

Addendum to the Geotechnical Evaluation and Remedial Plan

Cell 20-1, Slope Issues - Clean Harbors Lambton Facility Landfill Corunna, Ontario

Clean Harbors Canada, Inc.

December 17, 2021

GHD

455 Phillip Street, Unit 100A Waterloo, Ontario N2L 3X2, Canada T +1 519 884 0510 | F +1 519 884 0525 | E info-northamerica@ghd.com | ghd.com

© GHD 2021

This document is and shall remain the property of GHD. The document may only be used for the purpose for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited.

Contents

1.	Introduction	1
2.	Summary of Field Investigations	1
3.	Geotechnical Laboratory Testing	2
4.	Subsurface Conditions	2
5.	Piezometric Conditions	3
6.	Updated Slope Stability Modelling	3
7.	Verification of North, South, and East Excavation Side Slope Stability	4
8.	Conclusion	4
9.	Limitations	4

Table Index

Table 2.1	Summary of Cone Penetration Test and Borehole Depths
Table 2.2	Summary of Geotechnical Laboratory Test Results

Figure Index

CPT and VWP Locations
Drone Aerial Surface Contours, October 13, 2021
Cross-Section 1- West Slope
Cross-Section 1- West Slope (with CPT qt and u plots)
Vibrating Wire Piezometric Elevations- Cell 20-1
West Slope – As Constructed Buttress Stabilization and Pre-1986 Waste Cell Graded and Capped

Appendices

- Appendix A 2021 Vibrating Wire Borehole Logs
- Appendix B Cone Penetration Test Results
- Appendix C Geotechnical Laboratory Test Results
- Appendix D Bedrock Surface Topography- Lambton Facility (RWDI, 2013), and Bedrock Log TW-34-94-I

i

1. Introduction

This report is an addendum report to the GHD Report titled "Geotechnical Evaluation and Remedial Plan- Cell 20-1, Slope Issues", (herein referred to as the Slope Issues Report), for the Clean Harbors Lambton Facility Landfill, located in Corunna, Ontario. The Slope Issues Report is dated November 12, 2021. The Slope Issues Report was prepared to address the Ministry of Environment, Conservation and Parks (MECP) Condition 46, as follows:

46. The Owner shall not place any waste into the eastern half of cell 19-3 or Cell 20-1 until a report is prepared by a Professional Engineer confirming that landfilling can resume in these cells in a manner that is protective of the health and safety of people and the environment.

This Addendum to the Slope Issues Report provides the following additional information and discussion:

- The results and a summary of investigative work completed in December, 2021, in and around the Cell, including cone penetration testing (CPTs), subsurface sampling, and installation of vibrating wire piezometers (VWPs);
- A review of contours obtained on October 13, 2021 from a drone aerial survey, after the completion of the repairs to the West Slope; and
- Updated modelling for the assessment of the stability of the West Slope, utilizing the information obtained from the drone survey of October 13, and the investigative activities completed in December 2021.
- GHD's conclusion based on the above information collected during the supplemental investigative works, as
 presented in this Addendum report, that landfilling in Cell 20-1 any adjacent cells can resume in a manner that is
 protective of the health and safety of people and the environment.

2. Summary of Field Investigations

Figure 1 shows the locations of the CPT and VWP investigations that were completed in December 2021. The aerial photograph shown on Figure 1 was obtained from the drone camera on October 13, 2021. Ground surface contours generated from the drone flight are shown on Figure 2.

The field work consisted of:

- Eight CPTs (CPT-1 to CPT-8). The CPTs were installed using the services of Conetec Investigations Ltd. (Conetec). Conetec was contracted by Ron Murphy Contracting (Murphy Contracting);
- Two investigative boreholes (VWP-1-21 and VWP-2-21). The boreholes were drilled using mud rotary techniques by Conetec. Standard Penetration Tests (SPTs) were performed in the boreholes, and the associated penetration values (N values) are plotted on the borehole logs. Shelby tube samples were collected at selected depths for further geotechnical index testing; and
- Installation of three VWPs in each of the two investigative boreholes, for long-term monitoring of piezometric pressures in the subsurface units.

The investigative depths for the CPTs and VWP boreholes is summarized in Table 2.1. The boreholes were located in the field by GHD staff. Murphy Contracting provided the coordinates and ground surface elevations of the staked CPT and VWP locations. Ground surface elevations at the staked locations are provided in Table 2.1. At each CPT and VWP location, an additional wood stake was driven as a future reference point for ground surface movement, referred to as survey points (SPs). Three additional SPs (SP-9, SP-10, and SP-11) were also installed at the northeast, southeast and southwest corners of Cell 20-1, as shown on Figure 1.

The boreholes were terminated on the assumed bedrock surface, based on refusal to penetration of the split spoon sampler during SPTs. Samples obtained from the SPT and Shelby tube sampling were brought to our Waterloo laboratory for moisture content testing and geotechnical index testing. The CPTs and VWP boreholes were backfilled using the cement-bentonite grout slurry, in accordance with Ontario Regulation 903.

3. Geotechnical Laboratory Testing

The geotechnical laboratory testing program consisted of moisture content tests on all recovered split spoon samples. Four Shelby tube samples (three samples from VWP-1-21, and one from VWP-2-21) were also collected for further geotechnical testing as noted below.

- Grainsize distribution analysis (ASTM D6913-17) and Atterberg limits tests (ASTM D4318) on two Shelby tube samples, and one split spoon sample
- Unconfined compressive strength test (ASTM D2166) on three Shelby tubes samples.
- bulk density (unit weight) test (ASTM D7263) on three Shelby tube samples.
- Consolidated undrained (CU) triaxial compression tests (ASTM D4767) on one Shelby tube sample.

The laboratory test results are summarized in Table 2.2, and shown at their corresponding depths on the individual borehole logs provided in Appendix A. Detailed laboratory test results are provided in Appendix C. Note that at the time of preparation of this report, some of the laboratory test results were pending, as noted in Table 2.2.

4. Subsurface Conditions

Details of the subsurface conditions encountered in the VWP boreholes, and the CPTs, are included in the detailed logs presented in Appendix A and B. Subsurface information to an approximate depth of 25 m below existing grade were obtained in the 2020 geotechnical investigation work.

The purpose of the VWP boreholes was to obtain deep subsurface information, and to confirm the depth and elevation of the bedrock deposit (Kettle Point Shale Formation). Subsurface conditions in VWP-1-21 and VWP-2-21 were consistent with our 2020 boreholes, and encountered clayey silt deposits to the base of the boreholes. Both boreholes were terminated at refusal to split spoon penetration on inferred shale bedrock, which was encountered at a depth of 42.7 and 42.4 m bgs respectively, corresponding to elevations 158.07 and 158.15 m AMSL. These bedrock depths are consistent with the expected bedrock elevations in this area, based on the 2013 bedrock surface topography map, prepared by RWDI Air Inc. (included in Appendix D). Bedrock monitoring well TW-34-94-I, installed in 1994, to the northwest of Cell 20-1, is included in Appendix D for reference. Similar geologic conditions were noted in TW-34-94-I, to those that were observed in our two VWP boreholes and 2020 boreholes.

The purpose of the CPTs was to obtain additional details on the in situ geotechnical properties of the subsurface deposits, confirm bedrock depths around the perimeter of Cell 20-1, and to investigate the presence of a possible disturbed or remoulded layer in the suspected rotational plane of the west slope. The CPTs consist of hydraulically pushing an instrumented cone tip into the ground using a conventional drill rig. The instrumented cone tip records tip resistance, side friction, and pore water pressures, at 2 cm intervals as the tip is pushed into the ground. This data is included using an onboard data acquisition system. In situ resistivity was also measured using the cone at some of the CPT locations. Plots of the data collected with depth are provided in Appendix B.

CPT 1 and 2 were advanced in the west portion of the floor of Cell 20-1, and CPT 3, 4, and 5, were advanced through the rotated bench on the upper portion of the west slope. Plots of the tip resistance (qt), and pore water pressure (u) are provided for reference on a cross-section through the west slope (see Figures 3A and 3B). The CPT 3 plot shows some evidence of disturbed soil (erratic and elevated pore water pressures) to a depth of about elevation 182 m AMSL. This corresponds to the approximate depth of the estimated rotational plane, as shown on Figure 3B. Evidence of a remoulded zone in CPT 1 and CPT 2 was not obvious.

CPT 7 and CPT 8 were advanced on the north and east sides of the Cell 20-1. The inferred bedrock surface is estimated to be at the refusal depths of the CPT penetration. Refusal occurred at 42.3 and 42.4 m respectively, corresponding to elevation 158.40 and 158.15 m AMSL. Of note is a dense sand seam at a depth of around 30 to 33 m bgs in CPT 8. This sandy seam was also observed during our SPT sampling at VWP2-21. The CPT penetration originally refused to advance in this dense sand seam, however, after restarting the CPT on a more secure work platform, and adjusting the anchoring of the drill rig, the CPT was able to penetrate the sandy seam, and was advanced through the underlying clayey silt deposit, until reaching ultimate refusal on the bedrock surface. A similar situation occurred at CPT 6, with refusal in this dense sandy seam occurring at 28.2 m bgs. Unfortunately due to other Conetec project commitments for the CPT rig, the CPT rig could not be set up again at this location. Further CPT penetration at this location could be carried out in 2022, if necessary. However, based on the CPT and VWP boreholes that were able to be advanced to the top of the inferred bedrock surface, the elevations obtained in this field work were very consistent with the expected bedrock surface elevations.

5. Piezometric Conditions

VWP boreholes VWP-1-21 and VWP-2-21 were instrumented with vibrating wire style pneumatic pore water pressure transducers. These piezometers were installed to targeted depths based on the results of the CPT probes and expected subsurface conditions, and then the boreholes were fully grouted using a cement bentonite slurry. Each piezometer has a thin wire cable that extends from the piezometer tip up to the ground surface, and each cable is connected to a data logger. The piezometers record the piezometric head at the piezometer tip depth. Data is recorded on a daily basis. After initial stabilization of pressures due to installation, the piezometric data will provide long-term readings of the stabilized piezometric pressure at the installed depths. The piezometers were installed at the following depths:

- VWP-1-21: 14.0 m, 21.6 m, and 41.5 m bgs; and
- VWP-2-21: 14.0 m, 29.0 m, and 41.5 m bgs.

Data plots of the piezometric surface collected as of the time of issuing this report are shown on Figure 4. The piezometric surface for the piezometers is showing stabilized conditions at between elevation 196.7 and 196.8 m AMSL for VWP-1-21. VWP-2 piezometric readings are in the range of 197.3 to 197.9 m AMSL, but may not be in a stabilized state at the time of issuance of this report.

6. Updated Slope Stability Modelling

The Slope Issues Report provided slope stability modelling based on the proposed buttress remediation that was substantially completed on September 30. However, a new drone contour surface of the completed works was not available at the time the Slope Issues Report was issued. GHD used the new drone surface contours obtained on

October 13, 2021, and the results of the field investigations, to update the slope stability model for the west slope in this current report. Based on the findings of the CPTs within the west slope, no changes in the geotechnical parameters presented in the previous model of this area are necessary. The CPT results at CPT 3 suggest that the rotational plane is materially consistent with the assumed depth presented in the Slope Issues Report. The model included on Figure 5 does show a revised surface topography of the completed buttress, based on the cross-section of the area shown on Figure 3A. The calculated factor of safety (FS) is similar to that presented in the Slope Issues Report, and is 1.30 in the revised model, as shown on Figure 5.

7. Verification of North, South, and East Excavation Side Slope Stability

Based on the results of CPT 7, CPT 8, and CPT 6, and our on-going visual observations of the stability of these slopes, the following conclusions can be made with respect to the stability of the north, east, and south slopes of Cell 20-1:

- The slopes have remained visually stable since their excavation, with no evidence of seepage or localized instability; and
- The results of CPT 7 and CPT 8 confirm that the bedrock elevation is at the elevation expected in this area.

Visual evidence and the technical data both support GHD's conclusion that the north, east, and south slopes of Cell 20-1 are stable. If consideration is given to the removal of the ramp along the east side of Cell 20-1, GHD will reevaluate the stability of the east slope considering the influence of the sandy seam encountered at a depth of 30 to 33 m in VWP2-21 and in CPT 8. This evaluation must take place prior to initiating the removal of the ramp.

8. Conclusion

The Slope Issues have been stabilized by the construction of the berm and clay buttress. As such, for the reasons outlined herein, GHD concludes that landfilling of the Cell and any adjacent cells can resume in a manner that is protective of the health and safety of people and the environment.

9. Limitations

This report: has been prepared by GHD for Clean Harbors Canada, Inc. and may only be used and relied on by Clean Harbors Canada, Inc. for the purpose agreed between GHD and Clean Harbors Canada, Inc. as set out in section 1 of this report.

GHD otherwise disclaims responsibility to any person other than Clean Harbors Canada, Inc. arising in connection with this report. GHD also excludes implied warranties and conditions, to the extent legally permissible.

The services undertaken by GHD in connection with preparing this report were limited to those specifically detailed in the report and are subject to the scope limitations set out in the report.

The opinions, conclusions and any recommendations in this report are based on conditions encountered and information reviewed at the date of preparation of the report. GHD has no responsibility or obligation to update this report to account for events or changes occurring subsequent to the date that the report was prepared.

The opinions, conclusions and any recommendations in this report are based on assumptions made by GHD described in this report. GHD disclaims liability arising from any of the assumptions being incorrect.

All of Which is Respectfully Submitted,

GHD

Bruce Polan, M.A.Sc., P.Eng.

James R. Yardley, P.Eng.

Paper Size ANSI A 10 20 30 40 Meters

Map Projection: Transverse Mercator Horizontal Datum: North American 1983 Grid: NAD 1983 UTM Zone 17N

Clean Harbours Lambton Facility Landfill 4090 TELFER ROAD, ST. CLAIR TOWNSHIP, COUNTY OF LAMBTON

CPT AND VWP Locations

Project No. 044985 Revision No. -Date **December 17,** 2021

FIGURE 1

Q:\GIS\PROJECTS\44000s\44985\Layouts\SlopeCollapse\044985_SitePlan_GIS003.mxd

Data Source: Drone imagery captured on-site by GHD on August 4th, 2021. Basemap: ESRI

Filename: I:\CAD\drawings\44000s\44985\44985-REPORTS\44985-98(050)\44985-98(050)CI\44985-98(05

CLEAN HARBORS CANADA, INC. LAMBTON COUNTY, ONTARIO

Project No. 44985 Date Dec 10, 2021

CROSS-SECTION 1 WEST SLOPE

Figure 3A

CLEAN HARBORS CANADA, INC. LAMBTON COUNTY, ONTARIO

Project No. 44985 Date Dec 10, 2021

CROSS-SECTION 1 WEST SLOPE

Figure 3B

✤ VWP-2 ground surface elevation: 200.55 m amsl

Figure 4 Vibrating Wire Piezometric Elevations- Cell 20-1

TABLE 2.1

SUMMARY OF CONE PENTRATION TEST AND BOREHOLE DEPTHS CELL 20-1 SUPPLEMENTAL GEOTECHNICAL INVESTIGATION CLEAN HARBORS LAMBTON FACILITY, CORUNNA, ON

TABLE 2.2

SUMMARY OF GEOTECHNICAL LABORATORY TEST RESULTS ADDENDUM TO GEOTECHNICAL EVALUATION AND REMEDIAL PLAN- CELL 20-1 SLOPE ISSUES CLEAN HARBORS LAMBTON FACILITY, CORUNNA, ON

	-			ю	() () () () () () () () () ()		Distributi	ion (%)	(%)	Atterl	oerg Limi	its (%)	Compressio	Bulk Unit Weight	CU Comp	ression Test			
Sample Number	Sample Location	Sample Date	Sample Type	Material Descripti	Sample Depth (metres below gra	Laboratory Sample	Gravel	Sand	Silt	Passing No. 200 Sieve	Clay (< 0.002 mm)	As Received Moisture Content (Liquid Limit (LL)	Plastic Limit (PL)	Plasticity Index (PI)	Shear Strength (kPa)	(kN/m ³)	Effective Strength (kPa)	Effective Angle of Internal Friction (degree)
1	BH1-20, ST-1	5-Oct-20	Shelby Tube	Silt and Clay, trace sand, trace gravel	13.0 m - 13.6 m	WLT 453-1	1	6	57	93	36	19	32	17	15	143.9	20.1		
2	BH1-20, ST-2	5-Oct-20	Shelby Tube	Clay and Silt, trace sand, trace gravel	22.9 m - 23.5 m	WLT 453-2	1	7	43	92	49	24	41	21	20	32.6	20.0	22	25
3	BH2-20, ST-1	8-Oct-20	Shelby Tube	Silt and Clay, some sand, trace gravel	10.7 m - 11.3 m	WLT 453-3	1	17	46	82	36	19	30	15	15	63.5	21.0	27	26
4	BH2-20, ST-2	8-Oct-20	Shelby Tube	Clayey Silt	21.3 m - 21.9 m	WLT 453-4										64.3	18.1		
5	BH3-20, ST-1	7-Oct-20	Shelby Tube	Clayey Silt	10.7 m - 11.3 m	WLT 453-5										105.0	21.0		
6	BH3-20, ST-2	7-Oct-20	Shelby Tube	Clay and Silt, trace sand, trace gravel	21.3 m - 21.9 m	WLT 453-6	2	7	42	91	49	25	41	21	20	42.9	19.9		_
7	BH4-20, ST-1	6-Oct-20	Shelby Tube	Clayey Silt	10.7 m - 11.3 m	WLT 453-7										104.6	21.1		
8	BH4-20, ST-2	6-Oct-20	Shelby Tube	Clay and Silt, trace sand, trace gravel	21.3 m - 21.9 m	WLT 453-8	1	8	44	91	47	27	41	20	21	26.2	20.0	24	21
9	VWP-1, ST-1	9-Dec-21	Shelby Tube	Gradation and Atterberg Pending	32.0 m - 32.6 m	WLT 731-2						29				53.9	19.4		
10	VWP-1, ST-3	9-Dec-21	Shelby Tube	Gradation and Atterberg Pending	38.1 m - 38.7 m	WLT 731-1						26				61.6	19.2		
11	VWP-2, SS-3	10-Dec-21	Split Spoon	Gradation and Atterberg Pending	30.2 m - 30.8 m	WLT 731-4													
12	VWP-2, ST-1	10-Dec-21	Shelby Tube	Gradation and Atterberg Pending, CU test Pending	35.1 m - 35.7 m	WLT 731-3						27				73.0	19.3		

Notes:

(1) NP denotes Non Plastic

(1) "---" denotes Not Tested

Appendices

Appendix A 2021 Vibrating Wire Borehole Logs

REFEREN	ICE NO.:		044985-50-06								ENC	LUSU	IREIN	10		A-1	
	G			BOREHOLE No.	-	\	WP1	-21		B	OR	EH	OL	EF	REP	OR	R
				ELEVATION:		200	.77 m	1			F	Page:	_1	_ 0	f _4	_	
CLIENT:		Clea	n Harbors - Lambtor	n Facility						LEC	GENI	2					
PROJECT	:	Geo	technical Investigatio	on - VWP Installations	- Ce	ell 20-1				\boxtimes	SS	- S	PLIT	SPO	ON		
LOCATION	N:	Clea	n Harbors Lambton	Facility, 4090 Telfer Ro	1. C	orunna,	ON				ST RC	- S - R	HELB OCK	Y TL COR	JBE F		
DESCRIBE	ED BY:	Owe	en Reynolds	CHECKED BY:		Abdul I	lafee	z Kha	<u>n</u>	Ţ		- W	ATE	R LE	VEL		
DATE (ST	ART):	8 De	ecember 2021	DATE (FINISH)	: _	9 Dece	mber	2021									
									I								
Ę	ion SS	aphy	DECOD		e	and	ery	arte	Blows per	aion	She Sen	ar test sitivity	(Cu) (S)	nt /0/		Field _ab	
Dept	Elevat m) B(ratigra	SOIL AND) BEDROCK	Stat	ype ;	eco	Conte	15 cm	enetr		Attert	perg lin	nits (%	<i>(</i>)		
	ШС	St				<u>⊢∠</u>	~	20	or RQD	ď	(blo	"N" Va ws / 12	lue 2 in30) cm)			
Feet Metres	200.77	m	GROUNE NATIVE: CLAYEY	D SURFACE SILT - brown, verv			%			N	10	20 30	40 50) 60 7 ata Lo	70809 oggers	90 S	
			stiff (unsampled) Augered to 9.2 m. a	and installed casing.													
$2 - \frac{1}{2}$			Mud rotary drilling I	pelow 9.2 m									+		n		
4 -													+				
5																	
$\begin{array}{c} 6 \\ 7 \end{array} = 2.0 \\ \end{array}$		111															
8 –														_			
9 - 290	197.87				_												
			moist	e sand, trace gravel,	\mathbf{N}	SS-1	40	16	4-7-10-12	17							
12 -					μ								Bent	C Conite	emen Grou		
13 - 4.0																	
	194.97																
20 _ 6.0			becoming grey, stif gravel	f, some sand, trace													
					X	SS-2	75	13	3-3-5-7	8	+						
														25 mr	⊢		
														Guid –(Gr	e Pipe		
20 - 8.0 - 8.0 - 8.0													+				
	ſ	捌											\ddagger				
$\begin{bmatrix} 29 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\$													+				
30 47 31					\mathbb{N}	SS-3	90	20	2-5-6-7	11		$\overline{\bullet}$	+				
		111			μ								+				
10.0 ± 33 ± 10.0													+				
35													++				
													+				

REFEREN	ICE No.:	<u> </u>	044985-50-06								ENCLOSURE No.: A-1
	6			BOREHOLE No	.: _	\	WP1	-21		B	OREHOLE REPORT
				ELEVATION: _		200	.77 m	1			Page: <u>2</u> of <u>4</u>
CLIENT:		Clea	n Harbors - Lambto	n Facility						LEC	GEND
PROJECT	:	Geot	technical Investigation	on - VWP Installations	- Ce	ell 20-1				\boxtimes	SS - SPLIT SPOON
LOCATIO	N:	Clea	n Harbors Lambton	Facility, 4090 Telfer R	d. C	orunna,	ON				ST - SHELBY TUBE
DESCRIB	ED BY:	Owe	n Reynolds	CHECKED BY	:	Abdul I	lafee	z Kha	<u>n</u>	Ţ	- WATER LEVEL
DATE (ST	ART):	8 De	cember 2021	DATE (FINISH	l): _	9 Dece	mber	2021			
Depth	Elevation (m) BGS	Stratigraphy	DESCR SOIL ANI	IPTION OF D BEDROCK	State	Type and Number	Recovery	Moisture Content	Blows per 6 in. / 15 cm or RQD	Penetraion Index	Shear test (Cu) Sensitivity (S) ○ Water content (%) ↓ Atterberg limits (%) ● "N" Value (blows / 12 in30 cm)
Feet Metres	200.77	r II	GROUN	D SURFACE	_		%			N	10 20 30 40 50 60 70 80 90
38					X	SS-4	95	19	3-4-6-7	10	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	186.77		VWP-1A installed a	at 14.0 m bgs		SS-5	80	21	3-8-12-17	20	25 mm PVC Guide Pipe (Grouted)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	183.07		becoming stiff			SS-6	95	25	3-5-7-8	12	
70 - 21.0 68 - 21.0 70 - 21.0 71 - 21.60 72 - 22.0 73 - 22.0 75 - 2	179.17		VWP-1B installed	at 21.6 m bgs	X	SS-7	0		2-4-6-8	10	

OG WITH GRAPH+WELL 044985-50-06 BOREHOLE LOGS (FINAL).GPJ GHD_Geotechnica

REFEREN	CE No.:	044985-50-06								ENCLOSURE No.: <u>A-1</u>
	GUI		BOREHOLE No.		V	WP1	-21		B	OREHOLE REPORT
			ELEVATION:		200	.77 m	I			Page: <u>3</u> of <u>4</u>
CLIENT: _	Cle	an Harbors - Lambto	n Facility						LEC	GEND
PROJECT:	Ge	otechnical Investigati	on - VWP Installations	- Cel	ll 20-1				\square	SS - SPLIT SPOON
LOCATION	I: Cle	an Harbors Lambton	Facility, 4090 Telfer Ro	I. Co	orunna,	ON				ST - SHELBY TUBE RC - ROCK CORE
DESCRIBE	DBY: Ow	ven Reynolds	CHECKED BY:		Abdul I	lafee	z Kha	<u>n</u>	Ţ	- WATER LEVEL
DATE (STA	ART): <u>8 D</u>	December 2021	DATE (FINISH)	: _	9 Dece	mber	2021			
Depth	Elevation (m) BGS Stratigraphy	DESCR SOIL ANI	IPTION OF D BEDROCK	State	Type and Number	Recovery	Moisture Content	Blows per 6 in. / 15 cm or RQD	Penetraion Index	Shear test (Cu) △ Field Sensitivity (S) □ Lab ○ Water content (%) ↓ Atterberg limits (%) ● "N" Value (blows / 12 in30 cm)
Feet Metres 2	200.77	GROUN	D SURFACE			%			N	10 20 30 40 50 60 70 80 90
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				X	SS-8 SS-9	100	28	3-4-5-6 4-4-6-8	9	Cement Bentonite Grout Cement Bentonite Grout Co Co
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	168.77	Shelby tube sampl	e at 32.0 m bgs moist-wet		SS-10 ST-1	100		4-6-7-8 		← C ← C ← C ← C ← C ← C ← C ← C
111 — 112 — 34.0				X	SS-11	100	30	3-5-7-7	12	

REFERENCE No.	.: 044985-50-06								ENCLOSURE No.:A-1
		BOREHOLE No.:		v	WP1	-21		B	OREHOLE REPORT
		ELEVATION:		200	.77 m				Page: <u>4</u> of <u>4</u>
CLIENT:	Clean Harbors - Lambt	on Facility						LEC	GEND
PROJECT:	Geotechnical Investiga	tion - VWP Installations -	Се	ll 20-1				\boxtimes	SS - SPLIT SPOON
LOCATION:	Clean Harbors Lambto	n Facility, 4090 Telfer Rd	. Co	orunna,	ON				ST - SHELBY TUBE
DESCRIBED BY:	Owen Reynolds	CHECKED BY:		Abdul H	lafee	z Kha	<u>n</u>	LL Ţ	- WATER LEVEL
DATE (START):	8 December 2021	_ DATE (FINISH):	:	9 Dece	mber	2021			
Depth Elevation (m) BGS	Stratigraphy SOIT AN	RIPTION OF ID BEDROCK	State	Type and Number	Recovery	Moisture Content	Blows per 6 in. / 15 cm or RQD	Penetraion Index	$\begin{array}{llllllllllllllllllllllllllllllllllll$
Feet Metres 200.77	GROUI	ND SURFACE			%			N	10 20 30 40 50 60 70 80 90
$ \begin{array}{c} 114 \\ - \\ 115 \\ - \\ 35.10 \\ 116 \\ - \\ 117 \\ - \\ 118 \\ - \\ 36.0 \\ 119 \\ - \\ \end{array} $	Shelby tube atter (no recovery)	npted at 35.1 m bgs		ST-2	0				Cement Bentonite Grout
120			X	SS-12	100	28	5-6-8-9	14	
$\begin{array}{c} 125 & -38.0 \\ -38.10 \\ 126 & - \\ 127 & - \\ 128 & -39.0 \\ 129 & - \\ 39.00 \end{array}$ 161.77	Shelby tube sam <u>Grainsize Analys</u> Gr =%, Sa =%, C becoming very st gravel, moist	ble at 38.1 m bgs <u>is:</u> I & Si =% 		ST3	100				25 mm PVC
130 - 100				SS-13	100	23	6-12-16-23	28	
$\begin{array}{c} 134 \\ 135 \\ 135 \\ 136 \\ 136 \\ 137 \\ 138 \\ 138 \\ 138 \\ 139 \\ 130 \\$	becoming stiff, tra wet, occasional S VWP-1C installed	ice gravel, moist-wet to hale fragments I at 41.5 m bgs		SS-14	100	32	7-7-8-8	15	● O VWP-1C - 1000 00000000000000000000000000000
$\begin{array}{c} 100 \\ 140 \\ - \\ 42.70 \\ 141 \\ - \\ 43.0 \\ 142 \\ - \\ 143 \\ - \\ 143 \\ - \\ 144 \\ - \\ 44.0 \\ 145 \\ - \\ 146 \\ - \\ - \\ 146 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	END OF BOREH inferred Shale be Annular space of pipe backfilled wi grout. m bgs - refers to surface Gr =gravel; Sa =s	OLE AT 42.7 m bgs on drock. borehole and guide th cement-bentonite meters below ground aand; CI & Si =clay & silt	X	SS-15	0		Bouncing		42.7 m
147									

BOREHOLE No:	REFEREN	NCE No.:	044985-50-06								ENC	LOSI	JRE	E No.	:		4-2	
ELEVATION: 200.55 m Prop: 1 of A CULENT:				BOREHOLE No.	:_	V	WP2	-21		B	OR	EH	0	LE	R	EPO)R	Г
CLENT: Clean Harton - Lambon Facility LEGEND PROJECT: Geodechnical Investigation - VVP Installations - Cell 20-1 Image: Cell 20-1 LOCATION: Clean Hartons Lambon Facility. 4000 Teller Rd. Cournea. ON Image: Cell 20-1 DESCRIBED BY: Own Raymods / Bruce Point CHECKED BY: Adul Hartons Lambon Facility. 4000 Teller Rd. Cournea. ON Image: Cell 20-1 DESCRIBED BY: Own Raymods / Bruce Point CHECKED BY: Adul Hartons Lambon Facility. 4000 Teller Rd. Cournea. ON Image: Cell 20-1 Egg Sign Sign Sign Sign Sign Sign Sign Sign		GHL		ELEVATION:		200	.55 m	1			F	Page	: _	1	of	4		-
PROJECT: Gelachtical Investigation - VWP Installations - Call 20-1 Image: Call and Status and Sta	CLIENT:	Cle	an Harbors - Lambto	n Facility						LEC	GENI	<u>D</u>						
LOCATION:	PROJECT	T: Geo	otechnical Investigati	on - VWP Installations	- Ce	ell 20-1				\boxtimes	SS	- S	PLI	T SF	100	١		
DESCRIBED BY: Owner Roundids / Bruce Polan CHECKED BY: Abdul Halooz Khan WTE CHERLEVEL DATE (START): 10 December 2021 DATE (FINISH): 11 December 2021 Start Ital (Ch) A Feld East Big Big Big Big Big Big Start Ital (Ch) A Feld Feed Merrar 200.56 GROUND SURFACE % N N 10 20 30 40 00 70 80 40 1 East GROUND SURFACE % N N 10 20 30 40 00 70 80 40 1 East GROUND SURFACE % N N 10 20 30 40 00 70 80 40 1 East GROUND SURFACE % N N 10 20 30 40 00 70 80 40 1 East GROUND SURFACE % N N 10 20 30 40 00 70 80 40 1 East GROUND SURFACE % N N 10 20 30 40 70 80 40 1 East GROUND SURFACE % N N 10 20 30 40 70 80 40 2 East GROUND SURFACE %	LOCATIO	N: <u>Cle</u>	an Harbors Lambton	Facility, 4090 Telfer R	d. C	orunna,	ON				ST RC	- S	HE	LBY		E		
DATE (\$TART): 10 Docember 2021 DATE (FINISH): 11 Docember 2021 6 \$00 <td>DESCRIB</td> <td>ED BY: Ow</td> <td>en Reynolds / Bruce</td> <td>Polan CHECKED BY</td> <td>_</td> <td>Abdul I</td> <td>lafee</td> <td>z Kha</td> <td><u>n</u></td> <td>Ţ</td> <td>NO</td> <td>- V</td> <td>VAT</td> <td>ERI</td> <td></td> <td>L</td> <td></td> <td></td>	DESCRIB	ED BY: Ow	en Reynolds / Bruce	Polan CHECKED BY	_	Abdul I	lafee	z Kha	<u>n</u>	Ţ	NO	- V	VAT	ERI		L		
End Sign of the second se	DATE (ST	ART): <u>10</u>	December 2021	DATE (FINISH): _	11 Dec	embe	er 202	1									
Source Source<																		
Prest Metres 200.55 GROUND SURFACE % N 10.20.30.40.50.80.70.80.00 1	Depth	Elevation (m) BGS Stratigraphy	DESCR SOIL AN	RIPTION OF D BEDROCK	State	Type and Number	Recovery	Moisture Content	Blows per 6 in. / 15 cm or RQD	Penetraion Index	She Sen O w _p w ₁ € (blo	ar tes sitivity Wate Atter "N" V ws / 1	it (Ci y (S) er co berg alue 2 in.	u) ntent i limits 30 c	(%) s (%) m)	∆ Fie □ La	əld b	
1 Double outgets 2 2 1.0 0 3 1.0 4 0 5 0 7 2.0 8 0 9 0 10 3.0 11 0 12 0 13 4.0 14 0 15 0 16 5.0 17 5.0 18 0 19 6.0 22 7.0 24 0 25 0 26 0 27 8.0 28 0 29 9.0 31 0 32 10.0 34 0 35 0 26 0 27 0 28 0 29 9.0 31 0 32 0 34 0 35 0 36 0 37 0	Feet Metres	200.55	GROUN	D SURFACE			%			N	10	20 30	40	50 6	0 70	80 90 gors	►	
2			(unsampled to 24.	SILT - brown, stiff 4 m)														
3 1.0 4 - 6 - 7 - 8 - 9 - 10 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 10 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 22 - 23 - 24 - 25 - 26 - 27 - 28 - 29 - 20 - 21 - 22 - 23 - 24 - 25 - </td <td>2</td> <td></td>	2																	
5																	1111	111111
6 - 2 2.0 8 - 4 0 10 - 3.0 11 - 4 0 14 - 15 - 5.0 16 - 5.0 17 - 6.0 24 - 7.0 24 - 7.0 24 - 7.0 24 - 7.0 25 - 10.0 31 - 4.0 17 - 5.0 18 - 5.0 19 - 5.0 19 - 5.0 10 - 10.0 21 - 5.0 22 - 7.0 24 - 7.0 25 - 10.0 31			1															
7 2.0 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 - 6.0 - 21 - 22 - 23 - 24 - 25 - 26 - 27 - 28 - 29 - 30 - 31 - 32 - 33 - 34 - 35 - 36 - 36 - 36 - 36 - 36 - 36 - 37 - 37	6 - 20																1	
8 = 9 10 12 13 14 15 16 16 17 16 17 20 22 23 24 22 23 24 25 26 28 29 29 31 29 31 29 31 32 33 33 34 35 36 37 36 37 37 30	7 - 2.0											+	-					
0 3.0 11 12 13 -4.0 14 15 16 5.0 17 18 19 20 21 22 23 7.0 24 25 28 29 9.0 31 32 33 34 35 36 37																		
11			1															
12															Cor	nont-		
13 4.0 14 14 15 15 16 5.0 17 5.0 18 19 20 6.0 21 14 22 15 23 7.0 24 16 26 16 27 16 28 17 29 9.0 31 14 32 10.0 34 15 36 11.0 37 11.0	12 —												Be	entor	nite G	Grout		
15 16 5.0 16 - 5.0 18 - - 19 - 6.0 21 - - 23 - 7.0 24 - - 25 - - 26 - - 27 - - 28 - - 29 9.0 - 31 - - 32 - 10.0 34 - - 35 - - 36 - 11.0 37 - - -			1															
16 5.0 17 5.0 18 1 19 6.0 21 1 22 1 23 7.0 24 1 25 1 26 8.0 27 1 28 1 29 9.0 31 1 32 10.0 34 1 35 1 36 11.0 37 1																		
17 -0.0 18 - 19 - 20 - 21 - 22 - 23 - 26 - 27 - 28 - 29 - 29 - 30 - 31 - 32 - 33 - 34 - 35 - 36 - 37 -	16 + 50																1	
$ \begin{array}{c} 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 7.0 \\ 24 \\ 25 \\ 26 \\ 26 \\ 28 \\ 29 \\ 30 \\ 7 \\ 31 \\ 32 \\ 33 \\ 10.0 \\ 34 \\ 35 \\ 36 \\ 11.0 \\ 37 \\ \end{array} $]															իկկե
19 6.0 21 - 22 - 23 - 24 - 25 - 26 - 28 - 29 - 30 - 31 - 32 - 33 - 10.0 - 34 - 35 - 36 - 37 -												+	-	_		+		111111
21	20 + 6.0																	կկկկ
22 -																		111.111
23 7.0 24 Guide Pipe 25 Goude Pipe 26 8.0 27 Guide Pipe 28 Guide Pipe 29 9.0 30 Guide Pipe 31 Guide Pipe 32 Guide Pipe 33 10.0 34 Guide Pipe 36 11.0 37 Guide Pipe																		կկկ
2^{24} 2^{5} $ 8.0$ 2^{7} $ 8.0$ 2^{7} $ 9.0$ 30 $ 9.0$ 30 $ 9.0$ 31 $ 31$ $ 32$ $ 10.0$ 33 $ 10.0$ 34 $ 35$ $ 11.0$ 37 $ 11.0$ 37 $ 11.0$ 37 $ 11.0$ 37 $ 11.0$ 37 $ 11.0$ 37 $ 11.0$ 37 $ 11.0$ 37 $ 11.0$ 37 $ 11.0$ 37 $ 11.0$ 37 $ 11.0$ 37 $ 11.0$ 37 $ 11.0$ 37 $ 11.0$ 37 $ 11.0$ $ 11.0$ $ 11.0$ $ 11.0$ $ 11.0$ $ 11.0$ $ 11.0$ $ 11.0$ $ 11.0$ $ 11.0$ $ 11.0$ $ 11.0$ $ -$														25 +G	mm I uide	PVC− Pipe−		իլիլիլ
$ \begin{array}{c} 26 \\ 27 \\ 28 \\ 29 \\ 9.0 \\ 30 \\ 31 \\ 32 \\ 33 \\ 10.0 \\ 34 \\ 35 \\ 36 \\ 11.0 \\ 37 \\ \end{array} $														+(Grou	ıted)⊢		իկկկկ
27 - 8.5 28 - 8.5 29 - 9.0 30 - 9.0 31 - 4 32 - 10.0 34 - 4 35 - 11.0 37 - 4																		
$ \begin{array}{c} 28 \\ -9 \\ 30 \\ -9.0 \\ 31 \\ -1 \\ 32 \\ -33 \\ -10.0 \\ 34 \\ -35 \\ -36 \\ -11.0 \\ 37 \\ -1 \end{array} $																		լիկիլիլ
$ \begin{array}{c} 29 \\ 30 \\ -1 \\ 31 \\ -1 \\ 32 \\ -1 \\ 33 \\ -10.0 \\ 34 \\ -1 \\ 35 \\ -1 \\ 36 \\ -11.0 \\ 37 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1$																	-	իկիլի
31 - 10.0 32 - 10.0 34 - 135	$\frac{1}{29} = \frac{29}{10} = \frac{1}{29} = 9.0$																	111,11,111
$\begin{array}{c} 32 \\ 33 \\ -10.0 \\ 34 \\ -1 \\ 35 \\ -1 \\ 36 \\ -11.0 \\ 37 \\ -1 \end{array}$												+		+		+		
$\begin{array}{c} 33 & -10.0 \\ 34 & -1 \\ 35 & -1 \\ 36 & -11.0 \\ 37 & -1 \end{array}$	32 -											+	+	+	\square	+		
34 - 135 - 11.0 37 - 11.0 37 - 100	ŧ ₃₃ _⊢10.0]											+				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													+	+				
	≥ ³⁰ – 31 36 – 11 ∩													\pm				111111
														+		+		1

REFEREN	ICE No.:	:	044985-50-06								ENC	LOS	URE	No.:			<u>\-2</u>	
	o.: _	N	WP2	2-21		B	OR	E	IOI	_E	RE	EPC)R	Т				
				ELEVATION:		200	.55 m	ı			-	Page	e: _2		of _	4		
CLIENT:		Clea	an Harbors - Lambto	n Facility						LEC	GEN	D						
PROJECT	:	Geo	technical Investigati	on - VWP Installation	s - Ce	ell 20-1				\boxtimes	SS	- 5	SPLIT	SPO	JON			
LOCATIO	N:	Clea	an Harbors Lambton	Facility, 4090 Telfer I	Rd. C	orunna,	ON				ST	- 5	SHEL	BY T	UBE	Ξ		
DESCRIB	ED BY:	Owe	en Reynolds / Bruce	Polan CHECKED B	Y:	Abdul I	lafee	z Kha	<u>n</u>	⊥L Ţ	RC	- t - \	NATE	ER LI	RE EVE!	L		
DATE (ST	ART):	10 E	December 2021	DATE (FINISI	H): _	11 Dec	embe	er 202	1									
Depth	Elevation (m) BGS	Stratigraphy	DESCR SOIL ANI	IPTION OF D BEDROCK	State	Type and Number	Recovery	Moisture Content	Blows per 6 in. / 15 cm or RQD	Penetraion Index	She Ser O W _p W	ear te nsitivit Wat Atte "N" \ wws /	st (Cu) er con rberg l /alue 12 in:	tent (' imits 30 cm	%) (%) 1)	∆ Fie □ La	≱ld b	
Feet Metres	200.55	F 14	GROUN	D SURFACE			%			Ν	10	20 3	0 40 5	50 60	70 8	30 90		1 r=4
		11									\mid			\square	\mp	\ddagger		
															+	\ddagger	1000	
															+	\mp	1111111	
42 + 13.0															\pm	\mp	10000000000000000000000000000000000000	
															+	\square	111111	
45 –															+	\square		
46	186.55		VWP-2A installed	at 14.0 m bgs											∕ŴP —	-2A-		
															_		10101011	
		11												25 m			1)	
50 -													_	Gui	de F	vc ipe-	<u>Nu'lu'lu'</u>	
51 —															+		11111	
52 - 16.0															_	\square	1 1 1 1 1 1 1 1 1 1 1 1 1	
50 <u> </u>															\mp	+		
		\mathcal{H}													+	\mp		
s17.0													-Bei	ntonii	Cem te Gi	ient- rout-		
57															\pm	\square		
50 51 5918.0															+		11111111111	
60 -															+	\pm		
															_		110110 110110	
$\begin{bmatrix} 62 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $															+			
															+	++	1010101	
															—	-	<u> </u>	
66 <u>–</u> 20.0															—	++		
															\mp	\ddagger	10000000000000000000000000000000000000	
69 <u>-</u> 21.0															\mp	\ddagger		
70 -		\mathbb{H}												\square	\pm	\ddagger		
															\pm	\pm		
$1^{72} + 22.0$															+		111111	
											\vdash			\square	+	++	<u>1111111111111111111111111111111111111</u>	
75 -																+	111111	

REFEREN	NCE No.:	044985-50-06						I		ENCL	.OSU	RE N	lo.: _		A-2	
	G		BOREHOLE No.:		V	WP2	2-21		B	OR	EH	OL	ER	(EP	OR [.]	Т
			ELEVATION:		200	.55 m	1			F	age:	3	of	4		
CLIENT:		Clean Harbors - Lambto	n Facility						LEC	GEND	<u>)</u>					
PROJECT	Г:	Geotechnical Investigati	on - VWP Installations -	Ce	II 20-1				\boxtimes	SS	- SF	LIT	SPOC)N		
LOCATIO	N:	Clean Harbors Lambton	Facility, 4090 Telfer Rd	. Co	orunna,	ON				ST	- SH	IELB		BE =		
DESCRIB	ED BY:	Owen Reynolds / Bruce	Polan CHECKED BY:		Abdul H	lafee	z Kha	<u>n</u>	LL T	ΝC	- W	ATE	R LEV	- /EL		
DATE (ST	ART):	10 December 2021	DATE (FINISH):		11 Dec	embe	er 202	1								
Depth	Elevation (m) BGS	Stratigraphy DESCR SOIL AN	IPTION OF D BEDROCK	State	Type and Number	Recovery	Moisture Content	Blows per 6 in. / 15 cm or RQD	Penetraion Index	Shea Sens O W _p W ₁	ar test sitivity Water Atterb "N" Val vs / 12	(Cu) (S) conte erg lin ue in3(ent (%) nits (%) cm)	△ F □ L:	ield ab	
Feet Metres	200.55	GROUN	D SURFACE			%			Ν	10 2	20 30	40 50	607	0 80 9	0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$) 176.15 171.75	CLAYEY SILT - gr occasional gravel, SILTY SAND - gre trace gravel, moist VWP-2B installed	ey, stiff, trace sand, moist y, dense, trace clay, at 29.0 m bgs		SS-1 SS-2	90	28	3-5-5-6 3-4-6-6	10				-Cconite	ment Grout Grout Prove Pipe Souted) VP-2B		
$\begin{array}{c} 0 \\ 98 \\ - \\ 99 \\ - \\ 30.0 \\ 99 \\ - \\ 30.0 \\ 99 \\ - \\ 30.0 \\ 99 \\ - \\ 30.0 \\ 99 \\ - \\ 31.0 \\ 102 \\ - \\ 31.4 \\ 103 \\ - \\ 31.4 \\ 104 \\ - \\ 31.4 \\ 105 \\ - \\ 31.4 \\ 104 \\ - \\ 33.0 \\ 109 \\ - \\ - \\ 33.0 \\ 109 \\ - \\ - \\ 33.0 \\ 109 \\ - \\ - \\ - \\ 33.0 \\ 109 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	0 169.15	Grainsize Analysis Gr =%, Sa =%, Cl CLAYEY SILT - gr trace gravel, moist	<u>s:</u> & Si =% ey, hard, some sand,		SS-3 SS-4	50	12	12-24-22-24 19-24-17-18	46			• • • •				

REFEREN	NCE NO.		044985-50-06								ENCLOSURE NO.: A-2
	ć	HD		BOREHOLE No.	:	\ \	/WP2	2-21		B	OREHOLE REPORT
	Š			ELEVATION:		200	.55 m	1			Page: <u>4</u> of <u>4</u>
CLIENT:		Clea	in Harbors - Lambto	n Facility						LEC	GEND
PROJECT	:	Geo	technical Investigation	on - VWP Installations	- Ce	ell 20-1				\boxtimes	SS - SPLIT SPOON
LOCATION	N:	Clea	n Harbors Lambton	Facility, 4090 Telfer Ro	1. C	orunna,	ON				ST - SHELBY TUBE RC - ROCK CORE
DESCRIBI	ED BY:	Owe	n Reynolds / Bruce	Polan CHECKED BY:		Abdul I	Hafee	z Kha	<u>n</u>	Ţ	- WATER LEVEL
DATE (ST	ART):	10 D	ecember 2021	DATE (FINISH)	: _	11 Dec	embe	er 202	1		
Depth	Elevation (m) BGS	Stratigraphy	DESCR SOIL ANI	IPTION OF D BEDROCK	State	Type and Number	Recovery	Moisture Content	Blows per 6 in. / 15 cm or RQD	Penetraion Index	Shear test (Cu) \triangle Field Sensitivity (S) \square Lab \bigcirc Water content (%) $\underset{W_{p}}{\longrightarrow}$ Atterberg limits (%) \bigcirc "N" Value (blows / 12 in .30 cm)
Feet Metres	200.55		GROUN	O SURFACE			%			N	10 20 30 40 50 60 70 80 90
114 —											
115 - 35.0 + 35.10 116 - 1 + 117 - 1	165.45		Shelby tube sampl Grainsize Analysis Gr =%, Sa =%, Cl	e at 35.1 m bgs <u>:-</u> & Si =%		ST-1	100				
118	164.55		becoming stiff		-						Cement Bentonite Grout
120 — 121 — 122 — 122 — 122 —					X	SS-5	100	28	5-7-8-8	15	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	161.55 159.55 159.05 158.15		becoming moist-we occasional Shale fi VWP-2C installed inferred bedrock. Annular space of b pipe backfilled with grout. m bgs - refers to m surface Gr =gravel; Sa =sa	et		SS-6 SS-7 SS-8	100 100 0	22 20 	4-3-5-4 6-8-11-20 Bouncing	8	25 mm PVC Guide Pipe (Grouted)

Notes on Borehole and Test Pit Reports

Soil description :

Each subsurface stratum is described using the following terminology. The relative density of granular soils is determined by the Standard Penetration Index ("N" value), while the consistency of clayey sols is measured by the value of undrained shear strength (Cu).

	Classification	(Unified syst	tem)			Terminol	ogy			
Clay	< 0.002 mm	-								
Silt	0.002 to 0.075 mm				II	~~"	4 400/			
Sand	0.075 to 4.75 mm	fine	0 075 to 0 425 mm		tra "soi	ce me"	1-10% 10-20%			
Cana	0.010 10 4.10 1111	medium	0.425 to 2.0 mm		adie	ective (silty_sand)	() 20-35%			
		coarse	2.0 to 4.75 mm		"an	d"	35-50%			
Gravel	4.75 to 75 mm	fine	4.75 to 19 mm			u	00-00 /0			
Cobbles Boulders	75 to 300 mm >300 mm	coarse	19 10 73 1111							
Relat	ive density of	Standa	rd penetration		Cons	istency of	Undraine	ed shear		
gið					cone	5146 30113		(kDa)		
		(BLOW	/S/ft – 300 mm)		N/	an coff	(P.S.F)	(KPa)		
	<i>,</i> .		.		Ve	ery soπ	<250	<12		
	ery loose		0-4			Soft	250-500	12-25		
	Loose		4-10			Firm	500-1000	25-50		
	Compact		10-30			Stiff	1000-2000	50-100		
	Dense		30-50		Ve	ery stiff	2000-4000	100-200		
V	ery dense		>50			Hard	>4000	>200		
	Rock quality	designatio	n			STRATIGRAPI	HIC LEGEND			
"RQ	D" (%) Value		Quality				• •			
	<25	١	/ery poor			00				
	25-50		Poor		Sand		Cobbles& boulders			
	50-75		Fair		Cana	Gravei		Bedrock		
	75-90		Good							
	>90	I	Excellent		Silt	Clay	Organic soil	Fill		
Samples:	her]						
The type of san	nple recovered is shown o	on the loa by th	ne abbreviation listed	hereafter. The nur	nbering of samples is	s sequential for each	n type of sample.			
SS: Split spoon) 1		ST	: Shelby tube	insering of campies is	A	G: Auger			
SSE, GSE, AG	E: Environmental samplin	g	PS	: Piston sample (Os	sterberg)	R	C: Rock core			
						G	S: Grab sample			
Recovery The recovery, s	shown as a percentage, is	the ratio of le	ngth of the sample ob	otained to the distan	ce the sampler was	driven/pushed into t	he soil			
RQD										
The "Rock Qua the run.	lity Designation" or "RQD	" value, expre	ssed as percentage, i	s the ratio of the tot	al length of all core f	ragments of 4 inche	s (10 cm) or more to th	he total length o		
IN-SITU TES	TS:									
N: Standard penetration index			N _c : Dynami	c cone penetration in	dex	k: Permeab	oility			
R: Refusal to penetration				Cu: Und Pr:	Cu: Undrained shear strength ABS: Absorption Pr: Pressure meter					
LABORATO	RY TESTS:									
								O.V.: Organic		
Ip: Plasticity ind	lex	H: Hyd	trometer analysis	A: Atterbe	rg limits	C: Consolidati	diab fall conc			
Wp: Plastic limit	it	GSA:	GI AITI SIZE ANAIYSIS	w: vvater α γ: Unit wei	ight	CS: Sweaish	CHEM: Chemical analysis			

Appendix B Cone Penetration Test Results

Overplot Item: Oueq Assumed Ueq Dissipation, Ueq achieved Dissipation, Ueq not achieved Dissipation, Ueq assumed — U The reported coordinates were acquired from consumer grade GPS equipment and are only approximate locations. The coordinates should not be used for design purposes.

Overplot Item: Oueq Assumed Ueq Consumer grade GPS equipment and are only approximate locations. The coordinates should not be used for design purposes.

— Hydrostatic Line

Overplot Item: Oueq Assumed Ueq Dissipation, Ueq achieved Dissipation, Ueq not achieved Dissipation, Ueq assumed — U The reported coordinates were acquired from consumer grade GPS equipment and are only approximate locations. The coordinates should not be used for design purposes. **Ueq Line**

Overplot Item: Oueq Assumed Ueq Dissipation, Ueq achieved Dissipation, Ueq not achieved Dissipation, Ueq assumed — U The reported coordinates were acquired from consumer grade GPS equipment and are only approximate locations. The coordinates should not be used for design purposes. **Ueq Line**

Overplot Item: Oueq Assumed Ueq Dissipation, Ueq achieved Dissipation, Ueq not achieved Dissipation, Ueq assumed — U The reported coordinates were acquired from consumer grade GPS equipment and are only approximate locations. The coordinates should not be used for design purposes. Ueg Line

Appendix C Geotechnical Laboratory Test Results

UNCONFINED COMPRESSIVE STRENGTH OF COHESIVE SOIL (ASTM D2166)

Appendix D

Bedrock Surface Topography- Lambton Facility (RWDI, 2013), and Bedrock Log TW-34-94-I

BOREHOLE NO. TW34-94-1

PROJECT: LAMBTON FACILITY - LANDFILL SERVICE CONTINUATION PROJECT NO .: 194060.541

CLIENT: LAIDLAW ENVIRONMENTAL SERVICES

DATE: MAY 5 - 9, 1994

BOREHOLE TYPE: 108 mm I.D. HOLLOW STEM AUGERS

GEOLOGIST: AMA/JSK

GROUND ELEVATION: 201.57 m A.S.L.

REVIEWER: JTB/JSK

				SAMPLE					CONF	· ·	<u> </u>
-		STR.	· .	-		Court P	-		PENETRATION	WATER	5. St. 199
DEPTH	STRATIGRAPHIC DESCRIPTION	NTR N	MONITOR		ž		. N1 70		"N" VALUE	CONTENT %	REMARKS
ELEVATION	· · ·	RA	DETAILS	3dAL	YA.	WA	CO	RQD	10 20 30	10 20.30	
(m A.S.L.)		AHA		· · · ·	E.	FER	VER	(%)	SHEAR	<u> </u>	
201.52	FILL		117			·			STRENGTH	WP WL	
	SILTY CLAY TO CLAYFY SILT (ST. LOSEPH		$\langle X \rangle$	CCT		••••••	100	******			
	TILL). MOTTLED LIGHT BROWN, ORANGE		K/K/								
	GREY BROWN TO 5.59 m. GREY BELOW			SSI	8	24	61			1	
2.	COARSE DOLOSTONE AND SHALE GRAVEL,		\mathbb{N}	CC2			100				
•••••	9.22 m TO 9.80 m. 10.54 m (10 mm		$ \rangle$	552	38	16	97	<i></i>			
	7.75 TO 7.98 m (2 mm THICK), 9.53 m		$\wedge \wedge$								
	(6 mm THICK), 13.49 TO 13.74 m. 13.94 m (25 mm THICK), SANDY SILT		$ \rangle$	CC3			100				
<u>_</u>	LAYERS AT 9.80 TO 10.16 m, RODTLETS TO 1.04 m, FRACTURES TO 5.79 m. DTPL TO		KΝ								
	5.03 m AND 13.74 m TO 14.12 m, APL TO WTPL BELOW 5.03 m, VERY STIFF TO STIFF		$ \rangle$	553	24	15	44		1		
	WITH A HARD ZONE AT ABOUT 3 m.		$\wedge \wedge$	CC4			100				
			$ \rangle \rangle$								
8	· ·			SS4	14	14	72				
			$ \lambda\rangle$								+
			$\nabla \nabla$	CC5			100	·····			
				SS5	12	14	83	····			
8			\square	CC6			90	••••			
···· <i>·</i> ·			\square	SS6	18	17	100				
10			$\langle \cdot \rangle$	CC7			. 98	•••••			
				SS7	14	19	72				
			$\backslash \backslash$								
				600			93				· · ·
			$\backslash \backslash$					•••••			
12				\$58	15	20	100				
			$\backslash \backslash$	200	•••••	····	96				
	14								$ \rangle$		ST. JOSEPH TILL AND
			$ \rangle$	\$\$9	46	20	83		46		BLACK SHALE TILL AT 14.12 m BASED ON
14 14.12	· · · · · · · · · · · · · · · · · · ·		K N	00.00							GRAVEL TYPE.
	SILTY CLAY TO CLAYEY SILT (BLACK SHALE TILL), GREY, TRACE DISSEMINATED SHALF			CC10	••••••		95	••••••	/		
	GRAVEL, SANDY AT 19.12 m TO 19.30 m, AND 20.50 m TO 20.70 m. SILT AT		N N	5510	21	20	100	•••••			
	15.57 m (25 mm THICK), 26.70 m TO 26.90 m AND 39.57 m TO 39.60 m FINE		$ \rangle$								
16	SAND LAYERS AT 7.87 m (12 mm THICK);			CC11			100				
• • • • • •	THICK), 26.57 m TO 26.70 m, 41.60 m		$ \rangle$					<i>.</i> .			
	THICK), SANDY SILT LAYERS AT 21.64 m		NN	5511	30	20	100				
	22.61 m TO 22.86 m, 26.39 m TO			CC12		••••••	96	•••••			
18	20.70 m, APL TO WTPL BELOW 20.70 m.		$\backslash \backslash$					••••••			
	MASSIVE TO LAMINATED, VERY STIFF TO STIFF, WITH HARD ZONES AT ABOUT		$ X\rangle$	SS12	24	22	100				
	14 m, 16.50 m AND BELOW 41 m.		$\backslash \backslash$		·						
				CC13			100				
20			$\langle \rangle$	SS13	24	23	100	·····•			

JANCER HIMS LOUTER

BOREHOLE NO. TW34-94-1

PROJECT: LAMBTON FACILITY - LANDFILL SERVICE CONTINUATION PROJECT NO .: 194060.541

CLIENT: LAIDLAW ENVIRONMENTAL SERVICES

DATE: MAY 5 - 9, 1994 GEOLOGIST: AMA/JSK

BOREHOLE TYPE: 108 mm I.D. HOLLOW STEM AUGERS

GROUND ELEVATION: 201.57 m A.S.L.

.....

REVIEWER: JTB/JSK

		3	· · [\$	AMPLE		CONE			
DEPTH	STRATIGRAPHIC DESCRIPTION	RATI	MONITOR				*		"N" YALUE	WATER CONTENT %	DEMARKE
(m) ELEVATION		GRA	DETAILS	INT	N'S	WW S	RCO	ROD	10 20 30	10 20 30	ACMARKO
(m A.S.L.) 20		PHP.	ч.	"	LUE	TER	VER	R	SHEAR	<u> </u>	
	CLAYEY SILT (BLACK SHALE TILL) SEE DESCRIPTION PROVIDED ABOVE			CC14			95		SIRENGIN		
	SEE SESSION NOW PROVIDED ADDRE		$ \setminus \rangle$								
		÷	$\land \land$	<u>5514</u>	.12	26	100				
22				CC15			100				
			$\backslash \backslash$	 SS15	16		100				
			KΝ					······			
24			\ `	CC16			100	•••••			
			\square	5516	10	25	77				
			k					••••••			
			$ \setminus \rangle$	<u>pc17</u>			52				
26			$\land \land$	5517	19	25	88	•••••			
				CC18			100	•••••			
	-		$ \setminus \rangle$	SS18	24	26	78	•••• <i>•••</i> ••			
28			\mathbb{N}	CC19			95				i l
			$ \rangle$								
			$ \setminus ! \setminus$	SS19	15	26	78				
			\mathbb{K}			••••••	96	••••••			
30			$ \setminus \rangle$	·····				•••••			
			$\land \land$	SS20	. 21	26	89	•••••			
				CC21				· · · · · · · · · ·			
32	-		$\backslash \backslash$		16	26	100	••••••			
			\mathbb{N}		,	~~	100				
			[\ `	CC22			96				
			$\backslash \backslash$	SS22	13	28	100	····			
34			kΝ.								
			$ \rangle$	SS23	12	28	98 100	••••			
			$\land \land$					·····			
36			[X]	CC24	••••••		100	•••••			
			$ \rangle$	5524	14	28	89				
			КN				100				
			ľ X `	NG20			100	•••••			
38			$ \setminus \setminus$	SS25	19	28	100				
			$k \lambda$	CC26		· · · · · · · ·	100	· <i>··</i> ····		/	
			$ \setminus \rangle$					·····			
40			NN	\$\$26	21	14	94	·····			
Tanen Han I				<u> </u>						1 1 1 1	L

BOREHOLE NO. TW34-94-I

PROJECT: LAMBTON FACILITY - LANDFILL SERVICE CONTINUATION

Т Т

CLIENT: LAIDLAW ENVIRONMENTAL SERVICES

PROJECT NO .: 194060.541 DATE: MAY 5 - 9, 1994

i

GEOLOGIST: AMA/JSK

BOREHOLE TYPE: 108 mm I.D. HOLLOW STEM AUGERS

GROUND ELEVATION: 201.57 m A.S.L.

- · · · · · · -

·.*

REVIEWER: JTB/JSK

					SAMPLE					CONE			
DEPTH (m)		STRATICEAPINC DESCRIPTION	TAR	MONTOR						"N" VALUE	WATER CONTENT %		
		DIRATION DESCRIPTION	IGR.	DETAILS	Ę	N'V	% WATER	RECOVER	20	10 20 30	10 20 30	REMARK\$	
(m)	A.S.L.)				~				3	SHEAR	—		
+0		CLAYEY SILT (BLACK SHALE TILL)			CC27			२ 88	5	STRENOTH	We WL	MONTHER CONTENT NOT	
		SEE DESCRIPTION PROVIDED ABOVE.		$\backslash \backslash$						$ \rangle$		DETERMINED FOR SS28.	
					SS27	54	17	81					
47	42.16				CC28			100					
-	42.37	ENE TO COARSE SAND (RASAL THI)		王	5528	60+	NA	73		607			
	42.52	DARK GREY, SOME FINE TO MEDIUM		(書)	RC1			100	96	230mm			
		VERY DENSE.		Ŧ								CORED WITH HO DIAMOND	
44		GRAVELLY SAND, SILT, CLAY (BASAL TILL) GREY, WIPL TO SATURATED, VERY DENSE						84				44.53 m.	
	44.53	SHALE (KETTLE POINT FORMATION)		$\overline{//}$	Incz				01				
	157.04	BLACK WITH GREENISH GREY SILTSTONE LAYERS, MICROLAMINATED, BROKEN TO			1								
		BLOCKY, SUBHORIZONTAL FRACTURES AT 42.75 m, 43.23 m, 43.76 m, 43.79 m											
46		43.92 m. ANGLED FRACTURES FROM 43.48 TO 43.64 m (INFILLED WITH CALCITE),			·····	······	·						
		FRACTURE FACES WEATHERED TO 43.92 m, EXCELLENT TO GOOD ROCK QUALITY,											
		MEDIUM HARD.											
		BOREHOLE TERMINATED 44.53 m IN SHALE.											
48													
					-								
											,		
							·····						
50							••••••						
52						•••••							
									·····				
54						•••••	•••••		·····				
		1											
58							••••••						
					····,				·····				
58													
60			Ċ										

ghd.com

