration i ately 95% Approved by:	Due Date 24-Fob-2021 escarch Council of Canada (NRC) or the techniques. Measurement uncertainties			
Standards Used Unit ID CAL0224 he calibration was performed usin ational Institute of Standards and iven in this report are based on a c Calibrated by: A. Atton	Manufacturer Fluke g measurement standards traceable Technology (NIST), or to accepte overage factor of k=2 correspond	Model 750P01 e to the National Measurement Institu d instrinsic standards or measurement ling to a confidence level of approxim	Cal Date 24-Aug-2020 te Standards (NMIS) part of the National R or is derived by ratio type self-calibration is ately 95% Approved by:	Due Date 24-Fob-2021 escarch Council of Canada (NRC) or the techniques Measurement uncertainties			
Standards Used Unit ID CAL0224 The calibration was performed usin fational Institute of Standards and tiven in this report are based on a c Calibrated by: A. Atton Machine Mac	Manufacturer Fluke g measurement standards traceable Technology (NIST), or to accepted overage factor of k=2 correspond	Model 750P01 e to the National Measurement Institu d instruisic standards or measurement ling to a confidence level of approxim	Cal Date 24-Aug-2020 te Standards (NMIS) part of the National Ri or is derived by ratio type self-calibration i ately 95% Approved by:	Due Date 24-Fob-2021 esearch Council of Canada (NRC) or the techniques. Measurement uncertainties			

This calibration certificate may not be reproduced, except in full, unless with the permission of ITM Instruments Inc. Ce certificat ne peut être reproduit autrement qu'en totalité, sauf avec l'autorisation de ITM Instruments Inc.

TORONTO **16975 Leslie Street** Newmarket, ON L3Y 9A1 Tel: (905) 952-3750 Fax: (905) 952-3751

MONTRÉAL

20800 Boul. Industriel Ste-Anne-de-Bellevue, QC H9X 0A1 Tel: (514) 457-7280

CALGARY

#209, 4615 112 Ave SE Calgary, AB T2C 5J3 Tel: (403) 272-9332 Fax: (403) 248-5194

VANCOUVER 1282 Cliveden Av

Delta, BC V3M 6G4 Tel: (604) 254-9622 Fax: (604) 254-3123

ITM INSTRUMENTS INC.

www.itm.com - information@itm.com

Joe concerte a concert									
fest Results						ana ana amin'ny soratra dia mampi			
Procedure: Pressure Gau	ige 10.00 IN.W.C	0.5% FS /750P01	Rev: 1.1						
Data Type: As Found F	Results: Pass								
Test Description	True Value	Reading	Lower Limit	<u>Upper Limit</u>	Test Status	Exp Uncert			
Tolerance used (additive if m	nore than one listed):								
0.5% of full scale									
UUT is set to the nominal va	lue, Reading is the								
actual pressure read by the	system instrument.		0.0501.1100	1.050	Dass	1 60-002 inH20			
1.000 inH2O		1.008 inH2O	0.950 inH2O	1.050 inH20	Pass Dass	1.6e-002 mH2O			
2.000 inH2O		2.003 inH2O	1.950 inH20	2.000 InH20	Pass	1.6e-002 inH2O			
4.000 inH2O		3.984 InH2O	3.950 InH20	6.050 inH2O	Pass	1.6e-002 inH2O			
6.000 InH20		5.981 INH20	7.950 inH20	8 050 inH20	Pass	1.6e-002 inH2O			
		9.965 inH2O	9.950 inH2O	10.050 inH2O	Pass	1.6e-002 inH2O			
10.000 mm20		3 303 III 120	0.000 111120						
ortificate: C378442-00-01									
INSTRUMENT CALIBRATION REPORT

Pine Environmental Services, Inc

Instrument ID Description Calibrated Manufacturer Model Number Serial Number	42307 TSI 9565P Velocit 5/19/2020 TSI 9565P 9565P1818024	Calc		Classificatio State Frequence	on us pass cy Yearly	<u></u>	
Тетр	72			Humidi	ty 22		
		Calibra	tion Specifi	cations			
Group Group Nat Stated Ac	p # 1 me Barometric Pro ccy Pct of Reading	essure		Range Acc % Reading Acc % Plus/Minus	0.0000 2.0000 0.000		
<u>Nom In Val / In Val</u>	In Type	Out Val	Out Type	Fnd As	Lft As	<u>Dev%</u>	Pass/Fail
30.000 / 30.120 Group Group Nat Stated Ac	nHg p#2 me Differential Pr ccy Pct of Reading	30.120 essure	inHg	Range Acc % Reading Acc % Plus/Minus	0.0000 1.0000 0.00	0.0076	F 455
<u>Nom In Val / In Val</u>	In Type	Out Val	Out Type	Fnd As	Lft As	Dev%	Pass/Fail
-4.00 / -4.00	inH2O	-4.00	inH2O	-4.03	-4.03	0.75%	Pass
4.00 / 4.00	inH2O	4.00	inH2O	4.04	4.04	1.00%	Pass
12.00 / 12.00	inH2O	12.00	inH2O	12.10	12.10	0.83%	Pass
Test Instruments Used Duri	ng the Calibration				(As Of C	Cal Entry	Date)
Test Instrument ID Descrip	ption	Manufactur	er	Serial Number	Last Cal Date	Next C	al Date
DWYER Dwyer	477AV-1 Digital	Dwyer		005PM2	10/2/2019	10/2/2	020
477AV-1 Manor OMEGA Omega HX93AC/DP25- E	neter a HX93AC/DP25-E	E Omega Eng	gineering	1010368 035025 035026	10/11/2018	10/11/	2020

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated David Galego

Advanced Labs, Inc. hereby certifies that this instrument is calibrated and functions to meet the manufacture's specifications using NIST traceable standards, or is derived from accepted values of physical constants.

about GHD

GHD is one of the world's leading professional services companies operating in the global markets of water, energy and resources, environment, property and buildings, and transportation. We provide engineering, environmental, and construction services to private and public sector clients.

Brandon Lawrence Brandon.lawrence@ghd.com 403.538.8605

www.ghd.com

Quarterly Audit Partisol FRM Model 2000

Clean Harbors 50114 Range Rd. 173 Ryley, Alberta T0B 4A0 Quarterly Audit Date: April 13, 2021

Clean Harbors

Table of Contents

1.	Introd	luction		1
2.	Audit	Procedure		1
3.	Audit	Results		1
	3.1	Siting Loc	cation Audit Results (AEP Station ID 00010348-I-1)	1
	3.2	Pressure	and Temperature Audit Results (AEP Station ID 00010348-I-1)	2
	3.3	Leak Che	ck Results (AEP Station ID 00010348-I-1)	2
		3.3.1 3.3.2	Automatic Leak Check External Manual Leak Check	2 2
	3.4	Flow Aud	it (AEP Station ID 00010348-I-1)	3
	3.5	Instrumer	nt Condition and Recommendations (AEP Station ID 00010348-I-1)	3
		3.5.1	Recommendations	3

Table Index

Table 3.1	AMD Requirements vs. Current Partisol Sampler Location	. 2
Table 3.2	Reference Results vs. Partisol Sampler Readings	. 2

Appendix Index

Appendix A	Quarterly Audit Form

Appendix B Calibration Certificates

1. Introduction

GHD Limited (GHD) was retained by Clean Harbors to conduct a Quarterly Audit at 50114 Range Road 173 Ryley, Alberta (Facility) on April 13, 2021. The Quarterly Audit was conducted on the Partisol FRM 2000 Particulate Matter less than 10 microns (PM₁₀) Sampler (Partisol Sampler), located on the roof of the Ryley Lift Station (AEP Station ID 00010348-I-1), which is southeast of the Facility. The coordinates of the lift station are 53.297961, -112.416076.

2. Audit Procedure

The Partisol Sampler was audited in accordance with the instrument manual and the Alberta Air Monitoring Directive, 2016 (AMD). Siting location, ambient pressure, ambient temperature, filter temperature, leakage rate and flow rate were audited, as well as overall instrument condition to ensure compliance with the instrument manual and the AMD. Below is a summary of the tasks performed on the Partisol Sampler:

- Siting Location Audit
- Ambient Pressure Audit
- Ambient Temperature Audit
- Filter Temperature Audit
- Leakage Rate Audit
- Flow Rate Audit
- Instrument Condition and Recommendations

GHD verified all of these parameters using calibrated reference instruments. GHD reference instruments either have National Institute of Standards and Technology (NIST) Traceable Certifications, current manufacturer certification, or were verified by a primary standard. The GHD quarterly audit field form can be found in Appendix A. All calibrations and certifications can be found in Appendix B.

3. Audit Results

3.1 Siting Location Audit Results (AEP Station ID 00010348-I-1)

The siting location of the Partisol Sampler meets the requirements of Chapter 3, of the AMD. Table 3.1 of this report compares the AMD Siting Requirements for Intermittent Samplers versus the current Partisol sampler location.

- The current coordinates of the Partisol Sampler are 53.297961, -112.416076.
- The distance from the nearest roadway is 21 m.

Site Characteristics	AMD	Requirements	Current Location	Specification
Sampler Inlet-height above ground (abg)	Minimum 2 m, Maximum 15 m		Meets Requirement	4.63 m abg
Other Requirements	a.	Distance from an obstacle greater than 2.5 times the height of the obstacle above the sampler.	Meets Requirement	>2.5 times
	b.	At least 2 m from any other samplers or inlets with flow rates greater than 200 litres (L) per minute,	Meets Requirement	None
		Or at least 1 m apart from any other samplers or inlets with flow rates less than or equal of 200 L per minute.	Meets Requirement	None
	C.	Unrestricted air flow in three to four wind quadrants.	Meets Requirement	4/4 Unrestricted Quadrants

Table 3.1 AMD Requirements vs. Current Partisol Sampler Location

3.2 Pressure and Temperature Audit Results (AEP Station ID 00010348-I-1)

The pressure and temperature audit results of the Partisol Sampler meet the requirements of Chapter 4, of the AMD. Table 3.2 of this report compares the reference results versus the Partisol Sampler readings.

Table 3.2 Reference Results vs. Partisol Sampler Readings

Parameter	Partisol	Reference	Difference	Limit	Pass/Fail
Ambient Temperature (°C)	9.1	8.4	0.70	<u>+</u> 2°C	Pass
Barometric Pressure (mmHg)	714	710	4.0	<u>+</u> 10 mmHg	Pass
Filter Temperature (°C)	12.7	12.6	0.1	<u>+</u> 2°C	Pass
Flow	16.7 L/min	16.6 L/min	0.1	<u>+</u> 1.0 L/min	Pass

3.3 Leak Check Results (AEP Station ID 00010348-I-1)

3.3.1 Automatic Leak Check

The Partisol firmware performs leak checks in automatic mode and indicates either a "pass" or "fail" based on a pressure drop threshold of 127 mmHg per minute. The Partisol Sampler passed the requirements outlined in the service manual with a pressure drop of 4 mmHg per minute during the audit.

3.3.2 External Manual Leak Check

GHD also performs an external manual leak check on the Partisol Sampler as part of the quarterly audit. The external manual leak check measures the pressure drop on a vacuum gauge located on

the sampler. The pressure drop may not exceed more than 8.5 inHg (216 mmHg) over a 30-second span. The Partisol Sampler passed the requirements of the service manual with a pressure drop of 0.0 inHg in a 30-second span.

3.4 Flow Audit (AEP Station ID 00010348-I-1)

The flow audit results of the Partisol Sampler meet the requirements of Chapter 4 of the AMD, refer to Table 3.2.

3.5 Instrument Condition and Recommendations (AEP Station ID 00010348-I-1)

The Partisol Sampler was visually and functionally inspected on the audit day. Audit recommendations and instrument conditions are listed below:

- Liquid crystal display screen is functioning.
- Filter exchange cabinet has been cleaned.
- Ventilation fan filters are clean.
- Filter exchange mechanism is operating normally.
- Filter v-seals are in good condition.
- Ambient temperature and pressure sensor wires in good condition.
- Main power connection wire in good condition.

3.5.1 Recommendations

GHD recommends opening and cleaning PM₁₀ sampling inlet prior to next sampling event.

GHD | Quarterly Audit Partisol FRM Model 2000 | 11114644 (43)

Appendix A Quarterly Audit Form

GHD Quarterly Audit Form

Date	4/13/2021		Weather Cond .:	Over	cast/9.	1°C		
Owner		Clean Harbors		Start Time:		12:00		
Station Name		Ryley Lift Station		End Time:	12:45			
Parameter	PM ₁₀		Performed By:	Trev	vor Lev	vis		
Partisol FRM Mod	lel 2000 Identificatio	n		Sampler Data				
Make/Model:	R & P Partisol FRM	2000		Temperature:	8.4°C			
Unit ID:	Ryley Lift Station			Pressure:	710 mmHg			
S/N:	200FB209860905			Flow Set Point:	16.7 L/min			
GHD Refere	nce Standards							
	FI	ow	Pressure	Temperature	Manomet	ter		
Make:	AirN	letrics	TSI	Fluke	Dwyer			
Model:	F	RM	9565-P	1551A Ex	475-0-FI	M		
Serial Number:	FRM	11218	9565P1710006	3520009	MAN-CAL-	001		
Calibration Date:	5/17	/2016	10/31/2020	12/14/2020	12/14/202	20		
Aud	lit Data							
		Sampler Data	Reference Data	Difference	Pass/Fa	il	Units	
Ambient Tempera	ture (+/- 2 °C)	9.1	8.4	0.7	Pass		°C	
Barometric Press	ure (+/- 10 mmHg)	714	710	4.0	Pass		mmHg	
Filter Temperatur	e (+/- 2 °C)	12.7	12.6	0.1	Pass		°C	
Flow (+/- 1.0 Litre	s/min)	16.7	16.6	0.1	Pass		Litres/min	
Leak	<u>Check</u>							
Manual Che	eck (-8.5 inHg)							
		Initial Pressure	Final Pressure	Pressure Drop	Pass/Fa	il	Units	
		-15.00	-15.00	0.00	Pass		inHG	
Automatic Ch	eck (-127 mmHg)							
Leak	check was performed	in automatic mode,	sampler indicated:	4 mmHg/min	Pass		mmHg/min	
<u>As Fou</u>	<u>nd/As Left</u>		Yes/No		As Found A	s Left	Pass/Fail	
Did the ambient ter	mperature require adj	ustment?	No		9.1	9.1	Pass	
Did the barometric	pressure require adju	istment?	No		714	714	Pass	
Did the filter tempe	erature require adjustr	nent?	No		12.7	12.7	Pass	
Did the flow audit r	equire adjustment?		No		16.7	16.7	Pass	
Comments Partisol sampler wa all seals.	as moderately dirty, G	GHD cleaned the com	ponents of the san	npling inlet, inside the ca	abinet, all filters	and wi	ped down	
Flow Equation								
Set Point	Actual Flow (Qact)	Absolute Difference	e Pass/Fail	Manometer (DH)	4.42 "	-120		
(lpm)	(lpm)	(lpm)	(<u>+</u> 1 lpm)	Actual Temp (Tact)	282.25 °I	K	9.1°C	
				Actual Pres (Pact)	0.952 b	ar		
16.7	16.6	0.1	Pass	Actual Pres (Pact)	28.11 ir	ıHg		
FTS Linear Regres	sion Constants							
(mflo) =	0.4452		Oact = mflox	$\sqrt{\Delta H \times Tact} + hflo$				
(bflo) =	0.4430			Pact				

Appendix B Calibration Certificates

TORONTO 16975 Leslie Street wmarket, ON L3Y 9A1 Tel: (905) 952-3750 Fax: (905) 952-3751

MONTRÉAL 20800 Boul, Industriel Ste-Anne-de-Bellevue, QC H9X 0A1 Tel: (514) 457-7280

Fax: (514) 457-4329

CALGARY

#209, 4615 112 Ave SE Calgary, A8 T2C 5J3 Tel: (403) 272-9332 Fax: (403) 248-5194

VANCOUVER

1282 Cliveden Av Delta, BC V3M 6G4 Tel: (604) 254-9622 Fax: (604) 254-3123

www.itm.com - information@itm.com

Serial: 3520009

Calibration Conditions

Temperature: 20.9°C

Approved by:

. elis

Barometric Pressure: N/A

Humidity: 15 %

Unit ID: THM-CAL-001

Calibration Certificate

Customer: GHD Ltd.

Certificate: C378442-00-02

Unit Identification

Manufacturer: Fluke Model: 1551A Ex Description: Stik Thermometer

Calibration Date

Calibration Date: 14-Dec-2020

Due Date: 14-Dec-2021

General Information

Remark:N/A

Standards Used

Unit ID	Manufacturer	Model	Cal Date	Due Date
CAL0080	Burns Engineering	12001-A-12-6-2-A	4-Jun-2018	4-Jun-2021
CAL0124	Hart Scientific	1502A	1-Apr-2020	1-Apr-2021
CAL0223	Ametek	RTC-158B	27-Oct-2020	27-Oct-2021

The calibration was performed using measurement standards traceable to the National Measurement Institute Standards (NMIS) part of the National Research Council of Canada (NRC) or the National Institute of Standards and Technology (NIST), or to accepted instrusic standards or measurement, or is derived by ratio type self-calibration techniques. Measurement ancertainties given in this report are based on a coverage factor of k=2 corresponding to a confidence level of approximately 95%.

Calibrated by: A. Atton

And Att

Certificate: C378442-00-02 Asset: ITM0003733

Calibration Certificate

Page 1.2

This calibration certificate may not be reproduced, except in full, unless with the permission of ITM Instruments Inc. Ce certificat ne peut être reproduit autrement qu'en totalité, sauf avec l'autorisation de ITM Instruments Inc.

TORONTO 16975 Leslie Street Newmarket, ON L3Y 9A1 Tel: (905) 952-3750 Fax: (905) 952-3751

MONTRÉAL 20800 Boul. Industriel Ste-Anne-de-Bellevue, QC H9X 0A1

CALGARY

#209, 4615 112 Ave SE Calgary, AB T2C 5J3 Tel: (403) 272-9332 Fax: (403) 248-5194

VANCOUVER

1282 Cliveden Av Delta, BC V3M 6G4 Tel: (604) 254-9622 Fax: (604) 254-3123

ITM INSTRUMENTS INC.

			عرواو ورواو او او او			<u>المرتفا لما تقا تقا تقا تقا</u>
Test Results						
Procedure: Fluke Stil	k Thermometer /R7	C-158B,1502,PRT	Rev: 1.0			
Data Type: As Found	Results: Pass					
Test Description	True Value	Reading	Lower Limit	Upper Limit	Test Status	Exp Uncert
0.060 °C		0.02 °C	0.01 °C	0.11 °C	Pass	8.3e-003 °C
25.075 °C		25.04 °C	25.02 °C	25.13 °C	Pass	8.8e-003 °C
100.025 °C		100.01 °C	99.98 °C	100.08 °C	Pass	1.0e-002 °C
150.085 °C		150.04 °C	150.03 °C	150.14 °C	Pass	1.2e-002 °C
Certificate: C378447-0	0-02					
Cumunan. C3/0744-0	v v#		net at at stall, a.			

This calibration certificate may not be reproduced, except in full, unless with the permission of ITM Instruments Inc Ce certificat ne peut être reproduit autrement qu'en totalité, sauf avec l'autorisation de UTM Instruments Inc.

NIST Traceable Transfer Standard Calibration

Calibration I Ambient Te Amb Press,	Date: 05/ŕ mp, ⁰K: Atm:	17/2016 295.5 1.0000	Orific Pri SI Mano	e # FRM td # LFE ⁻ ometer # FRM	11218- 774300 11218	By:
Std ∆H (inH₂O)	Manometer ΔH (in H_2O)	Actual Flow (alpm)	Calc Flow (alpm)	Difference* (%diff)		
6.67	6.67	20.179	20.209	-0.15	Manometer	r ∆H vs Act Flow
5.86	5.86	18.988	18.970	0.09	Linear Reg	ression Results:
5.10	5.10	17.733	17.727	0.03	m _{flo} =	0.4452
4.39	4.39	16.490	16.479	0.07	b _{flo} =	0.4430
3.73	3.73	15.233	15.224	0.06	r² =	1.0000
3.12	3.12	13.964	13,962	0.02		
2.56	2.56	12.683	12.688	-0.04		
2.05	2.05	11.390	11.401	-0.10	* all points mu	st be within ± 2%

The MiniFlo calibration is performed with an NIST-traceable standard. Each unit has a unique pair of calibration constants derived from the calibration which are used to calculate the actual air flow rate at all ambient conditions. The unit's calibration should be recertified annually.

The actual flow rate is a function of the pressure drop across the device, the ambient temperature, and the ambient pressure. The relationship of these variables and the unique calibration constants ("m" and "b") for each device is presented in the following equation (Eq.A):

$$Q_{act} = m_{flo} \times \sqrt{\frac{\Delta H \times T_{act}}{P_{act}}} + b_{flo}$$

 Q_{act} = actual flowrate, liters per min ΔH = manometer reading, inches of water T_{act} = ambient temperature, °K P_{act} = ambient pressure, atmospheres

CAUTION: The weather service, most airports, etc, reduce the atmospheric pressure to a common reference (sea level). The equation above requires the atmospheric pressure at the location where the MiniFlo is being used.

The equation below may be used to estimate the ambient atmospheric pressure at any elevation if the sea level pressure is known.

$$P_{act} = P_{sea} \times \left(1 - \frac{E}{145300}\right)^{5.25}$$

 P_{act} = Ambient Atmospheric Pressure P_{sea} = Sea Level Atmospheric Pressure E = Site elevation, feet

Airmetrics 1940 Don St., Suite 300 Springfield, OR 97477 (541) 683-5420

TORONTO 16975 Leslie Street Newmarket, ON 13Y 9A1 Tel: (905) 952-3750 (005) 0

MONTRÉAL 20800 Boul. Industriel Ste-Anne-de-Bellevue, QC H9X 0A1 Tel: (514) 457-7280

CALGARY

#209, 4615 112 Ave SE Calgary, AB T2C SJ3 Tel: (403) 272-9332 (403) 248.5194

VANCOUVER

1282 Cliveden Av Delta, BC V3M 6G4 Tel: (604) 254-9622 Fax: (604) 254-3123

	SINC	www.itm.c	om - information	@itm.com
and the first of the second				Team from transform from transform to be and the from the set of the set
	Ca	alibration C	ertificate	
Customer G	HD Ltd			
Customer. O	IID Liu,			
Certificate: C3	78442-00-01			
Unit Identification				
Manufacturer Dwye	r	S	Serial: N/A	
Model: 475-0-FM Description, Digital	Manometer	l	Jnit ID: MAN-CAL-001	
Calibration Date		Cal	ibration Conditions	
Calibration Date: 14-	Dec-2020	Te	emperature: 20.9°C	
Due Date: 14-Dec-20)21	Н	umidity: 15 %	
		B	arometric Pressure: N/A	
General Information				
** 1 * 1/4				
Remark:N/A				
Kemark:N/A				
Remark:N/A				
Remark:N/A Standards Used				
Remark:N/A Standards Used <u>Unit ID</u>	<u>Manufacturer</u>	Model	<u>Cal Date</u>	Due Date
Remark:N/A Standards Used Unit ID CAL0224	<u>Manufacturer</u> Fluke	<u>Model</u> 750P01	<u>Cal Date</u> 24-Aug-2020	Due Date 24-Føb-2021
Remark: N/A Standards Used Unit ID CAL0224	<u>Manufacturer</u> Fluke	<u>Model</u> 750P01	<u>Cal Date</u> 24-Aug-2020	Due Date 24-Føb-2021
Remark: N/A Standards Used <u>Unit ID</u> CAL0224	<u>Manufacturer</u> Fluke	<u>Model</u> 750P01	<u>Cal Date</u> 24-Aug-2020	<u>Due Date</u> 24-Feb-2021
Remark: N/A Standards Used Unit ID CAL0224	<u>Manufacturer</u> Fluke	<u>Model</u> 750P01	<u>Cal Date</u> 24-Aug-2020	Due Date 24-Feb-2021
Remark: N/A Standards Used <u>Unit ID</u> CAL0224	<u>Manufacturer</u> Fluke	<u>Model</u> 750P01	<u>Cal Date</u> 24-Aug-2020	Due Date 24-Føb-2021
Remark: N/A Standards Used Unit ID CAL0224	<u>Manufacturer</u> Fluke	<u>Model</u> 750P01	<u>Cal Date</u> 24-Aug-2020	Due Date 24-Feb-2021
Remark: N/A Standards Used <u>Unit ID</u> CAL0224	<u>Manufacturer</u> Fluke	<u>Model</u> 750P01	<u>Cal Date</u> 24-Aug-2020	Due Date 24-Føb-2021
Remark::N/A Standards Used Unit ID CAL0224	<u>Manufacturer</u> Fluke	<u>Model</u> 750P01	<u>Cal Date</u> 24-Aug-2020	Due Date 24-Feb-2021
Remark: N/A Standards Used <u>Unit ID</u> CAL0224	<u>Manufacturer</u> Fluke	<u>Model</u> 750P01	<u>Cal Date</u> 24-Aug-2020	Due Date 24-Føb-2021
Remark::N/A Standards Used Unit ID CAL0224	<u>Manufacturer</u> Fluke	<u>Model</u> 750P01	<u>Cal Date</u> 24-Aug-2020	Due Date 24-Feb-2021
Remark: N/A Standards Used <u>Unit ID</u> CAL0224 he calibration was performed us atomal Institute of Standards an	<u>Manufacturer</u> Fluke sing measurement standards traceable of Technology (NIST), or to accepted	<u>Model</u> 750P01 to the National Measurement Institu	<u>Cal Date</u> 24-Aug-2020 te Standards (NMIS) part of the National R or is derived by ratio type self-calibration	Due Date 24-Fob-2021 research Council of Canada (NRC) or the techniques. Measurement uncertamtics
Remark:N/A Standards Used <u>Unit ID</u> CAL0224 he calibration was performed us ational Institute of Standards an iven in this report are based on a	Manufacturer Flukø sing measurement standards traceable id Technology (NIST), or to accepted i coverage factor of k=2 correspondin	<u>Model</u> 750P01 to the National Measurement Institu I instruissic standards or measurement, ing to a confidence level of approxim	<u>Cal Date</u> 24-Aug-2020 te Standards (NMIS) part of the National R or is derived by ratio type self-calibration ately 95%	Due Date 24-Fob-2021 research Council of Canada (NRC) or the techniques. Measurement uncertainties
Kemark:N/A Standards Used Unit ID CAL0224 the calibration was performed us intonal Institute of Standards an iven in this report are based on a	Manufacturer Fluke Fluke ang measurement standards traceable d Technology (NIST), or to accepted a coverage factor of k=2 corresponda	<u>Model</u> 750P01 to the National Measurement Institut I instrumsic standards or measurement, ng to a confidence level of approxume	Cal Date 24-Aug-2020 te Standards (NMIS) part of the National R or is derived by ratio type self-calibration ately 95%	Due Date 24-Fob-2021 research Council of Canada (NRC) or the techniques. Measurement uncertainties
Kemark:N/A Standards Used Unit ID CAL0224 he calibration was performed us iational Institute of Standards an iven in this report are based on a Calibrated by: A. Atto.	Manufacturer Fluke ang measurement standards traceable d Technology (NIST), or to accepted a coverage factor of k=2 corresponder	Model 750P01 to the National Measurement Institut I instruissic standards or measurement, ing to a confidence level of approxima	<u>Cal Date</u> 24-Aug-2020 te Standards (NMIS) part of the National R or is derived by ratio type self-calibration ately 95% Approved by:	Due Date 24-Fob-2021 tesearch Council of Canada (NRC) or the techniques. Measurement uncertamities
Kemark:N/A Standards Used <u>Unit ID</u> CAL0224 the calibration was performed us fational Institute of Standards an iven in this report are based on a Calibrated by: A. Attor I	Manufacturer Fluke ang measurement standards traceable ad Technology (NIST), or to accepted a coverage factor of k=2 corresponder	Model 750P01 to the National Measurement Institu I instrinsic standards or measurement, ing to a confidence level of approxima	Cal Date 24-Aug-2020 te Standards (NMIS) part of the National R or is derived by ratio type self-calibration ately 95% Approved by:	Due Date 24-Fob-2021 esearch Council of Canada (NRC) or the techniques Measurement uncertainties
Kemark:N/A Standards Used Unit ID CAL0224 the calibration was performed us fational Institute of Standards an iven in this report are based on a Calibrated by: A. Atto. A.A.	Manufacturer Fluke sing measurement standards traceable ad Technology (NIST), or to accepted a coverage factor of k=2 correspondin <i>n</i>	Model 750P01 to the National Measurement Institu Instruisic standards or measurement ing to a confidence level of approxima	Cal Date 24-Aug-2020 te Standards (NMIS) part of the National R or is derived by ratio type self-calibration ately 95% Approved by:	Due Date 24-Fob-2021 research Council of Canada (NRC) or the techniques. Measurement uncertainties
Remark:N/A Standards Used Unit ID CAL0224 he calibration was performed us lational Institute of Standards an iven in this report are based on a Calibrated by: A. Atto. Machine	Manufacturer Fluke ang measurement standards traceable ad Technology (NIST), or to accepted a coverage factor of k=2 correspondin <i>n</i>	Model 750P01 to the National Measurement Institut I instrussic standards or measurement, ing to a confidence level of approxima	Cal Date 24-Aug-2020 te Standards (NMIS) part of the National R or is derived by ratio type self-calibration ately 95% Approved by:	Due Date 24-Fob-2021 esearch Council of Canada (NRC) or the techniques Measurement uncertainties
Kemark:N/A Standards Used Unit ID CAL0224 the calibration was performed us fational Institute of Standards an iven in this report are based on a Calibrated by: A. Atto Machine	Manufacturer Fluke sing measurement standards traceable ad Technology (NIST), or to accepted a coverage factor of k=2 correspondu n	Model 750P01	Cal Date 24-Aug-2020 te Standards (NMIS) part of the National R or is derived by ratio type self-calibration ately 95% Approved by:	Due Date 24-Fob-2021
Remark: N/A Standards Used Unit ID CAL0224 the calibration was performed us fational Institute of Standards an iven in this report are based on a Calibrated by: A. Atto Moduliary Calibrates C378442-00-f	Manufacturer Fluke ang measurement standards traceable ad Technology (NIST), or to accepted a coverage factor of k=2 correspondin <i>n</i> Manufacturer	Model 750P01 to the National Measurement Institu I instrutsic standards or measurement, ing to a confidence level of approxima	Cal Date 24-Aug-2020 te Standards (NMIS) part of the National R or is derived by ratio type self-calibration ately 95% Approved by:	Due Date 24-Fob-2021 esearch Council of Canada (NRC) or the techniques Measurement uncertainties

This calibration certificate may not be reproduced, except in full, unless with the permission of ITM Instruments Inc. Ce certificat ne peut être reproduit autrement qu'en totalité, sauf avec l'autorisation de ITM Instruments Inc.

TORONTO **16975 Leslie Street** Newmarket, ON L3Y 9A1 Tel: (905) 952-3750 Fax: (905) 952-3751

MONTRÉAL

20800 Boul. Industriel Ste-Anne-de-Bellevue, QC H9X 0A1 Tel: (514) 457-7280

CALGARY

#209, 4615 112 Ave SE Calgary, AB T2C 5J3 Tel: (403) 272-9332 Fax: (403) 248-5194

VANCOUVER 1282 Cliveden Av

Delta, BC V3M 6G4 Tel: (604) 254-9622 Fax: (604) 254-3123

ITM INSTRUMENTS INC.

www.itm.com - information@itm.com

Fest Results						
Procedure: Pressure	Gauge 10.00 IN.W.C	0.5% FS /750P01	Rev: 1.1			
Data Type: As Found	Results: Pass					
Test Description	True Value	Reading	Lower Limit	<u>Upper Limit</u>	Test Status	Exp Uncert
Tolerance used (additive	e if more than one listed):					
0.5% of full scale						
UUT is set to the nomina	al value, Reading is the					
actual pressure read by	the system instrument.			4 050 10100	Dess	1.6a-002 inH2O
1.000 inH2O		1.008 inH2O	0.950 inH2O	1.050 inH2O	Pass	1.66-002 mm20
2.000 inH2O		2.003 inH2O	1.950 inH20	2.000 InH20	Pass	1.6e-002 inH2O
4.000 inH2O		3.984 InH2O	3.950 INH20	4.050 inH2O	Pass	1.6e-002 inH2O
6.000 InH2O		5.981 INH20	5.950 INH20	8 050 inH20	Pass	1.6e-002 inH2O
0.000 mH20		9.965 inH2O	9.950 inH2O	10.050 inH2O	Pass	1.6e-002 inH2O
10.000 /0020		5 555 III 120	0.000 11120			
ertificate: C378442-0	0-01					
ci (incate: C5/0442-0		<u></u>	Ilburtion Contificate			Page 7

	Ŷ.Ű										
	V	S,	Сен	RTIFICAT TSI Incorp Tel: 1-800-874-7	E OF (porated, 500 (2811 1-651-49	CAL Cardiga 90-2811	IBRAT In Road, Shor Fax: 1-651-49	ION eview, 90-382	MN 55126 4 http://ww	TESTI USA W.tsi.com	NG
•	E	NVIRONMENT C	ONDITIONS							056	5 D
	TI	EMPERATURE		72.06 (22.3) °F	(°C)		ODEL			950	J- F
	RI	ELATIVE HUMIDI	TY	26 %	RH	SE	RIAL NUMB	ER	2 V	9565P1	710006
	B	AROMETRIC PRES	SURE	29.40 (995.6) in	Hg (hPa)						
		As Left				TOLER	RANCE			SI *	
	L	L AS FOUND	<u> </u>			UT OF 1	OLERANCE				
		0	- C A L	IBRATIO	N VER	IFI	CATIO		LESUL	13-	Halt. OF (OC)
	#	STANDARD	MEASURED	ALLOWAB	SYST LE RANGE	EM PF	STANDARD	-02 M	EASURED	ALLOW	ABLE RANGE
	1	69.6 (20.9)	69.7 (20.9)	67.6~71.6 (19.8~22.0)			1		1	
	D	IFFERENTIAL	PRESSURE		Syst	EM PF	RESSURE01	-02	·. · ·	Un	it: inH ₂ O (Pa)
	#	STANDARD	MEASURED	ALLOWA	BLE RANGE	#	STANDARD		IEASURED	ALLOW	ABLE RANGE
	1	-4.084 (-1016.9)	-4.082 (-1016.4)	(-1028.1		3	8.159 (2031.	6) 8.1	55 (2030.6	8.073-8.245	(2010.2~2053.0)
	2	2.186 (544.3)	2.182 (543.3)	2.160~2.212	(537.8~550.8)) 4	14.186 (3532.3)		14.184 (3531.8)	14.04 (3496	10-14.332 .0-3568.7)
	B	AROMETRIC P	RESSURE	1	Syst	EM PF	RESSURE01	-02		Un	it: inHg (hPa)
	#	STANDARD	MEASURED	ALLOWABLE	RANGE	# S	TANDARD	ME	SURED	ALLOWA	BLE RANGE
	1	19,86 (672.5)	19.84 (671.9)	19.46~20.26 (65	9.0~686.1)	3 35.	.32 (1196.1)	35.33	(1196.4)	34,61~36.03 (1172.0~1220.1)
		ircuit portion of i	temperature meas	urement only, not i	ncluding prob	e			2 2	•	
	TSI dat Tec of t	does hereby cert a) and has been c hnology (NIST) c hysical constants	temperature meas tify that the above calibrated using st or has been verifie s. TSI's calibration veriable System	urement only, not i described instrume andards whose acc d with respect to in a system is register ID Last Cal	ncluding prob ent conforms to curacies are tr istrumentation ed to ISO-900 Cal Due	e. o the or aceable whose 1:2015.	iginal manufac to the United accuracy is tro casurement Va	cturer' States aceable wiable	s specificati National In e to NIST, o System II	on (not applica stitute of Standa r is derived froi D Last Cal.	ble to As Found irds and n accepted values Cel. Due
	TSI dat Tec of 1	I does hereby cert a) and has been c hnology (NIST) c hysical constants <u>Measurement V</u> Temperature Pressure	temperature measure tify that the above calibrated using st or has been verifie s. TSI's calibration (ariable System E00462 E00398	arement only, not i described instruma andards whose acc d with respect to in n system is register <u>ID Last Cal.</u> 6 02-14-20 2 07-21-20	ncluding prob ent conforms to uracies are tr istrumentation ed to ISO-900 <u>Cal. Due</u> 02-28-21 01-31-21	e. aceable whose 1:2015. Pro DC	iginal manufac To the United accuracy is tra- casurement Ya cssure C Voltage	cturer ' States aceable <u>riable</u>	s specificati National In e to NIST, o <u>System II</u> E005254 E003493	on (not applica stitute of Standa r is derived from 2 Last Cal. 10-27-20 06-17-20	ble to As Found ands and m accepted values <u>Cal. Due</u> 10-31-21 06-30-21
	TSI dat Tec of t	I does hereby cert a) and has been c hnology (NIST) c hysical constants <u>Measurement V</u> Temperature Pressure	temperature measure tify that the above calibrated using st for has been verifie s. TSI's calibration <u>Variable</u> E00462 E00398	urement only, not i described instrum andards whose acc d with respect to in system is register <u>ID Last Cal.</u> 6 02-14-20 2 07-21-20	ncluding prob ent conforms ti uracles are tr istrumentation ed to 1SO-900 <u>Cal. Due</u> 02-28-21 01-31-21	e. o the or aceable whose 1:2015. Pro DC	iginal manufac To the United accuracy is tra casurement Ya cssure C Voltage	cturer' States aceable <u>riable</u> D	s specificati National Im e to NIST, o <u>System II</u> E005254 E003493	on (not applica stitute of Stando r is derived from 2 Last Cal. 10-27-20 06-17-20 29, 2020	ble to As Found and m accepted values <u>Cal. Due</u> 10-31-21 06-30-21
	TSI dat Tec of t	I does hereby ceri a) and has been c hnology (NIST) c hysical constants <u>Measurement V</u> Temperature Pressure	temperature measure tify that the above alibrated using st or has been verifies s. TSI's calibration variable E00462 E00398	arement only, not i described instrume andards whose acc d with respect to in a system is register <u>ID Last Cal.</u> 6 02-14-20 2 07-21-20	ncluding prob ent conforms lu- uracles are tr istrumentation ed to ISO-900 <u>Cal. Due</u> 02-28-21 01-31-21	e. aceable whose 1:2015 Mg Pre DC	iginal manufac To the United accuracy is tra- casurement Va essure C Voltage	cturer' States aceable riable	s specificati National In e to NIST, o <u>System II</u> E005254 E003493 Peccember Dat	on (not applica stitute of Standa r is derived frou 2 <u>Last Cal.</u> 10-27-20 06-17-20 29, 2020	ble to As Found inds and in accepted values <u>Cal. Due</u> 10-31-21 06-30-21
	TSI dat Tec of t	I does hereby cert a) and has been c hnology (NIST) c hysical constants <u>Measurement V</u> Temperature Pressure	temperature measure (ify that the above calibrated using st or has been verifie s. TSI's calibration Variable E00462 E00398	arement only, not i described instrume andards whose acc d with respect to in n system is register <u>ID Last Cal.</u> 6 02-14-20 2 07-21-20	ncluding prob ent conforms ti uracles are tr istrumentation ed to ISO-900 <u>Cal. Due</u> 02-28-21 01-31-21 01-31-21	e. o the or accable whose 1:2013 Prc DC	iginal manufac To the United accuracy is tra- casurement Va cssure C Voltage	cturer' States aceabli riable	s specificati National In e to NIST, o <u>System II</u> E005254 E003493 December	on (not applica stitute of Stando r is derived froi 2 Last Cal. 10-27-20 06-17-20 29, 2020	ble to As Found and n accepted values <u>Cal. Due</u> 10-31-21 06-30-21
	TSI dat Tec of t	I does hereby cert a) and has been c hnology (NIST) c hysical constants <u>Measurement V</u> Temperature Pressure	temperature measure (ify that the above salibrated using st or has been verifie s. TSI's calibration (ariable System E00462 E00398	urement only, not i described instrume andards whose acc d with respect to in n system is register <u>ID Last Cal.</u> 6 02-14-20 2 07-21-20	ncluding prob ent conforms lu- uracles are tr istrumentation ed to ISO-900 <u>Cal. Due</u> 02-28-21 01-31-21 01-31-21	e. o the or acceable whose 1:2015. Pro- Pro- DC	iginal manufac To the United accuracy is tra- casurement Va casure C Voltage	cturer' States aceable wiable	s specificati National In e to NIST, o System II E005254 E003493 Peccember Dat	on (not applica stitute of Stando r is derived from 2 Last Cal. 10-27-20 06-17-20 29, 2020	ble to As Found and and n accepted values <u>Cal. Due</u> 10-31-21 06-30-21
	TSI dati Tec of t	I does hereby cert a) and has been c hnology (NIST) c hnysical constants <u>Measurement V</u> Temperature Pressure	temperature measure (ify that the above calibrated using st or has been verifie s. TSI's calibration Variable E00462 E00398	arement only, not i described instrume andards whose acc d with respect to in n system is register <u>ID Last Cal.</u> 6 02-14-20 2 07-21-20	ncluding prob ent conforms ti uracles are tr istrumentation ed to ISO-900 <u>Cal. Due</u> 02-28-21 01-31-21 Doc. ID: CER	e. o the or accable yhose 1:2015 Pro DC	iginal manufac To the United accuracy is tro casurement Ya cssure C Voltage	cturer' States aceabl	s specificati National In e to NIST, o <u>System II</u> E005254 E003493 December	on (not applica stitute of Stando r is derived froi 2 Last Cal. 10-27-20 06-17-20 29, 2020	ble to As Found and in accepted values <u>Cal. Due</u> 10-31-21 06-30-21
www.shume.com/shume.com/shume.com/	TSI dati Tec of t	I does hereby ceri a) and has been c hnology (NIST) c hysical constants <u>Measurement V</u> Temperature Pressure	temperature measure (ify that the above salibrated using st or has been verifies (s. TSI's calibration (ariable System E00462 E00398 (CALIBRA	urement only, not i described instrume andards whose acc d with respect to in a system is register <u>ID Last Cal.</u> 6 02-14-20 2 07-21-20	ncluding prob ent conforms li uracles are tr istrumentation ed to ISO-900 <u>Call Due</u> 02-28-21 01-31-21	e. o the or acceable whose 1:2015. Pro- Pro- DC	iginal manufac To the United accuracy is tra- casurement Va cosure C Voltage	cturer' States aceabl riable D	s specificati National In e to NIST, o <u>System II</u> E005254 E003493 Pecember Dat	on (not applica stitute of Standa r is derived froi 2 <u>Last Cal.</u> 10-27-20 06-17-20 29, 2020	ble to As Found ards and n accepted values <u>Cal. Due</u> 10-31-21 06-30-21
	TSD dat Tec of t	I does hereby cert a) and has been c hnology (NIST) c hysical constants <u>Measurement V</u> Temperature Pressure	temperature measure tify that the above salibrated using st or has been verifies s. TSI's calibration l'ariable System E00462 E00398 CALIBRA	arement only, not i described instrume andards whose acc d with respect to in n system is register <u>ID Last Cal.</u> 6 02-14-20 2 07-21-20	ncluding prob ent conforms ti uracles are tr istrumentation ed to ISO-900 <u>Cal. Due</u> 02-28-21 01-31-21 Doc. ID: CER	e. o the or accable whose 1:2015 Pro DC	iginal manufac To the United accuracy is tra- casurement Ya cssure C Voltage	cturer' States States D	s specificati National In e to NIST, o System II E005254 E003493 December	on (not applica stitute of Stando r is derived froi 2 Last Cal. 10-27-20 06-17-20 29, 2020	ble to As Found and maccepted values <u>Cal. Due</u> 10-31-21 06-30-21
	TSL data Tec of L	I does hereby ceri a) and has been c hnology (NIST) c hysical constants <u>Measurement V</u> Temperature Pressure	temperature measure ify that the above alibrated using st or has been verifies s. TSI's calibration <u>variable</u> System E00462 E00398	urement only, not i described instrume andards whose acc d with respect to in a system is register <u>ID Last Cal.</u> 6 02-14-20 2 07-21-20	ncluding prob ent conforms It varacles are tr istrumentation ed to ISO-900 <u>Call Due</u> 02-28-21 01-31-21	e. o the or aceable whose 1:2015 Pro- DC T_GEN_1	iginal manufac To the United accuracy is tra- casurement Va casure C Voltage	cturer' States aceabl riable D	s specificati National In e to NIST, o System II E005254 E003493 December Dat	on (not applica stitute of Stando r is derived froi 2 Last Cal. 10-27-20 06-17-20 29, 2020	ble to As Found ards and n accepted values <u>Cal. Due</u> 10-31-21 06-30-21
	TSI dati Tec of t	I does hereby cert a) and has been c hnology (NIST) c hysical constants <u>Measurement V</u> Temperature Pressure	temperature measure tify that the above salibrated using st or has been verifies s. TSI's calibration l'ariable System E00462 E00398 CALIBRA	arement only, not i described instrume andards whose acc d with respect to in n system is register <u>ID Last Cal.</u> 6 02-14-20 2 07-21-20	ncluding prob ent conforms ti uracles are tr istrumentation ed to ISO-900 <u>Cal. Due</u> 02-28-21 01-31-21 Doc. ID: CER	e. o the or accable whose 1:2015 Pro DC	iginal manufac To the United accuracy is tra- casurement Ya cssure C Voltage	cturer' States saceabl	s specificati National In e to NIST, o System II E005254 E003493 December Dat	on (not applica stitute of Stando r is derived froi 2 Last Cal. 10-27-20 06-17-20 29, 2020	ble to As Found and maccepted values <u>Cal. Due</u> 10-31-21 06-30-21
	TSI dat Tec of t	I does here by cert a) and has been c hnology (NIST) c hysical constants <u>Measurement V</u> Temperature Pressure	temperature measure (ify that the above salibrated using st or has been verifies (ariable System E00462 E00398	urement only, not i described instrume andards whose acc d with respect to in a system is register <u>ID Last Cal.</u> 6 02-14-20 2 07-21-20	ncluding prob ent conforms It varacles are tr istrumentation ed to ISO-900 <u>Call Due</u> 02-28-21 01-31-21 Doc. ID: CER	e. o the or aceable whose 1:2015. Ms Prc DC T_GEN_1	iginal manufac To the United accuracy is tra- casurement Va essure C Voltage	cturer' States aceabl	s specificati National In e to NIST, o System II E005254 E003493 December Dat	on (not applica stitute of Stando r is derived froi 2 Last Cal. 10-27-20 06-17-20 29, 2020	ble to As Found ards and n accepted values <u>Cal. Due</u> 10-31-21 06-30-21
	TSL dat Tec of t	I does hereby cert a) and has been c hnology (NIST) c hysical constants <u>Measurement V</u> Temperature Pressure	temperature measure tify that the above valibrated using st or has been verifies s. TSI's calibration variable E00462 E00398	urement only, not i described instrume andards whose acc d with respect to in n system is register 1D Last Cal. 6 02-14-20 2 07-21-20	ncluding prob ent conforms lu- uracles are tr istrumentation ed to ISO-900 <u>Cal. Due</u> 02-28-21 01-31-21 Doc. ID: CER	e. o the or accable whose 1:2015 Pro DC	iginal manufac To the United accuracy is tra- casurement Ya cssure C Voltage	cturer' States States D	s specificati National In e to NIST, o System II E005254 E003493 December Dat	on (not applica stitute of Stando r is derived froi 2 Last Cal. 10-27-20 06-17-20 29, 2020	ble to As Found and and accepted values <u>Cal. Due</u> 10-31-21 06-30-21
	TSI dat Tec of t	I does hereby cert a) and has been c hnology (NIST) c hysical constants <u>Measurement V</u> Temperature Pressure	temperature measure tify that the above salibrated using st or has been verifies s. TSI's calibration variable System E00462 E00398 CALIBRA	urement only, not i described instrume andards whose acc d with respect to in a system is register <u>ID Last Cal.</u> 6 02-14-20 2 07-21-20	ncluding prob ent conforms It varacles are tr istrumentation ed to ISO-900 <u>Call Due</u> 02-28-21 01-31-21 Doc. ID: CER	e. o the or accable yhose 1:2015. Ms Prc DC T_GEN_1	iginal manufac to the United accuracy is tra- essurement Va essure C Voltage	cturer' States aceabl riable D	s specificati National In e to NIST, o System II E005254 E003493 Peccember Dat	on (not applica stitute of Stando r is derived froi 2 Last Cal. 10-27-20 06-17-20 29, 2020	ble to As Found ands and in accepted values Cal. Due 10-31-21 06-30-21

ł

about GHD

GHD is one of the world's leading professional services companies operating in the global markets of water, energy and resources, environment, property and buildings, and transportation. We provide engineering, environmental, and construction services to private and public sector clients.

Brandon Lawrence Brandon.lawrence@ghd.com 403.538.8605

www.ghd.com

Quarterly Audit Partisol FRM Model 2000

Clean Harbors 50114 Range Rd. 173 Ryley Alberta T0B 4A0 Quarterly Audit Date, September 23, 2021

Clean Harbors Environmental Service

25 October 2021

GHD 11114644

3445 - 114th Avenue SE, Suite 103
Calgary, Alberta T2Z 0K6, Canada
T +1 403 271 2000 | F +1 403 271 3013 | E info-northamerica@ghd.com | ghd.com

Printed date	2021-10-25 3:51:00 PM
Last saved date	October 25, 2021
File name	Document1
Author	Trevor Lewis
Project manager	Brandon Lawrence
Client name	Clean Harbors Environmental Service
Project name	CleanHarbors - ABAirComplianceSupp
Document title	Quarterly Audit Partisol FRM Model 2000 Clean Harbors
Revision version	Rev 0
Project number	11114644

Document status

Status	Revision	Author	Reviewer		Approved for issue			
Code			Name	Signature	Name	Signature	Date	
S0	А	Trevor Lewis	Trevor Lewis		Brandon Lawrence		Oct. 18, 2021	
S2	0	Trevor Lewis	Trevor Lewis	Jun Seri-	Brandon Lawrence	Bruke turn	Oct. 25, 2021	
[Status code]								
[Status code]								
[Status code]								

© GHD 2021

This document is and shall remain the property of GHD. The document may only be used for the purpose for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited.

Contents

1.	Introd	uction	1
	1.1	Scope and limitations	1
2.	Audit	Procedure	1
3.	Audit	Results	2
	3.1	Siting Location Audit Results (AEP Station ID 00010348-I-1)	2
	3.2	Pressure and Temperature Audit Results (AEP Station ID 00010348-I-1)	2
	3.3	Leak Check Results (AEP Station ID 00010348-I-1)	3
		3.3.1 Automatic Leak Check	3
		3.3.2 External Manual Leak Check	3
	3.4	Flow Audit (AEP Station ID 00010348-I-1)	3
	3.5	Instrument Condition and Recommendations (AEP Station ID 00010348-I-1)	3
		3.5.1 Recommendations	3

Table index

Table 3.1	AMD Requirements vs. Current Partisol Sampler Location	2
Table 3.2	Reference Results vs. Partisol Sampler Readings	2

Appendices

arterly Audit Form

Appendix B Calibration Certificates

i

1. Introduction

GHD Limited (GHD) was retained by Clean Harbors to conduct a Quarterly Audit at 50114 Range Road 173 Ryley, Alberta (Facility) on September 23, 2021. The Quarterly Audit was conducted on the Partisol FRM 2000 Particulate Matter less than 10 microns (PM₁₀) Sampler (Partisol Sampler), located on the roof of the Ryley Lift Station (AEP Station ID 00010348-I-1), which is southeast of the Facility. The coordinates of the lift station are 53.297961, -112.416076.

1.1 Scope and limitations

This report: has been prepared by GHD for Clean Harbors Environmental Service and may only be used and relied on by Clean Harbors Environmental Service for the purpose agreed between GHD and Clean Harbors Environmental Service as set out in Section 1 of this report.

GHD otherwise disclaims responsibility to any person other than Clean Harbors Environmental Service arising in connection with this report. GHD also excludes implied warranties and conditions, to the extent legally permissible.

The services undertaken by GHD in connection with preparing this report were limited to those specifically detailed in the report and are subject to the scope limitations set out in the report.

The opinions, conclusions and any recommendations in this report are based on conditions encountered and information reviewed at the date of preparation of the report. GHD has no responsibility or obligation to update this report to account for events or changes occurring subsequent to the date that the report was prepared.

The opinions, conclusions and any recommendations in this report are based on assumptions made by GHD described in this report (refer Section(s) 3.5.1 of this report). GHD disclaims liability arising from any of the assumptions being incorrect.

2. Audit Procedure

The Partisol Sampler was audited in accordance with the instrument manual and the Alberta Air Monitoring Directive, 2016 (AMD). Siting location, ambient pressure, ambient temperature, filter temperature, leakage rate and flow rate were audited, as well as overall instrument condition to ensure compliance with the instrument manual and the AMD. Below is a summary of the tasks performed on the Partisol Sampler:

- Siting Location Audit
- Ambient Pressure Audit
- Ambient Temperature Audit
- Filter Temperature Audit
- Leakage Rate Audit
- Flow Rate Audit
- Instrument Condition and Recommendations

GHD verified all of these parameters using calibrated reference instruments. GHD reference instruments either have National Institute of Standards and Technology (NIST) Traceable Certifications, current manufacturer certification, or were verified by a primary standard. The GHD quarterly audit field form can be found in Appendix A. All calibrations and certifications can be found in Appendix B.

3. Audit Results

3.1 Siting Location Audit Results (AEP Station ID 00010348-I-1)

The siting location of the Partisol Sampler meets the requirements of Chapter 3, of the AMD. Table 3.1 of this report compares the AMD Siting Requirements for Intermittent Samplers versus the current Partisol sampler location.

- The current coordinates of the Partisol Sampler are 53.297961, -112.416076.
- The distance from the nearest roadway is 21 m.

Site Characteristics	AMD Requirements	Current Location	Specification
Sampler Inlet-height above ground (abg)	Minimum 2 m, Maximum 15 m	Meets Requirement	4.63 m abg
Other Requirements	 Distance from an obstacle greater than 2.5 times the height of the obstacle above the sampler. 	Meets Requirement	>2.5 times
	 At least 2 m from any other samplers or inlets with flow rates greater than 200 litres (L) per minute, 	Meets Requirement	None
	Or at least 1 m apart from any other samplers or inlets with flow rates less than or equal of 200 L per minute.	Meets Requirement	None
	3. Unrestricted air flow in three to four wind quadrants.	Meets Requirement	4/4 Unrestricted Quadrants

Table 3.1 AMD Requirements vs. Current Partisol Sampler Location

3.2 Pressure and Temperature Audit Results (AEP Station ID 00010348-I-1)

The pressure and temperature audit results of the Partisol Sampler meet the requirements of Chapter 4, of the AMD. Table 3.2 of this report compares the reference results versus the Partisol Sampler readings.

Table 3.2	Reference I	Results vs.	Partisol	Sampler	Readings
-----------	-------------	-------------	----------	---------	----------

Parameter	Partisol	Reference	Difference	Limit	Pass/Fail
Ambient Temperature (°C)	8.7	8.3	0.4	<u>+</u> 2°C	Pass
Barometric Pressure (mmHg)	704	703.5	0.5	<u>+</u> 10 mmHg	Pass
Filter Temperature (°C)	8.3	8.9	0.6	<u>+</u> 2°C	Pass
Flow (L/min	16.7	16.6	0.1	<u>+</u> 1.0 L/min	Pass

3.3 Leak Check Results (AEP Station ID 00010348-I-1)

3.3.1 Automatic Leak Check

The Partisol firmware performs leak checks in automatic mode and indicates either a "pass" or "fail" based on a pressure drop threshold of 127 mmHg per minute. The Partisol Sampler passed the requirements outlined in the service manual with a pressure drop of 5 mmHg per minute during the audit.

3.3.2 External Manual Leak Check

GHD also performs an external manual leak check on the Partisol Sampler as part of the quarterly audit. The external manual leak check measures the pressure drop on a vacuum gauge located on the sampler. The pressure drop may not exceed more than 8.5 inHg (216 mmHg) over a 30-second span. The Partisol Sampler passed the requirements of the service manual with a pressure drop of 0.0 inHg in a 30-second span.

3.4 Flow Audit (AEP Station ID 00010348-I-1)

The flow audit results of the Partisol Sampler meet the requirements of Chapter 4 of the AMD, refer to Table 3.2.

3.5 Instrument Condition and Recommendations (AEP Station ID 00010348-I-1)

The Partisol Sampler was visually and functionally inspected on the audit day. Audit recommendations and instrument conditions are listed below:

- Liquid crystal display screen is functioning.
- Filter exchange cabinet has been cleaned.
- Ventilation fan filters are clean.
- Filter exchange mechanism is operating normally.
- Filter v-seals are in good condition.
- Ambient temperature and pressure sensor wires in good condition.
- Main power connection wire in good condition.

3.5.1 Recommendations

GHD recommends opening and cleaning PM₁₀ sampling inlet prior to next sampling event.

Appendices

Appendix A Quarterly Audit Form

GHD Quarterly Audit Form

Date		9/23/2021		Weather Cond .:	Sur	nny/8.3	°C	
Owner		Clean Harbors		Start Time:	9:0	9:00:00 AM		
Station Name		Ryley Lift Station		End Time:	10:34:00 AM			
Parameter		PM ₁₀		Performed By:	Tre	vor Lev	wis	
Partisol FRM Mod	el 2000 Identificatio	n		Sampler Data				
Make/Model:	R & P Partisol FRM	2000		Temperature:	8.3°C			
Unit ID:	Ryley Lift Station			Pressure:	703.5 mmHg			
S/N:	200FB209860905			Flow Set Point:	16.7 L/min			
GHD Refere	nce Standards							
	FI	ow	Pressure	Temperature	Manome	ter		
Make:	AirM	etrics	TSI	Fluke	Dwyer			
Model:	FI	RM	9565-P	1551A Ex	475-0-FI	М		
Serial Number:	FRM	11218	9565P1223002	3520009	MAN-CAL-	001		
Calibration Date:	5/17	/2016	12/18/2020	12/14/2020	12/14/20	20		
Aud	it Data							
		Sampler Data	Reference Data	Difference	Pass/Fa	il	Units	
Ambient Tempera	ture (+/- 2 °C)	8.7	8.3	0.4	Pass		°C	
Barometric Press	ure (+/- 10 mmHg)	704	703.5	0.5	Pass		mmHg	
Filter Temperature	e (+/- 2 °C)	8.3	8.9	0.6	Pass		°C	
Flow (+/- 1.0 Litres	s/min)	16.7	16.6	0.1	Pass		Litres/min	
Leak	Check							
Manual Che	eck (-8.5 inHg)							
		Initial Pressure	Final Pressure	Pressure Drop	Pass/Fa	ul	Units	
		-14.00	-14.00	0.00	Pass		inHG	
Automatic Che	eck (-127 mmHg)							
Leak	check was performed	in automatic mode,	sampler indicated:	5 mmHg/min	Pass		mmHg/min	
<u>As Four</u>	nd/As Left		Yes/No		As Found A	As Left	Pass/Fail	
Did the ambient ten	nperature require adju	ustment?	No		8.7	8.3	Pass	
Did the barometric	pressure require adju	stment?	No		704	703.5	Pass	
Did the filter temper	rature require adjustm	nent?	No		8.3	8.9	Pass	
Did the flow audit re	equire adjustment?		No		16.7	16.6	Pass	
Comments								
Partisol sampler wa	as moderately dirty, G	HD cleaned the com	ponents of the sam	pling inlet, inside the ca	binet, all filters	and wij	oed down	
all seals.								
Flow Equation								
Flow Equation Set Point	Actual Flow (Qact)	Absolute Difference	Pass/Fail	Manometer (DH)	4.35 "	H2O		
Flow Equation Set Point (lpm)	Actual Flow <i>(Qact)</i> (lpm)	Absolute Difference (lpm)	Pass/Fail (<u>+</u> 1 lpm)	Manometer <i>(DH)</i> Actual Temp <i>(Tact)</i>	4.35 " 281.45 °	H2O K	8.3°C	
Flow Equation Set Point (lpm)	Actual Flow <i>(Qact)</i> (Ipm)	Absolute Difference (Ipm)	Pass/Fail (<u>+</u> 1 lpm)	Manometer <i>(DH)</i> Actual Temp <i>(Tact)</i> Actual Pres <i>(Pact)</i>	4.35 " 281.45 ° 0.952 b	H2O K Þar	8.3°C	
Flow Equation Set Point (Ipm) 16.7	Actual Flow <i>(Qact)</i> (lpm) 16.6	Absolute Difference (Ipm) 0.1	Pass/Fail (<u>+</u> 1 lpm) Pass	Manometer <i>(DH)</i> Actual Temp <i>(Tact)</i> Actual Pres <i>(Pact)</i> Actual Pres <i>(Pact)</i>	4.35 " 281.45 ° 0.952 b 28.11 ir	H2O K bar hHg	8.3°C	
Flow Equation Set Point (lpm) 16.7	Actual Flow <i>(Qact)</i> (lpm) 16.6	Absolute Difference (Ipm) 0.1	Pass/Fail (<u>+</u> 1 lpm) Pass	Manometer <i>(DH)</i> Actual Temp <i>(Tact)</i> Actual Pres <i>(Pact)</i> Actual Pres <i>(Pact)</i>	4.35 " 281.45 ° 0.952 b 28.11 ir	H2O K Þar hHg	8.3°C	
Flow Equation Set Point (lpm) 16.7 FTS Linear Regres	Actual Flow <i>(Qact)</i> (lpm) 16.6 sion Constants	Absolute Difference (Ipm) 0.1	Pass/Fail (<u>+</u> 1 lpm) Pass	Manometer (DH) Actual Temp (Tact) Actual Pres (Pact) Actual Pres (Pact) $\sqrt{\Delta H \times Tact}$	4.35 " 281.45 ° 0.952 b 28.11 ir	H2O K bar hHg	8.3°C	
Flow Equation Set Point (lpm) 16.7 FTS Linear Regres (<i>mflo</i>) = (<i>hflo</i>) =	Actual Flow (Qact) (lpm) 16.6 sion Constants 0.4452	Absolute Difference (Ipm) 0.1	Pass/Fail (±1 lpm) Pass Qact = mflo >	Manometer (DH) Actual Temp (Tact) Actual Pres (Pact) Actual Pres (Pact) $< \sqrt{\Delta H \times Tact} + bflo$	4.35 " 281.45 ° 0.952 b 28.11 ir	H2O K bar hHg	8.3°C	

Appendix B Calibration Certificates

TORONTO 16975 Leslie Street wmarket, ON L3Y 9A1 Tel: (905) 952-3750 Fax: (905) 952-3751

MONTRÉAL 20800 Boul, Industriel Ste-Anne-de-Bellevue, QC H9X 0A1 Tel: (514) 457-7280

Fax: (514) 457-4329

CALGARY

#209, 4615 112 Ave SE Calgary, A8 T2C 5J3 Tel: (403) 272-9332 Fax: (403) 248-5194

VANCOUVER

1282 Cliveden Av Delta, BC V3M 6G4 Tel: (604) 254-9622 Fax: (604) 254-3123

www.itm.com - information@itm.com

Serial: 3520009

Calibration Conditions

Temperature: 20.9°C

Approved by:

. elis

Barometric Pressure: N/A

Humidity: 15 %

Unit ID: THM-CAL-001

Calibration Certificate

Customer: GHD Ltd.

Certificate: C378442-00-02

Unit Identification

Manufacturer: Fluke Model: 1551A Ex Description: Stik Thermometer

Calibration Date

Calibration Date: 14-Dec-2020

Due Date: 14-Dec-2021

General Information

Remark:N/A

Standards Used

Unit ID	Manufacturer	Model	Cal Date	Due Date
CAL0080	Burns Engineering	12001-A-12-6-2-A	4-Jun-2018	4-Jun-2021
CAL0124	Hart Scientific	1502A	1-Apr-2020	1-Apr-2021
CAL0223	Ametek	RTC-158B	27-Oct-2020	27-Oct-2021

The calibration was performed using measurement standards traceable to the National Measurement Institute Standards (NMIS) part of the National Research Council of Canada (NRC) or the National Institute of Standards and Technology (NIST), or to accepted instrusic standards or measurement, or is derived by ratio type self-calibration techniques. Measurement ancertainties given in this report are based on a coverage factor of k=2 corresponding to a confidence level of approximately 95%.

Calibrated by: A. Atton

And Att

Certificate: C378442-00-02 Asset: ITM0003733

Calibration Certificate

Page 1.2

This calibration certificate may not be reproduced, except in full, unless with the permission of ITM Instruments Inc. Ce certificat ne peut être reproduit autrement qu'en totalité, sauf avec l'autorisation de ITM Instruments Inc.

TORONTO 16975 Leslie Street Newmarket, ON L3Y 9A1 Tel: (905) 952-3750 Fax: (905) 952-3751

MONTRÉAL 20800 Boul. Industriel Ste-Anne-de-Bellevue, QC H9X 0A1

CALGARY

#209, 4615 112 Ave SE Calgary, AB T2C 5J3 Tel: (403) 272-9332 Fax: (403) 248-5194

VANCOUVER

1282 Cliveden Av Delta, BC V3M 6G4 Tel: (604) 254-9622 Fax: (604) 254-3123

ITM INSTRUMENTS INC.

			عرواو ورواو او او او او			<u>المرتفا لقا لقا تقا تقا تقا</u>
Test Results						
Procedure: Fluke Stil	k Thermometer /R7	C-158B,1502,PRT	Rev: 1.0			
Data Type: As Found	Results: Pass					
Test Description	True Value	Reading	Lower Limit	Upper Limit	Test Status	Exp Uncert
0.060 °C		0.02 °C	0.01 °C	0.11 °C	Pass	8.3e-003 °C
25.075 °C		25.04 °C	25.02 °C	25.13 °C	Pass	8.8e-003 °C
100.025 °C		100.01 °C	99.98 °C	100.08 °C	Pass	1.0e-002 °C
150.085 °C		150.04 °C	150.03 °C	150.14 °C	Pass	1.2e-002 °C
Certificate: C378447-0	0-02					
Cumunan. C3/0744-0	v v#		and an and shalls as			

This calibration certificate may not be reproduced, except in full, unless with the permission of ITM Instruments Inc Ce certificat ne peut être reproduit autrement qu'en totalité, sauf avec l'autorisation de UTM Instruments Inc.

NIST Traceable Transfer Standard Calibration

Calibration Ambient Te Amb Press,	Date: 05/ŕ mp, ⁰K: Atm:	17/2016 295.5 1.0000	Orific Pri SI Mano	e # FRM td # LFE ometer # FRM	I1218- B 774300 I1218 C	y:
Std ∆H (inH₂O)	Manometer ΔH (in H_2O)	Actual Flow (alpm)	Calc Flow (alpm)	Difference* (%diff)		
6.67	6.67 5.86	20.179	20.209	-0.15 0.09	Manometer A	∆H vs Act Flow ession Results:
5.10	5.10	17.733	17.727	0.03	m _{flo} =	0.4452
4.39	4.39	16.490	16.479	0.07	b _{flo} =	0.4430
3.73	3.73	15.233	15.224	0.06	r² =	1.0000
3.12	3.12	13.964	13.962	0.02		
2.56	2.56	12.683	12.688	-0.04		
2.05	2.05	11.390	11.401	-0.10	* all points must	be within ± 2%

The MiniFlo calibration is performed with an NIST-traceable standard. Each unit has a unique pair of calibration constants derived from the calibration which are used to calculate the actual air flow rate at all ambient conditions. The unit's calibration should be recertified annually.

The actual flow rate is a function of the pressure drop across the device, the ambient temperature, and the ambient pressure. The relationship of these variables and the unique calibration constants ("m" and "b") for each device is presented in the following equation (Eq.A):

$$Q_{act} = m_{flo} \times \sqrt{\frac{\Delta H \times T_{act}}{P_{act}}} + b_{flo}$$

 Q_{act} = actual flowrate, liters per min ΔH = manometer reading, inches of water T_{act} = ambient temperature, °K P_{act} = ambient pressure, atmospheres

CAUTION: The weather service, most airports, etc, reduce the atmospheric pressure to a common reference (sea level). The equation above requires the atmospheric pressure at the location where the MiniFlo is being used.

The equation below may be used to estimate the ambient atmospheric pressure at any elevation if the sea level pressure is known.

$$P_{act} = P_{sea} \times \left(1 - \frac{E}{145300}\right)^{5.25}$$

 P_{act} = Ambient Atmospheric Pressure P_{sea} = Sea Level Atmospheric Pressure E = Site elevation, feet

Airmetrics 1940 Don St., Suite 300 Springfield, OR 97477 (541) 683-5420

TORONTO **16975 Leslie Street** Newmarket, ON 13Y 9A1 Tel: (905) 952-3750 (005) 0

MONTRÉAL 20800 Boul. Industriel Ste-Anne-de-Bellevue, QC H9X 0A1 Tel: (514) 457-7280

CALGARY

#209, 4615 112 Ave SE Calgary, AB T2C SJ3 Tel: (403) 272-9332 (403) 248.5194

VANCOUVER

1282 Cliveden Av Delta, BC V3M 6G4 Tel: (604) 254-9622 Fax: (604) 254-3123

	SINC	www.itm.c	om - information	@itm.com
and the first of the second				
	Ca	alibration C	ertificate	
Customer G	HD Ltd			
Customer. O	IID Liu,			
Certificate: C3	78442-00-01			
Unit Identification				
Manufacturer Dwye	r	S	Serial: N/A	
Model: 475-0-FM Description, Digital	Manometer	l	Jnit ID: MAN-CAL-001	
Calibration Date		Cal	ibration Conditions	
Calibration Date: 14-	Dec-2020	Te	emperature: 20.9°C	
Due Date: 14-Dec-20)21	Н	umidity: 15 %	
		B	arometric Pressure: N/A	
General Information				
** * ****				
Remark:N/A				
Kemark:N/A				
Remark:N/A				
Remark:N/A Standards Used				
Remark:N/A Standards Used <u>Unit ID</u>	<u>Manufacturer</u>	Model	<u>Cal Date</u>	Due Date
Remark:N/A Standards Used Unit ID CAL0224	<u>Manufacturer</u> Fluke	<u>Model</u> 750P01	<u>Cal Date</u> 24-Aug-2020	<u>Due Date</u> 24-Feb-2021
Remark: N/A Standards Used Unit ID CAL0224	<u>Manufacturer</u> Fluke	<u>Model</u> 750P01	<u>Cal Date</u> 24-Aug-2020	<u>Due Date</u> 24-Føb-2021
Remark: N/A Standards Used <u>Unit ID</u> CAL0224	<u>Manufacturer</u> Fluke	<u>Model</u> 750P01	<u>Cal Date</u> 24-Aug-2020	<u>Due Date</u> 24-Feb-2021
Remark: N/A Standards Used Unit ID CAL0224	<u>Manufacturer</u> Fluke	<u>Model</u> 750P01	<u>Cal Date</u> 24-Aug-2020	Due Date 24-Feb-2021
Remark: N/A Standards Used <u>Unit ID</u> CAL0224	<u>Manufacturer</u> Fluke	<u>Model</u> 750P01	<u>Cal Date</u> 24-Aug-2020	Due Date 24-Feb-2021
Remark: N/A Standards Used Unit ID CAL0224	<u>Manufacturer</u> Fluke	<u>Model</u> 750P01	<u>Cal Date</u> 24-Aug-2020	Due Date 24-Feb-2021
Remark: N/A Standards Used <u>Unit ID</u> CAL0224	<u>Manufacturer</u> Fluke	<u>Model</u> 750P01	<u>Cal Date</u> 24-Aug-2020	Due Date 24-Fob-2021
Remark::N/A Standards Used Unit ID CAL0224	<u>Manufacturer</u> Fluke	<u>Model</u> 750P01	<u>Cal Date</u> 24-Aug-2020	Due Date 24-Føb-2021
Remark: N/A Standards Used <u>Unit ID</u> CAL0224	<u>Manufacturer</u> Fluke	<u>Model</u> 750P01	<u>Cal Date</u> 24-Aug-2020	Due Date 24-Feb-2021
Remark::N/A Standards Used Unit ID CAL0224	<u>Manufacturer</u> Fluke	<u>Model</u> 750P01	<u>Cal Date</u> 24-Aug-2020	Due Date 24-Føb-2021
Remark: N/A Standards Used <u>Unit ID</u> CAL0224 he calibration was performed us ational Institute of Standards an	<u>Manufacturer</u> Fluke sing measurement standards traceable of Technology (NIST), or to accepted	<u>Model</u> 750P01 to the National Measurement Institu funstrunsic standards or measurement.	<u>Cal Date</u> 24-Aug-2020 te Standards (NMIS) part of the National R or is derived by ratio type self-calibration	Due Date 24-Fob-2021 Research Council of Canada (NRC) or the techniques. Measurement uncertamtics
Remark: N/A Standards Used <u>Unit ID</u> CAL0224 he calibration was performed us ational Institute of Standards an iven in this report are based on a	Manufacturer Flukø sing measurement standards traceable ad Technology (NIST), or to accepted a coverage factor of k=2 correspondin	<u>Model</u> 750P01 to the National Measurement Institu I instrinsic standards or measurement, ing to a confidence level of approxima	<u>Cal Date</u> 24-Aug-2020 te Standards (NMIS) part of the National R , or is derived by ratio type self-calibration ately 95%	Due Date 24-Fob-2021 Research Council of Canada (NRC) or the techniques Measurement uncertainties
Kemark:N/A Standards Used Unit ID CAL0224 the calibration was performed us ational Institute of Standards an iven in this report are based on a Colliberated him 4 4400	Manufacturer Fluke ang measurement standards traceable af Technology (NIST), or to accepted a coverage factor of k=2 corresponda	<u>Model</u> 750P01 to the National Measurement Institut I instrument standards or measurement, ing to a confidence level of approxume	Cal Date 24-Aug-2020 te Standards (NMIS) part of the National R or is derived by ratio type self-calibration ately 95%	Due Date 24-Fob-2021 Research Council of Canada (NRC) or the techniques. Measurement uncertamtics
Kemark:N/A Standards Used Unit ID CAL0224 he calibration was performed us ational Institute of Standards an iven in this report are based on a Calibrated by: A. Atto.	Manufacturer Fluko ang measurement standards traceable d Technology (NIST), or to accepted a coverage factor of k=2 corresponder	Model 750P01 to the National Measurement Institu I instrussic standards or measurement, ing to a confidence level of approxima	Cal Date 24-Aug-2020 te Standards (NMIS) part of the National R or is derived by ratio type self-calibration ately 95% Approved by:	Due Date 24-Fob-2021 Research Council of Canada (NRC) or the techniques. Measurement uncertamtics
Kemark:N/A Standards Used <u>Unit ID</u> CAL0224 the calibration was performed us fational Institute of Standards an iven in this report are based on a Calibrated by: A. Attor I	Manufacturer Fluke ang measurement standards traceable ad Technology (NIST), or to accepted a coverage factor of k=2 corresponder	Model 750P01 to the National Measurement Institu I instrinsic standards or measurement, ing to a confidence level of approxima	Cal Date 24-Aug-2020 te Standards (NMIS) part of the National R or is derived by ratio type self-calibration ately 95% Approved by:	Due Date 24-Fob-2021 Research Council of Canada (NRC) or the techniques Measurement uncertainties
Kemark:N/A Standards Used Unit ID CAL0224 the calibration was performed us fational Institute of Standards an iven in this report are based on a Calibrated by: A. Atto. A.A.	Manufacturer Fluke sing measurement standards traceable ad Technology (NIST), or to accepted a coverage factor of k=2 correspondin <i>n</i>	Model 750P01 to the National Measurement Institu Instruisic standards or measurement ing to a confidence level of approxima	Cal Date 24-Aug-2020 te Standards (NMIS) part of the National R or is derived by ratio type self-calibration ately 95% Approved by:	Due Date 24-Fob-2021 Research Council of Canada (NRC) or the techniques Measurement uncertainties
Remark:N/A Standards Used Unit ID CAL0224 he calibration was performed us lational Institute of Standards an iven in this report are based on a Calibrated by: A. Atto. Machine	Manufacturer Fluke ang measurement standards traceable ad Technology (NIST), or to accepted a coverage factor of k=2 correspondin n	Model 750P01 to the National Measurement Institut I instrutsic standards or measurement, ing to a confidence level of approxima	Cal Date 24-Aug-2020 te Standards (NMIS) part of the National R or is derived by ratio type self-calibration ately 95% Approved by:	Due Date 24-Feb-2021
Kemark:N/A Standards Used Unit ID CAL0224 the calibration was performed us fational Institute of Standards an iven in this report are based on a Calibrated by: A. Atto. Machine	Manufacturer Fluke sing measurement standards traceable af Technology (NIST), or to accepted a coverage lactor of k=2 correspondu n	Model 750P01	Cal Date 24-Aug-2020 te Standards (NMIS) part of the National R or is derived by ratio type self-calibration ately 95% Approved by:	Due Date 24-Fob-2021 Research Council of Canada (NRC) or the techniques Measurement uncertainties
Remark: N/A Standards Used Unit ID CAL0224 the calibration was performed us fational Institute of Standards an iven in this report are based on a Calibrated by: A. Atto Moduliary Calibrates C378442-00-f	Manufacturer Fluke ang measurement standards traceable ad Technology (NIST), or to accepted a coverage factor of k=2 correspondin <i>n</i> Manufacturer	Model 750P01 to the National Measurement Institu I instrutsic standards or measurement, ing to a confidence level of approxima	Cal Date 24-Aug-2020 te Standards (NMIS) part of the National R or is derived by ratio type self-calibration ately 95% Approved by:	Due Date 24-Feb-2021

This calibration certificate may not be reproduced, except in full, unless with the permission of ITM Instruments Inc. Ce certificat ne peut être reproduit autrement qu'en totalité, sauf avec l'autorisation de ITM Instruments Inc.

TORONTO **16975 Leslie Street** Newmarket, ON L3Y 9A1 Tel: (905) 952-3750 Fax: (905) 952-3751

MONTRÉAL

20800 Boul. Industriel Ste-Anne-de-Bellevue, QC H9X 0A1 Tel: (514) 457-7280

CALGARY

#209, 4615 112 Ave SE Calgary, AB T2C 5J3 Tel: (403) 272-9332 Fax: (403) 248-5194

VANCOUVER 1282 Cliveden Av

Delta, BC V3M 6G4 Tel: (604) 254-9622 Fax: (604) 254-3123

ITM INSTRUMENTS INC.

www.itm.com - information@itm.com

fest Results						ana ana amin'ny soratra dia mampi
Procedure: Pressure Gau	ige 10.00 IN.W.C	0.5% FS /750P01	Rev: 1.1			
Data Type: As Found F	Results: Pass					
Test Description	True Value	Reading	Lower Limit	<u>Upper Limit</u>	Test Status	Exp Uncert
Tolerance used (additive if m	ore than one listed):					
0.5% of full scale						
UUT is set to the nominal va	lue, Reading is the					
actual pressure read by the	system instrument.		0.0501.1100	1.050	Dass	1 60-002 inH20
1.000 inH2O		1.008 inH2O	0.950 inH2O	1.050 inH20	Pass Dass	1.6e-002 mH2O
2.000 inH2O		2.003 inH2O	1.950 inH20	2.000 InH20	Pass	1.6e-002 inH2O
4.000 inH2O		3.984 InH2O	3.950 InH20	6.050 inH2O	Pass	1.6e-002 inH2O
6.000 InH20		5.981 INH20	7.950 inH20	8 050 inH20	Pass	1.6e-002 inH2O
		9.965 inH2O	9.950 inH2O	10.050 inH2O	Pass	1.6e-002 inH2O
10.000 mm20		3 303 III 120	0.000 111120			
ortificate: C378442-00-01						

INSTRUMENT CALIBRATION REPORT

Pine Environmental Services, Inc

Instru	ment ID 20628						
Des	cription TSI 9565P VelociC	alc					
Ca	librated 12/18/2020						
Manuf	acturer TSI			Classificatio	o n		
Model N	Number 9565P			Stat	us pass		
Serial N	Number 9565P1223002			Frequen	cv Yearly EO	м	
L	ocation New Jersey			Departme	nt Lab		
	Temp 66			Humidi	ty 24		
		Calib	ration Specif	Ications			
	Group # 1	Cant	ation Speen	Dange Acc %	0.0000		
Gr	oun Name Barometric Pres	sure		Range Acc 70	2,0000		
S	tated Accov Det of Deading	suic		Reading Act 76	2.0000		
Nom In Vol / L. V.	and Acty Tel OI Reading			Plus/Minus	0.000		
Nom in vai/ in Val	In Type	<u>Jut Val</u>	Out Type	Fnd As	Lft As	Dev%	Pass/Fail
30.000 / 30.170	inHg	30.170	inHg	30.130	30.170	0.00%	Pass
	Group # 2			Range Acc %	0.0000		
Gi	oup Name Differential Pres	ssure		Reading Acc %	1.0000		
S	tated Accy Pct of Reading			Plus/Minus	0.00		
Nom In Val / In Val	In Type	Out Val	Out Type	Fnd As	LftAs	Dev%	Pass/Fail
-4.00 / -3.98	inH2O	3.98	inH2O	-4.01	-4.01	0.75%	Dass
4.00 / 4.01	inH2O	4 01	inH2O	4.05	4.05	1.000/	Pass
8.00 / 8.00	inH2O	8.00	inH2O	8.05	8.05	0.629/	Pass
12.00 / 12.03	inH2O	12.03	inH2O	12 07	12.07	0.03%	Pass
					12.07	0.5570	1 455
Test Instruments Us	ed During the Calibration						
<u>rest instruments</u> Os	ed During the Cambration				(As Of	Cal Entra	Data)
Test Instrument ID	Description	Manufact	urer	Serial Number	Last Cal Date	Next C	Cal Date
DWYER 477AV	Dwyer 477AV-000 Digital	Dwyer	_	005TRO	10/12/2020	10/12	2021
	Manometer			annonestati ini fan fan		10/12/	2021
DWYER	Dwyer 477AV-1 Digital	Dwyer		005PM2	10/12/2020	10/12	/2021
477AV-1	Manometer					10/12	
DWYER	Dwyer 477AV-3 Digital	Dwyer		005PM1	10/12/2020	10/12	/2021
477AV-3	Manometer						
OMEGA	Omega HX93AC/DP25-E	5-E Omega Engineering		1010368 035025	11/25/2020	11/25	/2022
HX93AC/DP25-				035026			
E	0						
OMEGA	Omega	Omega E	ngineering	168377/8375030	11/25/2020	11/25/	2022
PX02K1-16A5T	PX02K1-16A5T/DP25-E-A	1					
/DP25-E-A	Owner WT4401 D	0					
WT4401 D	Omega W14401-D	Omega E	ngineering	101105	11/25/2020	11/25/	2022
w14401-D							

Notes about this calibration

ghd.com

Quarterly Audit Partisol FRM Model 2000

Clean Harbors 50114 Range Rd. 173 Ryley, Alberta T0B 4A0 Quarterly Audit Date: December 10, 2021

Clean Harbors

Table of Contents

1.	Introd	uction		1
2.	Audit	Procedure		1
3.	Audit	Results		1
	3.1	Siting Loc	ation Audit Results (AEP Station ID 00010348-I-1)	1
	3.2	Pressure a	and Temperature Audit Results (AEP Station ID 00010348-I-1)	2
	3.3	Leak Che	ck Results (AEP Station ID 00010348-I-1)	2
		3.3.1 3.3.2	Automatic Leak Check External Manual Leak Check	2 2
	3.4	Flow Audi	t (AEP Station ID 00010348-I-1)	3
	3.5	Instrumen	t Condition and Recommendations (AEP Station ID 00010348-I-1)	3
		3.5.1	Recommendations	3

Table Index

Table 3.1	AMD Requirements vs. Current Partisol Sampler Location	. 2
Table 3.2	Reference Results vs. Partisol Sampler Readings	. 2

Appendix Index

it Form

Appendix B Calibration Certificates

1. Introduction

GHD Limited (GHD) was retained by Clean Harbors to conduct a Quarterly Audit at 50114 Range Road 173 Ryley, Alberta (Facility) on September 23, 2021. The Quarterly Audit was conducted on the Partisol FRM 2000 Particulate Matter less than 10 microns (PM_{10}) Sampler (Partisol Sampler), located on the roof of the Ryley Lift Station (AEP Station ID 00010348-I-1), which is southeast of the Facility. The coordinates of the lift station are 53.297961, -112.416076.

2. Audit Procedure

The Partisol Sampler was audited in accordance with the instrument manual and the Alberta Air Monitoring Directive, 2016 (AMD). Siting location, ambient pressure, ambient temperature, filter temperature, leakage rate and flow rate were audited, as well as overall instrument condition to ensure compliance with the instrument manual and the AMD. Below is a summary of the tasks performed on the Partisol Sampler:

- Siting Location Audit
- Ambient Pressure Audit
- Ambient Temperature Audit
- Filter Temperature Audit
- Leakage Rate Audit
- Flow Rate Audit
- Instrument Condition and Recommendations

GHD verified all of these parameters using calibrated reference instruments. GHD reference instruments either have National Institute of Standards and Technology (NIST) Traceable Certifications, current manufacturer certification, or were verified by a primary standard. The GHD quarterly audit field form can be found in Appendix A. All calibrations and certifications can be found in Appendix B.

3. Audit Results

3.1 Siting Location Audit Results (AEP Station ID 00010348-I-1)

The siting location of the Partisol Sampler meets the requirements of Chapter 3, of the AMD. Table 3.1 of this report compares the AMD Siting Requirements for Intermittent Samplers versus the current Partisol sampler location.

- The current coordinates of the Partisol Sampler are 53.297961, -112.416076.
- The distance from the nearest roadway is 21 m.

Site Characteristics	AMD	Requirements	Current Location	Specification
Sampler Inlet-height above ground (abg)	Minin	num 2 m, Maximum 15 m	Meets Requirement	4.63 m abg
Other Requirements	a.	Distance from an obstacle greater than 2.5 times the height of the obstacle above the sampler.	Meets Requirement	>2.5 times
	b.	At least 2 m from any other samplers or inlets with flow rates greater than 200 litres (L) per minute,	Meets Requirement	None
		Or at least 1 m apart from any other samplers or inlets with flow rates less than or equal of 200 L per minute.	Meets Requirement	None
	C.	Unrestricted air flow in three to four wind quadrants.	Meets Requirement	4/4 Unrestricted Quadrants

Table 3.1 AMD Requirements vs. Current Partisol Sampler Location

3.2 Pressure and Temperature Audit Results (AEP Station ID 00010348-I-1)

The pressure and temperature audit results of the Partisol Sampler meet the requirements of Chapter 4, of the AMD. Table 3.2 of this report compares the reference results versus the Partisol Sampler readings.

Table 3.2 Reference Results vs. Partisol Sampler Readings

Parameter	Partisol	Reference	Difference	Limit	Pass/Fail
Ambient Temperature (°C)	-4.0	-4.0	0.0	<u>+</u> 2°C	Pass
Barometric Pressure (mmHg)	690	688.8	0.2	<u>+</u> 10 mmHg	Pass
Filter Temperature (°C)	-3.3	-3.7	0.4	<u>+</u> 2°C	Pass
Flow (L/min	16.7	16.3	0.4	<u>+</u> 1.0 L/min	Pass

3.3 Leak Check Results (AEP Station ID 00010348-I-1)

3.3.1 Automatic Leak Check

The Partisol firmware performs leak checks in automatic mode and indicates either a "pass" or "fail" based on a pressure drop threshold of 127 mmHg per minute. The Partisol Sampler passed the requirements outlined in the service manual with a pressure drop of 15 mmHg per minute during the audit.

3.3.2 External Manual Leak Check

GHD also performs an external manual leak check on the Partisol Sampler as part of the quarterly audit. The external manual leak check measures the pressure drop on a vacuum gauge located on

the sampler. The pressure drop may not exceed more than 8.5 inHg (216 mmHg) over a 30-second span. The Partisol Sampler passed the requirements of the service manual with a pressure drop of 0.5 inHg in a 30-second span.

3.4 Flow Audit (AEP Station ID 00010348-I-1)

The flow audit results of the Partisol Sampler meet the requirements of Chapter 4 of the AMD, refer to Table 3.2.

3.5 Instrument Condition and Recommendations (AEP Station ID 00010348-I-1)

The Partisol Sampler was visually and functionally inspected on the audit day. Audit recommendations and instrument conditions are listed below:

- Liquid crystal display screen is functioning.
- Filter exchange cabinet has been cleaned.
- Ventilation fan filters are clean.
- Filter exchange mechanism is operating normally.
- Filter v-seals are in good condition.
- Ambient temperature and pressure sensor wires in good condition.
- Main power connection wire in good condition.

3.5.1 Recommendations

GHD recommends opening and cleaning PM₁₀ sampling inlet prior to next sampling event.

Appendix A Quarterly Audit Form

27.17 inHg

GHD Quarterly Audit Form

Date	12/10/2021			Weather Cond .:		- 4°C		
Owner		Clean Harbors		Start Time:	1():45:00	AM	
Station Name		Ryley Lift Station		End Time:	11	1:30:00	AM	
Parameter		PM ₁₀		Trevor Lewis				
Partisol FRM Mod	lel 2000 Identificatio	n		Sampler Data				
Make/Model:	R & P Partisol FRM	2000		Temperature:	- 4°C			
Unit ID:	Ryley Lift Station			Pressure:	688.8 mmh	ig		
S/N:	200FB209860905			Flow Set Point:	16.7 L/min			
GHD Refere	nce Standards							
	Fle	w	Pressure	Temperature	Manom	eter		
Make:	AirM	etrics	TSI	Fluke	Dwy	ər		
Model: FRM		RM	9565-P	1551A Ex	475-0-	FM		
Serial Number:	FRM	1218	9565P1223002	3520009	MAN-CA	L-001		
Calibration Date:	5/17/	2016	12/18/2020	12/14/2020	12/14/2	:020		
Aud	<u>it Data</u>							
		Sampler Data	Reference Data	Difference	Pass/	Fail	Units	
Ambient Tempera	ature (+/- 2 °C)	-4.00	-4.00	0.0	Pas	s	°C	
Barometric Press	sure (+/- 10 mmHg)	690.00	688.80	1.2	Pas	s	mmHg	
Filter Temperatur	e (+/- 2 °C)	-3.30	-3.70	0.4	Pas	s	°C	
Flow (+/- 1.0 Litre	s/min)	16.70	16.60	0.1	Pas	S	Litres/min	
Leak	<u>Check</u>							
Manual Che	eck (-8.5 inHg)							
		Initial Pressure	Final Pressure	Pressure Drop	Pass/	Fail	Units	
		-17.00	-16.50	-0.50	Pas	s	inHG	
Automatic Che	eck (-127 mmHg)							
Leak c	heck was performed	in automatic mode,	sampler indicated:	15 mmHg/min	Pas	s	mmHg/min	
As Fou	nd/As Left		Yes/No		As Found	As Lef	t Pass/Fail	
Did the ambient ter	mperature require adju	ustment?	No		-4.0	-4.0	Pass	
Did the barometric	pressure require adju	stment?	No		690	690	Pass	
Did the filter tempe	rature require adjustm	nent?	No		-3.3	-3.3	Pass	
Did the flow audit r	equire adjustment?		No		16.7	16.7	Pass	
Comments								
Partisol sampler wa all seals.	as moderately dirty, G	HD cleaned the con	nponents of the sar	mpling inlet, inside the c	abinet, all filter	s and w	<i>i</i> ped down	
Flow Equation								
Set Point (lpm)	Actual Flow <i>(Qact)</i> (lpm)	Absolute Difference (lpm)	e Pass/Fail (<u>+</u> 1 lpm)	Manometer <i>(DH)</i> Actual Temp <i>(Tact)</i> Actual Pres <i>(Pact)</i>	4.35 269.15 0.920	"H2O °K bar	-4.0°C	

16.7	16.3	0.4	Pass	Actual Pres (Pact)
FTS Linear Regr (<i>mflo</i>) = (<i>bflo</i>) =	ession Constants 0.4452 0.4430		Qact = mflo	$p \times \frac{\sqrt{\Delta H \times Tact}}{Pact} + bflo$

Appendix B Calibration Certificates

TORONTO 16975 Leslie Street Newmarket, ON L3Y 9A1 Tel: (905) 952-3750 Fax: (905) 952-3751 **MONTRÉAL** 20800 Boul. Industriel Ste-Anne-de-Bellevue, QC H9X 0A1 Tel: (514) 457-7280 Fax: (514) 457-4329

CALGARY #209, 4615 112 Ave SE

r209, 4615 112 Ave SE Calgary, AB T2C 5J3 Tel: (403) 272-9332 Fax: (403) 248-5194

VANCOUVER

1282 Cliveden Av Delta, BC V3M 6G4 Tel: (604) 254-9622 Fax: (604) 254-3123

www.itm.com - information@itm.com

Calibration Certificate

Customer: GHD Ltd.

Certificate: C378442-00-02

Unit Identification

Manufacturer: Fluke Model: 1551A Ex Description: Stik Thermometer

Calibration Date

Calibration Date: 14-Dec-2020

Due Date: 14-Dec-2021

Unit ID: THM-CAL-001

Serial: 3520009

Calibration Conditions

Temperature: 20.9°C Humidity: 15 % Barometric Pressure: N/A

General Information

Remark:N/A

Standards Used Model **Cal Date** Unit ID Manufacturer **Due Date** CAL0080 Burns Engineering 12001-A-12-6-2-A 4-Jun-2018 4-Jun-2021 1502A CAL0124 Hart Scientific 1-Apr-2020 1-Apr-2021 RTC-158B CAL0223 Ametek 27-Oct-2020 27-Oct-2021

The calibration was performed using measurement standards traceable to the National Measurement Institute Standards (NMIS) part of the National Research Council of Canada (NRC) or the National Institute of Standards and Technology (NIST), or to accepted instrusic standards or measurement, or is derived by ratio type self-calibration techniques. Measurement uncertainties given in this report are based on a coverage factor of k=2 corresponding to a confidence level of approximately 95%.

Approved by:

Selis

Calibrated by: A. Atton

And the

Certificate: C378442-00-02 Asset: ITM0003733

Calibration Certificate

Page 12

CONCONSIGNATION CONTRACTOR DE LA CONSTRUCTION DE LA

TORONTO 16975 Leslie Street Newmarket, ON L3Y 9A1 Tel: (905) 952-3750 Fax: (905) 952-3751

MONTRÉAL 20800 Boul. Industriel Ste-Anne-de-Bellevue, QC H9X 0A1

CALGARY

#209, 4615 112 Ave SE Calgary, AB T2C 5J3 Tel: (403) 272-9332 Fax: (403) 248-5194

VANCOUVER

1282 Cliveden Av Delta, BC V3M 6G4 Tel: (604) 254-9622 Fax: (604) 254-3123

ITM INSTRUMENTS INC.

			عرواو ورواو او او او			<u>المرتفا لقا لقا تقا تقا تقا</u>
Test Results						
Procedure: Fluke Stil	k Thermometer /R7	C-158B,1502,PRT	Rev: 1.0			
Data Type: As Found	Results: Pass					
Test Description	True Value	Reading	Lower Limit	Upper Limit	Test Status	Exp Uncert
0.060 °C		0.02 °C	0.01 °C	0.11 °C	Pass	8.3e-003 °C
25.075 °C		25.04 °C	25.02 °C	25.13 °C	Pass	8.8e-003 °C
100.025 °C		100.01 °C	99.98 °C	100.08 °C	Pass	1.0e-002 °C
150.085 °C		150.04 °C	150.03 °C	150.14 °C	Pass	1.2e-002 °C
Certificate: C378447-0	0-02					
Cumunan. C3/0744-0	v v#		net at at stall, a.			

This calibration certificate may not be reproduced, except in full, unless with the permission of ITM Instruments Inc Ce certificat ne peut être reproduit autrement qu'en totalité, sauf avec l'autorisation de UTM Instruments Inc.

NIST Traceable Transfer Standard Calibration

Calibration I Ambient Te Amb Press,	Date: 05/ŕ mp, ⁰K: Atm:	17/2016 295.5 1.0000	Orific Pri SI Mano	e # FRM td # LFE ⁻ ometer # FRM	11218- 774300 11218	By:
Std ∆H (inH₂O)	Manometer ΔH (in H_2O)	Actual Flow (alpm)	Calc Flow (alpm)	Difference* (%diff)		
6.67	6.67	20.179	20.209	-0.15	Manometer	r ∆H vs Act Flow
5.86	5.86	18.988	18.970	0.09	Linear Reg	ression Results:
5.10	5.10	17.733	17.727	0.03	m _{flo} =	0.4452
4.39	4.39	16.490	16.479	0.07	b _{flo} =	0.4430
3.73	3.73	15.233	15.224	0.06	r² =	1.0000
3.12	3.12	13.964	13,962	0.02		
2.56	2.56	12.683	12.688	-0.04		
2.05	2.05	11.390	11.401	-0.10	* all points mu	st be within ± 2%

The MiniFlo calibration is performed with an NIST-traceable standard. Each unit has a unique pair of calibration constants derived from the calibration which are used to calculate the actual air flow rate at all ambient conditions. The unit's calibration should be recertified annually.

The actual flow rate is a function of the pressure drop across the device, the ambient temperature, and the ambient pressure. The relationship of these variables and the unique calibration constants ("m" and "b") for each device is presented in the following equation (Eq.A):

$$Q_{act} = m_{flo} \times \sqrt{\frac{\Delta H \times T_{act}}{P_{act}}} + b_{flo}$$

 Q_{act} = actual flowrate, liters per min ΔH = manometer reading, inches of water T_{act} = ambient temperature, °K P_{act} = ambient pressure, atmospheres

CAUTION: The weather service, most airports, etc, reduce the atmospheric pressure to a common reference (sea level). The equation above requires the atmospheric pressure at the location where the MiniFlo is being used.

The equation below may be used to estimate the ambient atmospheric pressure at any elevation if the sea level pressure is known.

$$P_{act} = P_{sea} \times \left(1 - \frac{E}{145300}\right)^{5.25}$$

 P_{act} = Ambient Atmospheric Pressure P_{sea} = Sea Level Atmospheric Pressure E = Site elevation, feet

Airmetrics 1940 Don St., Suite 300 Springfield, OR 97477 (541) 683-5420

TORONTO **16975 Leslie Street** Newmarket, ON 13Y 9A1 Tel: (905) 952-3750 (005) 0

MONTRÉAL 20800 Boul. Industriel Ste-Anne-de-Bellevue, QC H9X 0A1 Tel: (514) 457-7280

CALGARY

#209, 4615 112 Ave SE Calgary, AB T2C SJ3 Tel: (403) 272-9332 (403) 248.5194

VANCOUVER

1282 Cliveden Av Delta, BC V3M 6G4 Tel: (604) 254-9622 Fax: (604) 254-3123

	SINC	www.itm.c	om - information	@itm.com
and the first of the second				Team from transform from transform to be and the from the set of the set
	Ca	alibration C	ertificate	
Customer G	HD Ltd			
Customer. O	IID Liu,			
Certificate: C3	78442-00-01			
Unit Identification				
Manufacturer Dwye	r	S	Serial: N/A	
Model: 475-0-FM Description. Digital	Manometer	l	Jnit ID: MAN-CAL-001	
Calibration Date		Cal	ibration Conditions	
Calibration Date: 14-	Dec-2020	Te	emperature: 20.9°C	
Due Date: 14-Dec-20)21	Н	umidity: 15 %	
		B	arometric Pressure: N/A	
General Information				
** 1 * 1/4				
Remark:N/A				
Kemark:N/A				
Remark:N/A				
Remark:N/A Standards Used				
Remark:N/A Standards Used <u>Unit ID</u>	<u>Manufacturer</u>	Model	<u>Cal Date</u>	Due Date
Remark:N/A Standards Used Unit ID CAL0224	<u>Manufacturer</u> Fluke	<u>Model</u> 750P01	<u>Cal Date</u> 24-Aug-2020	Due Date 24-Føb-2021
Remark: N/A Standards Used Unit ID CAL0224	<u>Manufacturer</u> Fluke	<u>Model</u> 750P01	<u>Cal Date</u> 24-Aug-2020	Due Date 24-Føb-2021
Remark: N/A Standards Used <u>Unit ID</u> CAL0224	<u>Manufacturer</u> Fluke	<u>Model</u> 750P01	<u>Cal Date</u> 24-Aug-2020	<u>Due Date</u> 24-Feb-2021
Remark: N/A Standards Used Unit ID CAL0224	<u>Manufacturer</u> Fluke	<u>Model</u> 750P01	<u>Cal Date</u> 24-Aug-2020	Due Date 24-Feb-2021
Remark: N/A Standards Used <u>Unit ID</u> CAL0224	<u>Manufacturer</u> Fluke	<u>Model</u> 750P01	<u>Cal Date</u> 24-Aug-2020	Due Date 24-Føb-2021
Remark: N/A Standards Used Unit ID CAL0224	<u>Manufacturer</u> Fluke	<u>Model</u> 750P01	<u>Cal Date</u> 24-Aug-2020	Due Date 24-Feb-2021
Remark: N/A Standards Used <u>Unit ID</u> CAL0224	<u>Manufacturer</u> Fluke	<u>Model</u> 750P01	<u>Cal Date</u> 24-Aug-2020	Due Date 24-Føb-2021
Remark::N/A Standards Used Unit ID CAL0224	<u>Manufacturer</u> Fluke	<u>Model</u> 750P01	<u>Cal Date</u> 24-Aug-2020	Due Date 24-Feb-2021
Remark: N/A Standards Used <u>Unit ID</u> CAL0224	<u>Manufacturer</u> Fluke	<u>Model</u> 750P01	<u>Cal Date</u> 24-Aug-2020	Due Date 24-Føb-2021
Remark::N/A Standards Used Unit ID CAL0224	<u>Manufacturer</u> Fluke	<u>Model</u> 750P01	<u>Cal Date</u> 24-Aug-2020	Due Date 24-Feb-2021
Remark: N/A Standards Used <u>Unit ID</u> CAL0224 he calibration was performed us atomal Institute of Standards an	<u>Manufacturer</u> Fluke sing measurement standards traceable of Technology (NIST), or to accepted	<u>Model</u> 750P01 to the National Measurement Institu	<u>Cal Date</u> 24-Aug-2020 te Standards (NMIS) part of the National R or is derived by ratio type self-calibration	Due Date 24-Fob-2021 research Council of Canada (NRC) or the techniques. Measurement uncertamtics
Remark:N/A Standards Used <u>Unit ID</u> CAL0224 he calibration was performed us ational Institute of Standards an iven in this report are based on a	Manufacturer Flukø sing measurement standards traceable id Technology (NIST), or to accepted i coverage factor of k=2 correspondin	<u>Model</u> 750P01 to the National Measurement Institu I instruissic standards or measurement, ing to a confidence level of approxim	<u>Cal Date</u> 24-Aug-2020 te Standards (NMIS) part of the National R or is derived by ratio type self-calibration ately 95%	Due Date 24-Fob-2021 research Council of Canada (NRC) or the techniques. Measurement uncertainties
Kemark:N/A Standards Used Unit ID CAL0224 the calibration was performed us intonal Institute of Standards an iven in this report are based on a	Manufacturer Fluke Fluke ang measurement standards traceable d Technology (NIST), or to accepted a coverage factor of k=2 corresponda	<u>Model</u> 750P01 to the National Measurement Institut I instrumsic standards or measurement, ing to a confidence level of approxume	Cal Date 24-Aug-2020 te Standards (NMIS) part of the National R or is derived by ratio type self-calibration ately 95%	Due Date 24-Fob-2021 research Council of Canada (NRC) or the techniques. Measurement uncertainties
Kemark:N/A Standards Used Unit ID CAL0224 he calibration was performed us iational Institute of Standards an iven in this report are based on a Calibrated by: A. Atto.	Manufacturer Fluke ang measurement standards traceable d Technology (NIST), or to accepted a coverage factor of k=2 corresponder	Model 750P01 to the National Measurement Institut I instruissic standards or measurement, ing to a confidence level of approxima	<u>Cal Date</u> 24-Aug-2020 te Standards (NMIS) part of the Natronal R or is derived by ratio type self-calibration ately 95% Approved by:	Due Date 24-Fob-2021 tesearch Council of Canada (NRC) or the techniques. Measurement uncertamities
Kemark:N/A Standards Used <u>Unit ID</u> CAL0224 the calibration was performed us fational Institute of Standards an iven in this report are based on a Calibrated by: A. Attor I	Manufacturer Fluke ang measurement standards traceable ad Technology (NIST), or to accepted a coverage factor of k=2 corresponder	Model 750P01 to the National Measurement Institu I instrinsic standards or measurement, ing to a confidence level of approxima	Cal Date 24-Aug-2020 te Standards (NMIS) part of the National R or is derived by ratio type self-calibration ately 95% Approved by:	Due Date 24-Fob-2021 esearch Council of Canada (NRC) or the techniques Measurement uncertainties
Kemark:N/A Standards Used Unit ID CAL0224 the calibration was performed us fational Institute of Standards an iven in this report are based on a Calibrated by: A. Atto. A.A.	Manufacturer Fluke sing measurement standards traceable ad Technology (NIST), or to accepted a coverage factor of k=2 correspondin <i>n</i>	Model 750P01 to the National Measurement Institu Instruisic standards or measurement ing to a confidence level of approxima	Cal Date 24-Aug-2020 te Standards (NMIS) part of the National R or is derived by ratio type self-calibration ately 95% Approved by:	Due Date 24-Fob-2021 research Council of Canada (NRC) or the techniques. Measurement uncertainties
Remark:N/A Standards Used Unit ID CAL0224 he calibration was performed us lational Institute of Standards an iven in this report are based on a Calibrated by: A. Atto. Machine	Manufacturer Fluke ang measurement standards traceable ad Technology (NIST), or to accepted a coverage factor of k=2 correspondin <i>n</i>	Model 750P01 to the National Measurement Institut I instrutsic standards or measurement, ing to a confidence level of approxima	Cal Date 24-Aug-2020 te Standards (NMIS) part of the National R or is derived by ratio type self-calibration ately 95% Approved by:	Due Date 24-Fob-2021 esearch Council of Canada (NRC) or the techniques Measurement uncertainties
Kemark:N/A Standards Used Unit ID CAL0224 the calibration was performed us fational Institute of Standards an iven in this report are based on a Calibrated by: A. Atto Machine	Manufacturer Fluke sing measurement standards traceable ad Technology (NIST), or to accepted a coverage factor of k=2 correspondu n	Model 750P01	Cal Date 24-Aug-2020 te Standards (NMIS) part of the National R or is derived by ratio type self-calibration ately 95% Approved by:	Due Date 24-Fob-2021
Remark: N/A Standards Used Unit ID CAL0224 the calibration was performed us fational Institute of Standards an iven in this report are based on a Calibrated by: A. Atto Moduliary Calibrates C378442-00-f	Manufacturer Fluke ang measurement standards traceable ad Technology (NIST), or to accepted a coverage factor of k=2 correspondin <i>n</i> Manufacturer	Model 750P01 to the National Measurement Institu I instrutsic standards or measurement, ing to a confidence level of approxima	Cal Date 24-Aug-2020 te Standards (NMIS) part of the National R or is derived by ratio type self-calibration ately 95% Approved by:	Due Date 24-Fob-2021 esearch Council of Canada (NRC) or the techniques Measurement uncertainties

This calibration certificate may not be reproduced, except in full, unless with the permission of ITM Instruments Inc. Ce certificat ne peut être reproduit autrement qu'en totalité, sauf avec l'autorisation de ITM Instruments Inc.

TORONTO **16975 Leslie Street** Newmarket, ON L3Y 9A1 Tel: (905) 952-3750 Fax: (905) 952-3751

MONTRÉAL

20800 Boul. Industriel Ste-Anne-de-Bellevue, QC H9X 0A1 Tel: (514) 457-7280

CALGARY

#209, 4615 112 Ave SE Calgary, AB T2C 5J3 Tel: (403) 272-9332 Fax: (403) 248-5194

VANCOUVER 1282 Cliveden Av

Delta, BC V3M 6G4 Tel: (604) 254-9622 Fax: (604) 254-3123

ITM INSTRUMENTS INC.

www.itm.com - information@itm.com

fest Results						
Procedure: Pressure	Gauge 10.00 IN.W.C	0.5% FS /750P01	Rev: 1.1			
Data Type: As Found	Results: Pass					
Test Description	True Value	Reading	Lower Limit	<u>Upper Limit</u>	Test Status	Exp Uncert
Tolerance used (additive	e if more than one listed):					
0.5% of full scale						
UUT is set to the nomina	al value, Reading is the					
actual pressure read by	the system instrument.			1 050 10100	Dess	1.6a-002 inH2O
1.000 inH2O		1.008 inH2O	0.950 inH2O	1.050 inH2O	Pass	1.66-002 mm20
2.000 inH2O		2.003 inH2O	1.950 inH20	2.000 InH20	Pass	1.6e-002 inH2O
4.000 inH2O		3.984 InH2O	3.950 INH20	4.050 inH2O	Pass	1.6e-002 inH2O
6.000 InH2O		5.981 INH20	5.950 INH20	8 050 inH20	Pass	1.6e-002 inH2O
0.000 mH20		9.965 inH2O	9.950 inH2O	10.050 inH2O	Pass	1.6e-002 inH2O
10.000 /0020		5 555 III 120	0.000 11120			
ertificate: C378442-0	0-01					
ci (incate: C5/0442-0		<u></u>	Ilburtion Contificate			Page 7

INSTRUMENT CALIBRATION REPORT

Pine Environmental Services, Inc

ОМ
Dev% Pass/Fail
0.00% Pass
Dev% Pass/Fail
0.75% Pass
1.00% Pass
0.63% Pass
0.33% Pass
(Cal Entry Data)
e Next Cal Date
10/12/2021
10/12/2021
10/12/2021
a tory is may be to be a
10/12/2021
11/25/2022
11/25/2022
11/25/2022
11/25/2022

Notes about this calibration

about GHD

GHD is one of the world's leading professional services companies operating in the global markets of water, energy and resources, environment, property and buildings, and transportation. We provide engineering, environmental, and construction services to private and public sector clients.

Trevor Lewis

Trevor.Lewis@ghd.com 587.991.2378

www.ghd.com

Appendix C 5-Year Averages for PM10, VOC and TNMOC Concentrations

Appendix B 5 Year Average Charts

(1) All values under the lab method detection limit from 2015-2018 were reported as zero, as per the AMD.

(2) Values under the lab method detection limit from 2019 onward were reported as the lab detection limit, as per updated guidance provided by the AEP.

Notes:

about GHD

GHD is one of the world's leading professional services companies operating in the global markets of water, energy and resources, environment, property and buildings, and transportation. We provide engineering, environmental, and construction services to private and public sector clients.

Trevor Lewis Trevor.lewis@ghd.com 403.271.2000

Pooya Shariaty Pooya.shariaty@ghd.com 403.271.2000

www.ghd.com