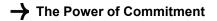


Geotechnical Evaluation and Remedial Plan

Cell 20-1, Slope Issues - Clean Harbors Lambton Facility Landfill Corunna, Ontario

Clean Harbors Canada, Inc.


November 12, 2021

GHD

455 Phillip Street, Unit 100A Waterloo, Ontario N2L 3X2, Canada T +1 519 884 0510 | F +1 519 884 0525 | E info-northamerica@ghd.com | ghd.com

© GHD 2021

This document is and shall remain the property of GHD. The document may only be used for the purpose for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited.

Contents

1.	Introdu	ction	1
2.	Cell 20-	1 West Slope Issue Evaluation	1
	2.1	Geotechnical Inspection of Slope Issues	1
	2.2	Goals of the Slope Stability Modelling	2
	2.3	Cross Sections Analyzed	2
	2.4	Stratigraphy and Material Properties	3
	2.5	Piezometric Conditions	3
	2.6	Minimum Factors of Safety	3
	2.7	Slope Stability Back Analyses and Modelling of the Clay Buttress Remediation	3
	2.8	Confirmation of Rotational Plane	4
	2.9	Verification of North, South, and East Excavation Side Slope Stability	4
3.	Conclu	sion	4
4.	Limitati	ons	4

Table Index

 Table 3.1
 Summary of Geotechnical Laboratory Test Results

Figure Index

Figure 1	2020 Capital Works Phasing Plan
Figure 2	Borehole Location Plan and Cross-Sections
Figure 3	Drone Aerial Surface Contours, August 19, 2021
Figure 4	Preliminary Slope Rotation Arcs
Figure 5	West Slope Issue – Back Calculation Analysis of Rotated Surface.
Figure 6	West Slope – Proposed Buttress Stabilization
Figure 7	West Slope – Buttress Stabilization and Pre-1986 Waste Cell Graded and Capped
Figure 8	Cone Penetration Testing Locations

Appendices

Appendix A	Photographic Log
Appendix A	Photographic Log

Appendix B 2020 Borehole Logs

i

1. Introduction

Clean Harbors Canada, Inc. (Clean Harbors) operates a hazardous waste landfill facility (Facility or Site) in Corunna, Lambton County, Ontario. The Facility is located on Lots 8 and 9 of Concession 10, in St. Clair Township, Lambton County. The Site has a total property area of 140 hectares (ha). The layout of the existing Facility is shown on Figure 1.

This report pertains to the below-grade landfill expansion of the cell identified as Cell 20-1 (Cell), at the location shown on Figure 2. Excavation of the Cell commenced in the spring of 2021. Clean Harbors hired Murphy Contracting (Murphy) to carry out the construction of the Cell.

Excavation of the Cell commenced in the spring of 2021. The excavation of the Cell consisted of two excavation zones simultaneously. A bulk excavation zone of the central portion of the Cell was conducted by an excavator, trucks, and scrappers, and a cell perimeter excavation zone was established that excavated the perimeter of the cell in accordance with the cell design. The Cell design included a ramp down into the base of the cell located along the east wall. The base of the Cell was excavated to the design bottom elevation of 182 m AMSL in a south to north direction. The excavation of the Cell perimeter was progressing to the north-east corner with about 3 weeks of excavation remaining. By mid-July, approximately 50 percent of the excavation of the west wall had been completed. Late on the morning of August 18, Murphy staff observed that a crack was observed in the native clay on the west wall in the north-west section. Approximately 45 minutes later, the west side wall started to visually shift / rotate and an upward bulge of west portion of the Cell floor was observed (Slope Issues). GHD completed a drone survey of the Slope Issues on August 19. Contours generated from the drone survey are shown on Figure 3 and the extent of the Slope Issues can be seen in the contours shown on this Figure.

In response to the Slope Issues, the MECP issued correspondence to Clean Harbors including Condition 46 as follows:

46. The Owner shall not place any waste into the eastern half of cell 19-3 or Cell 20-1 until a report is prepared by a Professional Engineer confirming that landfilling can resume in these cells in a manner that is protective of the health and safety of people and the environment.

GHD has prepared this report to address the requirement set out in Condition 46, and at the direction of Clean Harbors. This report concludes that the remedial efforts taken by GHD, Clean Harbors and Murphy to date have stabilized the Slope Issues and will allow landfilling to continue in a manner that satisfies the requirements of Condition 46.

2. Cell 20-1 West Slope Issue Evaluation

2.1 Geotechnical Inspection of Slope Issues

Following an initial inspection of the Slope Issues on August 18, GHD proceeded with the following course of action:

- Excavation work was halted
- Detailed photographs of the area were obtained by the Geotechnical Engineer
- GHD mobilized a drone camera on August 19 for areal photographs and detailed contour survey of the excavated Cell and Slope Issues

Based on visual observations of the Slope Issues, the movement of the slope was considered to be rotational in nature. The horizontal benches excavated on the west side slope were visually rotated upwards, and the floor of the Cell had been rotated and pushed upwards. GHD's initial estimates of the approximate centre of rotational arcs

matched the drone survey data and are shown on Figure 3. These preliminary rotational surfaces were further evaluated using slope stability modelling software. GHD re-inspected the slope on August 19. Following this re-inspection and an evaluation of the data obtained through the drone survey, GHD has determined that any movement of the slope had stopped by August 19. There is no evidence that any leachate escaped the Cell into the natural environment. Following discussions with Clean Harbors management and out of an abundance of caution, GHD recommended the construction of a north-south berm east of the bulge to contain leachate that was observed in the base of the Cell. In addition to further leachate protection, this berm also provides part of a stabilizing clay buttress in the floor of the cell, at the toe of the slope, as a measure to prevent further slope movement. Construction of this berm and clay buttress began on August 20 and was substantially completed by September 30. The Geotechnical Engineer inspected the work on September 30 and GHD completed an addition drone survey on October 13. Both the Geotechnical Engineer's inspection and the October 13 drone survey support a conclusion that the slope has stabilized, as neither showed any evidence of further movement and both instead show that the slope is reinforced and stabilized by the newly constructed berm and clay buttress.

Photographs of the Slope Issues and the Geotechnical Engineer's September 30 inspection are presented in Appendix A.

2.2 Goals of the Slope Stability Modelling

Based on GHD's observations of the Slope Issues, GHD recommended that it perform additional slope stability modelling to help determine the best course of remedial action, to prevent further slope movement, and to allow waste placement to take place in the Cell 20-1.

GHD utilized the Geo-Studio 2021 (Version 11.0.1.21429) suite of Software developed by Geo-Slope International of Calgary, Alberta for the slope stability modelling. The software comprises three modules SEEP/W, SLOPE/W and SIGMA/W.

The SLOPE/W module employs mainly limit-equilibrium methods such as Bishop, Janbu, Spencer, or Morgenstern & Price methods. GHD carried out the slope stability analyses for this study using the Morgenstern & Price Method, which is a general method of slices developed on the basis of limit equilibrium that requires satisfying equilibrium of forces and moments acting on individual blocks. The software allows for an optimization of the failure plane, to evaluate deviations from pure circular rotational arcs. GHD employed this optimization option in the modelling analyses.

The goals of the modelling were:

- Input the observed aerial survey conditions for the Cell at the location of the Slope Issues.
- Utilize the August 19 aerial drone survey data to model the stability of the slope in its current state using a 'back-analysis' approach.
- Determine the depth of the rotational surface of the failure plane using the drone survey and inputting the suspected depth of the rotational plane into the model.
- Model the proposed construction of the remedial clay buttress, to provide values of the factor of safety (FS) for the remedial approach, and to ensure that the approach would provide stable slope conditions to allow use of the Cell for waste landfilling.
- Model the placement of waste and a new clay cover over any pre-existing waste exposed as the result of the Slope Issues to address any odour control and leachate management concerns.

2.3 Cross Sections Analyzed

Cross-sections modelled for the analyses were similar those evaluated prior to the design and construction of Cell 20-1. The cross-section location for the slope issue analysis is shown as A-A' on Figure 3

2.4 Stratigraphy and Material Properties

The properties required for the stability analyses of the slopes are the bulk densities and shear strength parameters of the materials involved. Relevant geotechnical properties comprising bulk density and shear strength of the different subsurface units were kept consistent with those determined prior to the design and construction of the Cell which are summarized in Table 3.1. The data obtained from these tests, and our previous experience at the Clean Harbors site, were used to determine the appropriate clay material properties, including bulk density and effective shear strength parameters, for the slope stability analyses. The clayey silt units have been divided into geologic subunits based on their geotechnical properties. These are referred to as the St. Joseph Till, and Black Shale Till, based on historical geotechnical reports and geologic descriptions.

2.5 Piezometric Conditions

The stabilized pieziometric (groundwater table) surface in the model was assumed to be at elevation 197 m. This elevation is similar to the maximum leachate head within the leachate collection system and elevation of the groundwater elevations at the Site and is about 3m below ground surface. The excavation for the Cell is therefore mainly in the saturated clay deposits. The excavation of the Cell causes a change in the stabilized piezometric surface (the groundwater table is drawn down by the process of excavation). This change in the piezometric conditions is evaluated using a transition from the 'undrained" state to the "drained" state for the clay deposits, and the modelling software can simulate this change of piezometric conditions over a period of time defined by the modeller. The post-excavation piezometric surface was determined for the modelling analyses after a period of approximately 30 days, to simulate the conditions that were present at the time of the Slope Issues occurred.

2.6 Minimum Factors of Safety

The factor of safety (FS) in slope stability analysis can be defined as the ratio of the available shear strength to that of the applied stresses along a potential failure plane. An FS of 1 or greater indicates stable conditions and a value of less than 1 represents unstable conditions and failure. Given the variability and uncertainty in the selection of strength parameters for natural soil and waste material, an FS above 1 is usually required to provide confidence in the model results. The Canadian Foundation Engineering Manual provides recommendations for typical accepted FS for various structures, depending on the risks associated with the failure.

2.7 Slope Stability Back Analyses and Modelling of the Clay Buttress Remediation

While GHD has not determined the exact cause of the Slope Issues, GHD has examined the proximity of the Pre-1986 waste landfill (Pre-1986 Waste) has been examined as a potential cause of the Slope Issues and used this posited cause to analyze the efficacy of the remedial solution. Figure 5 shows the construction of a slope stability model where the boundary location of the Pre-1986 Waste limit has been moved closer to the Cell excavation.

The rotational movement of the slope will have caused a weakened (or remoulded) clay zone along the path of the rotational movement. This weakened clay layer was simulated in the model, as shown on Figure 5 (remoulded clay layer), along the estimated rotational surface that was preliminarily determined from the aerial drone survey. The shear strength of this weakened zone was back-calculated, using a "back-analysis" approach, by reducing the strength of the weakened zone until an FS of approximately 1.0 was achieved in the model. This model was then used to evaluate the improvement in the FS by construction of the clay buttress. Initial modelling of the buttress constructed to about Elevation 190 m, shows that the FS would increase from about 1.0, to about 1.46, in its fully constructed state (see Figure 6). This FS is considered acceptable to ensure long term stable conditions of the failed slope. These results were presented at a virtual meeting with the MECP on October 13. During the meeting, Clean Harbors requested permission to regrade the waste in the area of the Slope Issues, with the goal of covering any exposed waste with a clay cap, and regrading the area to minimize surface water infiltration into the waste. GHD

modelled the regraded effort, and the results are shown on Figure 7. The FS for this condition is approximately 1.32 which, based on the requirements outlined in the abovementioned Canadian Foundation Engineering Manual indicates that this work could be done without affecting the stability of the slope.

2.8 Confirmation of Rotational Plane

GHD will be completing additional field investigations to verify the depth of the rotational plane associated with the Slope Issues. Based on the drone survey, the rotational plane is suspected to be between Elevation 175 and 180 m in the area below the Cell 20-1 floor. GHD will use the cone penetration test (CPT) technique in the west slope area to verify the depth of the rotational plane. The CPT test consists of hydraulically pushing an instrumented cone tip into the ground using a conventional drill rig. The instrumented cone tip records tip resistance, side friction, and pore pressures at 2 cm intervals as it is pushed into the ground. This data is collected using an onboard data acquisition system, and plots of the data with depth are generated during the CPT penetration. The approximate locations of the CPT tests are shown on Figure 8.

2.9 Verification of North, South, and East Excavation Side Slope Stability

CPT tests will also be obtained at strategic locations on the north, south, and east slopes. The CPT information will be used to re-assess the slope stability models for these sections. The results of these models will be presented in a separate report.

3. Conclusion

The Slope Issues have been stabilized by the construction of the berm and clay buttress. Furthermore, even with conservative modelling regarding the possible impact of unknown conditions related to the exact location of the Pre-1986 Waste, the remediated area is shown to achieve an appropriate safety factor. As such, for the reasons outlined herein, GHD concludes that landfilling of the Cell and any adjacent cells can resume in a manner that is protective of the health and safety of people and the environment.

4. Limitations

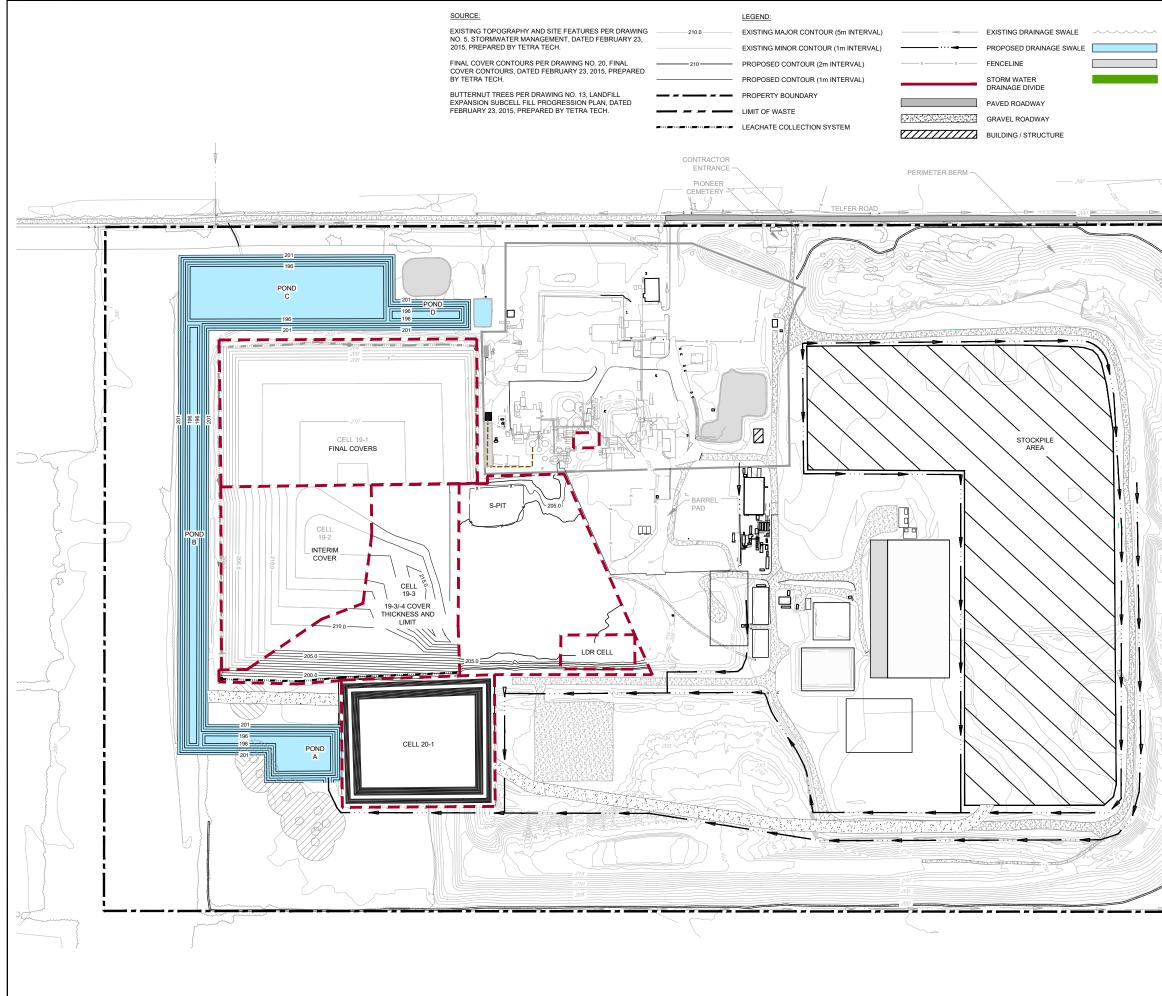
This report: has been prepared by GHD for Clean Harbors Canada, Inc. and may only be used and relied on by Clean Harbors Canada, Inc. for the purpose agreed between GHD and Clean Harbors Canada, Inc. as set out in section 1 of this report.

GHD otherwise disclaims responsibility to any person other than Clean Harbors Canada, Inc. arising in connection with this report. GHD also excludes implied warranties and conditions, to the extent legally permissible.

The services undertaken by GHD in connection with preparing this report were limited to those specifically detailed in the report and are subject to the scope limitations set out in the report.

The opinions, conclusions and any recommendations in this report are based on conditions encountered and information reviewed at the date of preparation of the report. GHD has no responsibility or obligation to update this report to account for events or changes occurring subsequent to the date that the report was prepared.

The opinions, conclusions and any recommendations in this report are based on assumptions made by GHD described in this report. GHD disclaims liability arising from any of the assumptions being incorrect.


All of Which is Respectfully Submitted, GHD

- P/L

Bruce Polan, M.A.Sc., P.Eng.

RA Jardle

James R. Yardley, P.Eng.

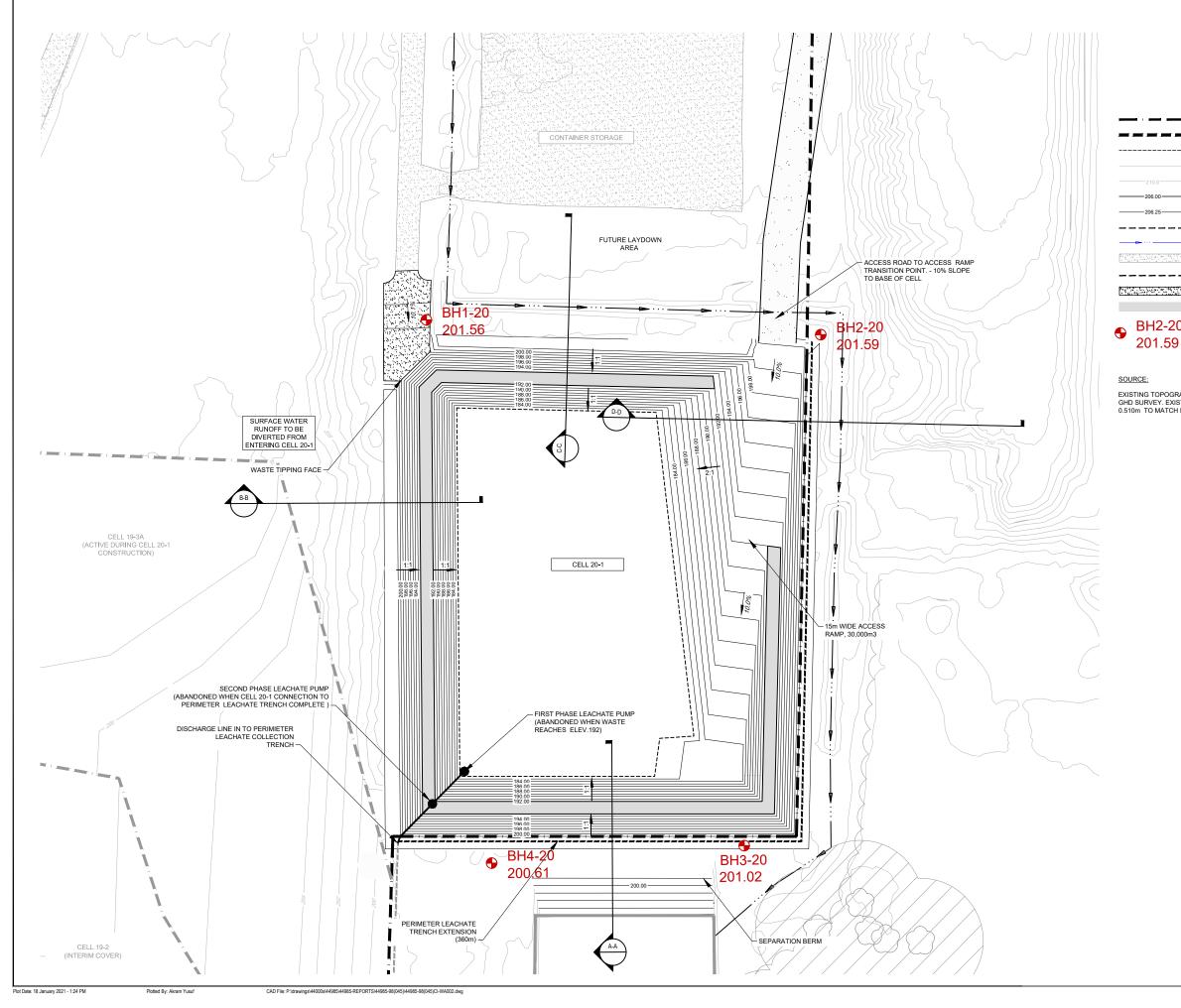
7 TREELINE STORM WATER POND 20 40 60 80m PROCESSED WATER PROPOSED ACCESS ROAD GHD Reuse of Documents Titlo

Waterloo Ontario N2L 3X2 Canada T 519 884 0510 F 519 884 0525 W www.ghd.com

This document and the ideas and designs incorporated herein, as an instrument of professional service, is the property of GHD and shall not be reused in whole or in part for any other project without GHD's written authorization. © 2021 GHD

Client CLEAN HARBORS CANADA, INC. LAMBTON COUNTY, ONTARIO

2021 CAPITAL WORKS CELL DESIGN ECA 1065-9VVJSW


No.	Issue	Drawn	Approved	Date
Draw	m K. DHALIWAL	Designer		
Drafti Chec		Design Check	J. YARDL	EY
Proje Mana		Date	-	
	document shall not be used for uction unless signed and sealed for uction.	Scale	1:750	
Origi	ANSI D	Bar 0	is 20mm or size draw	

roject No. 44985-50

2020 CAPITAL WORKS PHASING PLANS

Sheet No.

FIGURE 1

0	6 12 18 24m
_	LEGEND:
	LIMIT OF WASTE
_	CELL BOUNDARIES
	CELL 20-1 TOE OF SLOPE (ELEV. 182)
	EXISTING MAJOR CONTOUR (2m INTERVAL)
)	EXISTING MINOR CONTOUR (1m INTERVAL)
0	MAJOR CONTOUR (PROPOSED BASE GRADES)
5	MINOR CONTOUR (PROPOSED BASE GRADES)
	EXISTING LEACHATE COLLECTION TRENCH
	EXISTING DRAINAGE DITCH
	EXISTING ACCESS ROADS
	LEACHATE COLLECTION TRENCH EXTENSION
	ACCESS ROAD/TIPPING FACE
	CELL 20-1 BENCH (ELEV, 192)
2-20	GEOTECHNICAL BOREHOLE AND GROUND
.59	

EXISTING TOPOGRAPHICAL AND SITE FEATURES FROM MAY 22, 2020 GHD SURVEY. EXISTING TOPOGRAPHICAL SURVEY ADJUSTED 0.510m TO MATCH HISTORICAL VERTICAL DATUM.

GHD 455 Phillip Street Waterloo Ontario N2L 3X2 Canada T 519 884 0510 F 519 884 0525 **W** www.ghd.com

Reuse of Documents

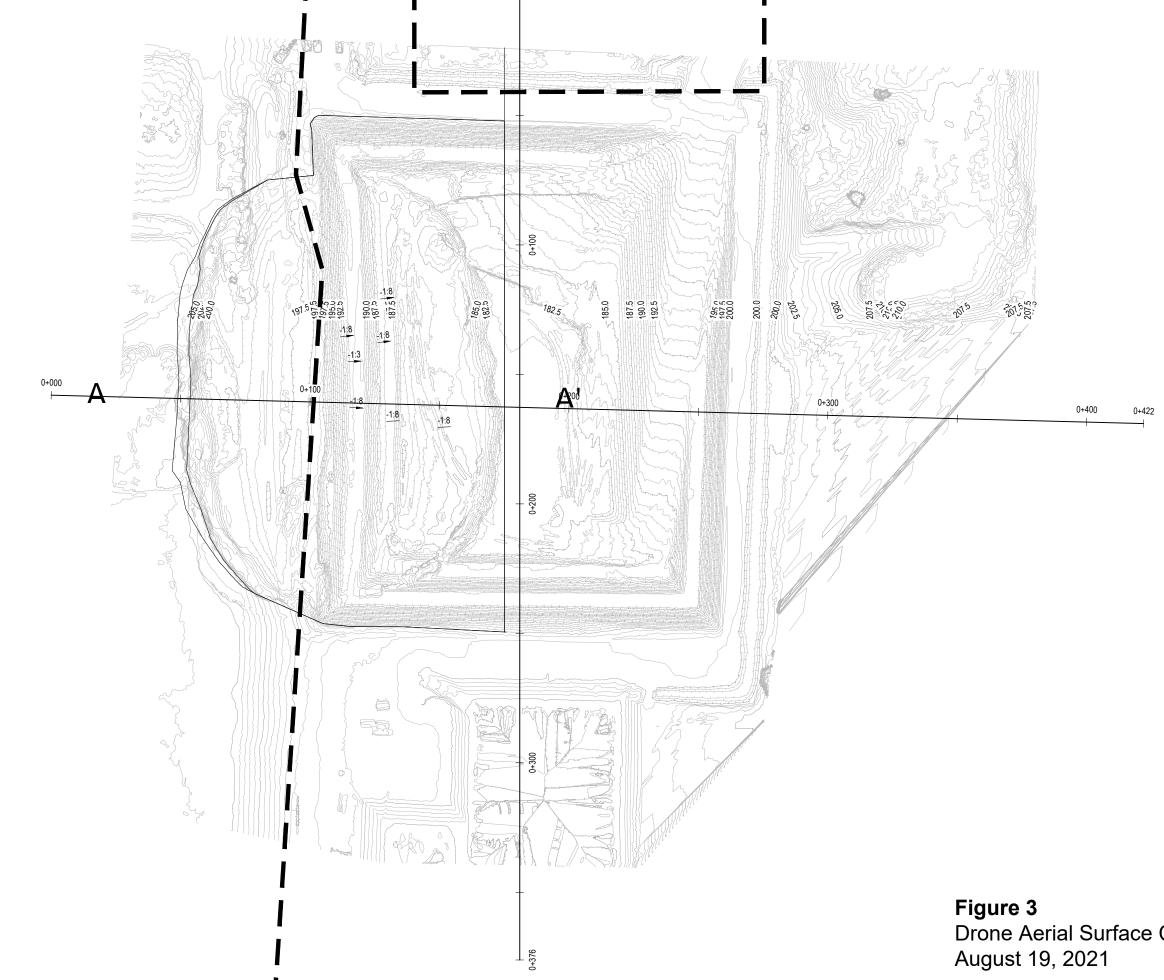
This document and the ideas and designs incorporated herein, as an instrument of professional service, is the property of GHD and shall not be reused in whole or in part for any other project without GHD's written authorization. © 2015 GHD

Clean HARBORS CANADA, INC. LAMBTON COUNTY, ONTARIO

2021 CAPITAL WORKS CELL DESIGN

No.	Issue	Drawn	Approved	Date
Draw	m K. DHALIWAL	Designer		
Drafti Chec		Design Check	J. YARDL	EY
Proje Mana		Date	-	
	document shall not be used for uction unless signed and sealed for uction.	Scale	1:750	
Origi	nal Size	Bar	is 20mm or	
	ANSI D	0	size draw	ing 20mm

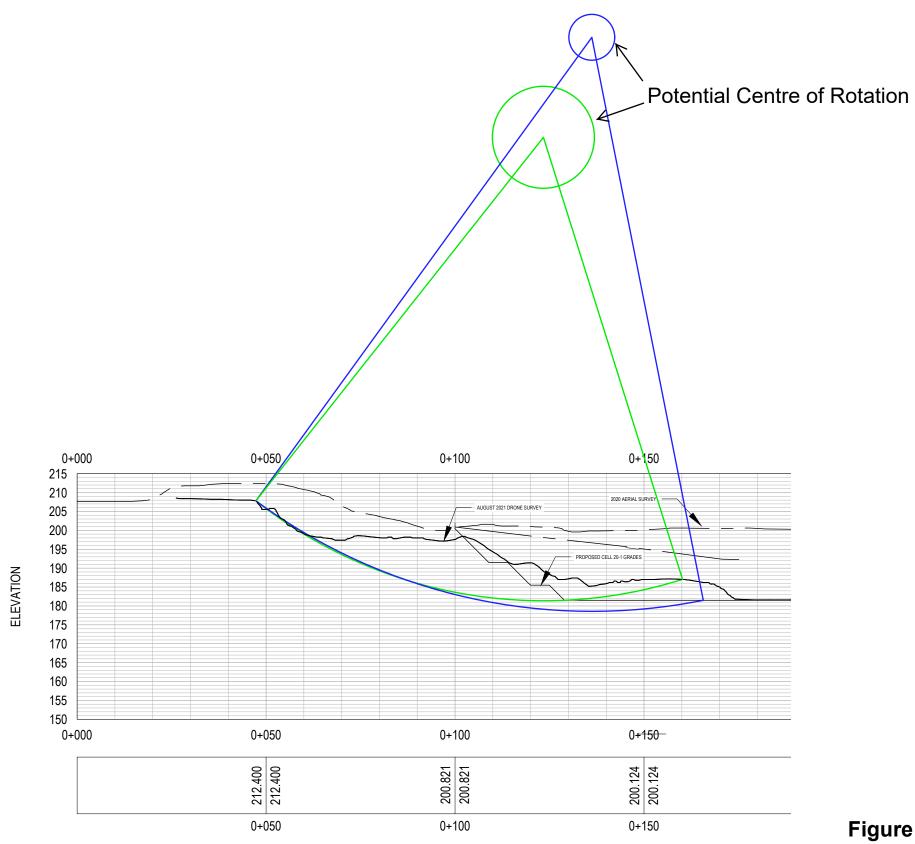
Project No. 44985-50

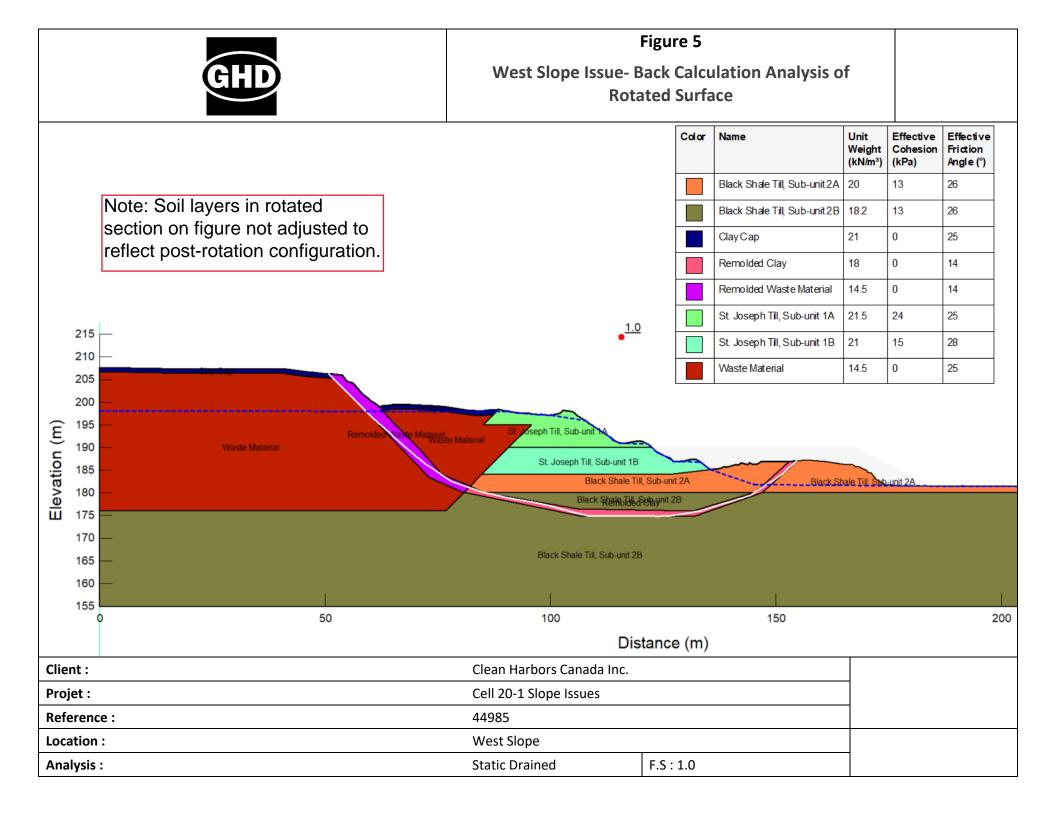

BOREHOLE LOCATION PLAN-CELL 20-1

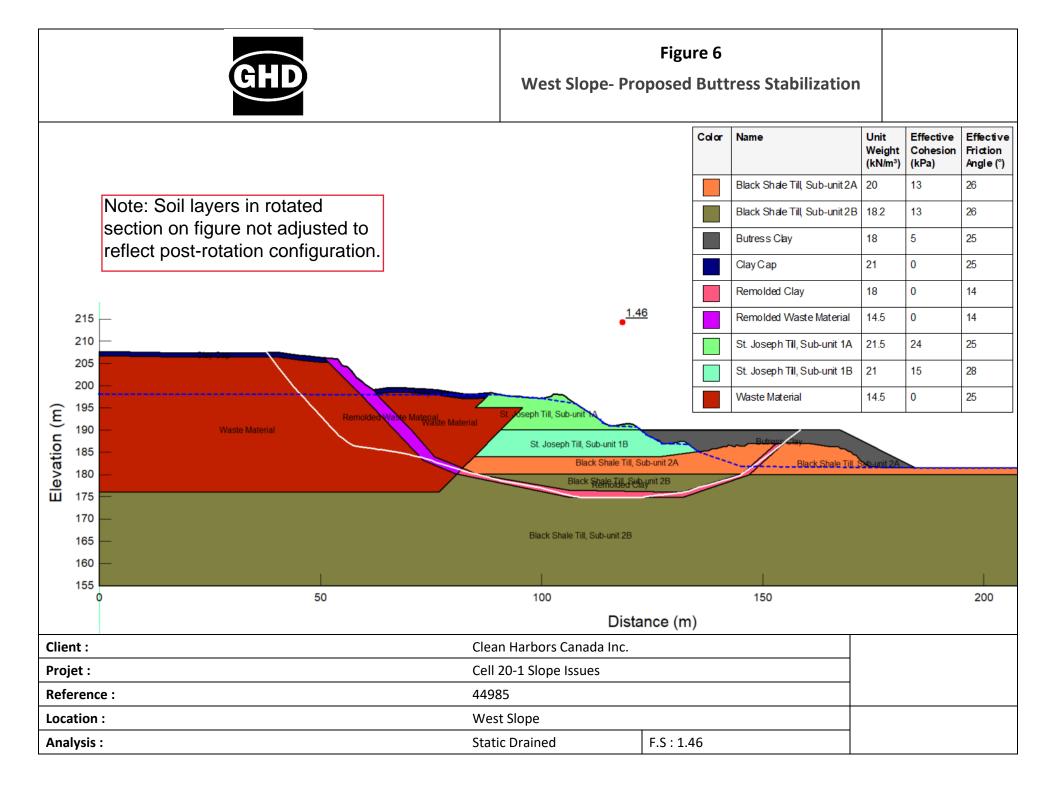
Sheet No.

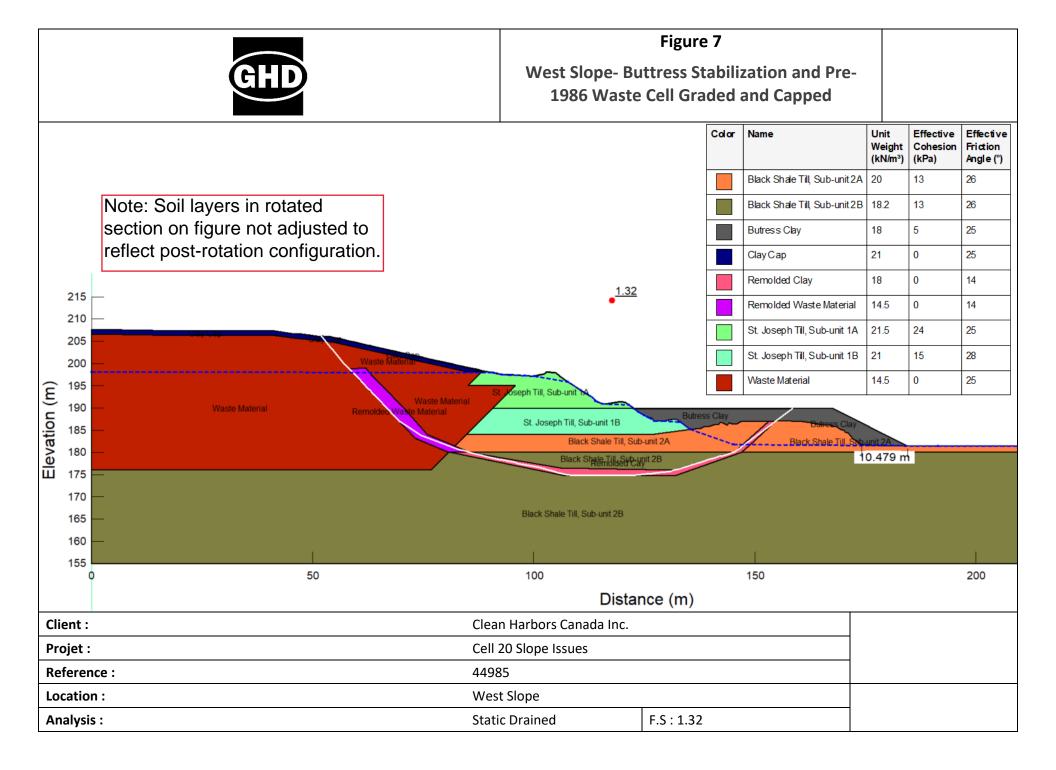
Title

FIGURE 2




000+0


Figure 3 Drone Aerial Surface Contours



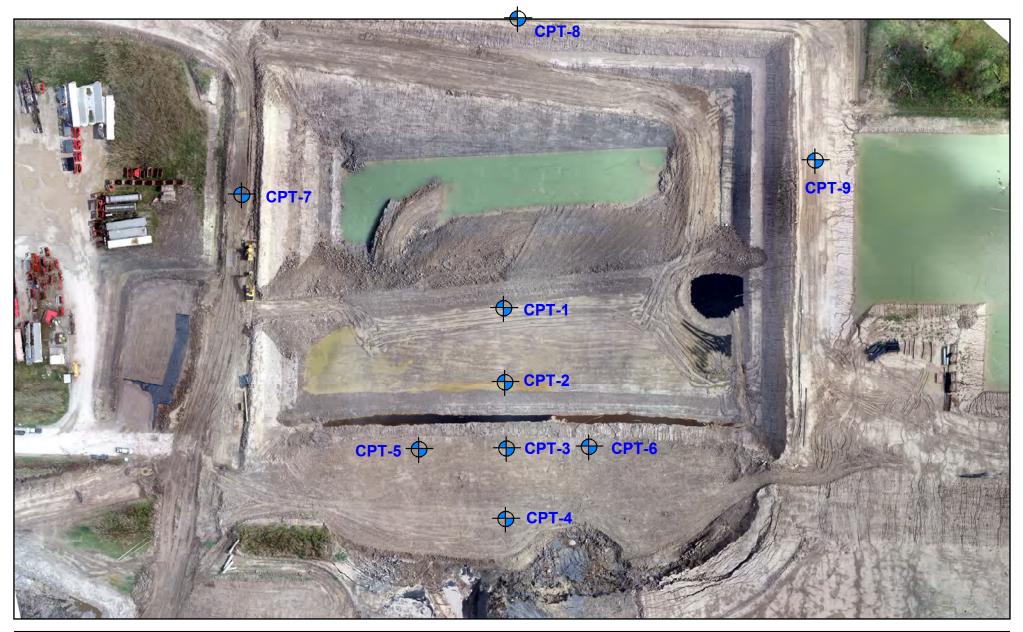
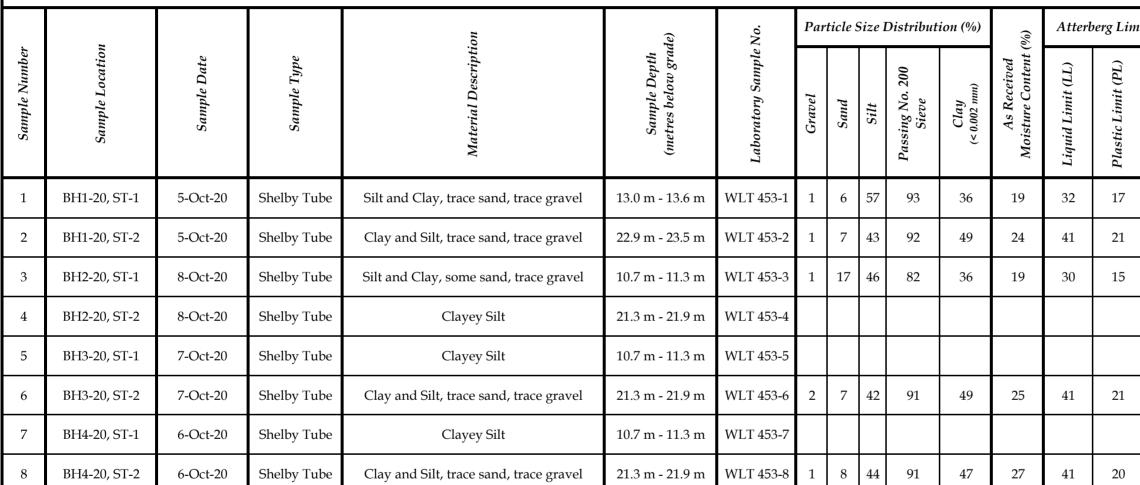


Figure 4 Preliminary Slope Rotation Arcs


Q:\GIS\PROJECTS\44000s\44985\Layouts\SlopeCollapse\044985_SitePlan_GIS003.mxd

Data Source: Drone imagery captured on-site by GHD on August 4th, 2021. Basemap: ESRI

Date Oct 13, 2021

TABLE 3.1

SUMMARY OF GEOTECHNICAL LABORATORY TEST RESULTS CELL 20-1 GEOTECHNICAL INVESTIGATION CLEAN HARBORS LAMBTON FACILITY, CORUNNA, ON

Notes:

(1) NP denotes Non Plastic

ni	its (%)	Unconfine d Strength	Bulk Unit Weight	CU Comp	ression Test
	Plasticity Index (PI)	Shear Strength (kPa)	(kN/m ³)	Effective Strength (kPa)	Effective Angle of Internal Friction (degree)
	15	143.9	20.1		
	20	32.6	20.0	22	25
	15	63.5	21.0	27	26
		64.3	18.1		
		105.0	21.0		
	20	42.9	19.9		
		104.6	21.1		
	21	26.2	20.0	24	21

Appendices

Appendix A

Photographic Log

Photo 1- West Side wall of Cell 20-1, after slope movement, August 18, 2021.

Photo 2- West side wall of Cell 20-1, looking south, August 18, 2021.

Photo 3- Top of Slide Area, looking north, August 18, 2021.

Photo 4- Top of Slide Area, looking north, September 30, 2021.

Photo 5- Completed buttress, looking southeast, September 30, 2021.

Photo 6- Completed buttress, looking north, September 30, 2021.

Photo 7- South sidewall, looking west, September 30, 2021.

Appendix B

2020 Borehole Logs

REFEREN	ICE No.	:	044985-50-04								ENCLOSURE	No.: _		A-1		_
	G	HD		BOREHOLE No	.: .		BH1	-20		B	OREHOL	E R	EF	' OF	۲s	
	9			ELEVATION: _		201	. <u>56 r</u>	n			Page: <u>1</u>	_ of	3	_		
CLIENT:		Clea	an Harbors - Lambto	n Facility						LEC	GEND					
PROJECT	:	Geo	otechnical Investigation	on - Cell 20-1						\boxtimes	SS - SPLIT	SPOC)N			
LOCATIO	N:	Clea	an Harbors Lambton	Facility, 4090 Telfer Ro	I. C	orunna,	ON			\boxtimes	ST - SHEL					
DESCRIB	ED BY:	Ahn	ned Mneina	CHECKED BY:		Abdul I	lafee	z Kha	<u>n</u>							
DATE (ST	ART):	5 O	ctober 2020	DATE (FINISH)	: _	5 Octol	per 20)20		Ţ	- WATE	R LEV	′EL			
Depth	Elevation (m) BGS	Stratigraphy		IPTION OF D BEDROCK	State	Type and Number	Recovery	Moisture Content	Blows per 6 in. / 15 cm or RQD	Penetration Index	Shear test (Cu) Sensitivity (S) Water con Atterberg I W _p W ₁	tent (%) imits (%)))	∆ Field] Lab		
Feet Metres	201.56		GROUN	D SURFACE			%	%		N	10 20 30	-)
			FILL: CLAYEY SIL	T - brown, trace sand, ion of topsoil, roots,	\mathbb{N}	SS-1	75	31	3-3-3-3			\square	\mp	\square		
			moist-wet to moist		Δ	33-1	10	51	J-J-J-J	6		\ddagger	\pm			
3 – P.9 4 – 1:0	200.66		NATIVE: CLAYEY	SILT - grey/brown sand, trace gravel,	$\overline{\mathbf{A}}$	SS-2	96	17	3-5-7-9	12	•0		<u> </u>			22
	200.16		_ moist									+	_			_
$\begin{bmatrix} 6 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$			becoming brown		X	SS-3	83	16	4-6-8-10	14	•		-			19
												++	_			_
					X	SS-4	96	15	4-7-8-11	15	•					19
	198.66		becoming greyish	brown, very stiff	\square							+				
					X	SS-5	92	15	7-8-12-15	20		+	_		\square	22
	197.86		becoming stiff		॑							+				
					X	SS-6	100	18	3-5-4-9	9	• •	++	—		\square	-12
	197.06		becoming grey, so	 me sand									_			
					X	SS-7	100	16	3-4-5-7	9	• 0	++	_	Δ	\square	
17 - 5.2	196.36			with 100 mm diameter	\square							+	+			
			casing some gravel		X	SS-8	33	15	3-5-6-6	11	•0					
20 - 6.0	195.56		becoming grey		H											
					X	SS-9	75	18	2-4-6-7	10	• •		_			
22																
23 7.0	194.26											++	—			
25 -			becoming sandy to	some sand												
26 - 8.0					X	SS-10	100	14	3-4-5-6	9	•0	++	4			
													_			
28	192.76			onal gravel, moist-wet	4							\ddagger	+	\mp	\square	
			nace sanu, occasi	onal gravel, moist-wet									+	+	\square	
31					X	SS-11	100	19	3-4-6-7	10			\pm			
32		11											\pm			
													_			
	191.06 190.86		some gravel									++	_		\square	
		111	Attempted Shelby	tube sampling at 10.7	\otimes	GS-1		19								-

L LOG WITH GRAPH 044985-50-04 - BOREHOLE LOGS (FINAL).GPJ GHD Geotechnical

REFERENCE	No.:	044985-50-04								ENC	LOSU	REP	NO.:		A	<u> </u>	
GHD			BOREHOLE No.:BH1-20							OR	REH	OL	E I	RE	PO	RT	•
	GILD		ELEVATION:		201	<u>56 n</u>	n				Page:	_2	_ (of	3		
CLIENT:	Clea	an Harbors - Lambto	n Facility						LEC	GEN	D						
PROJECT:	Geo	technical Investigation	on - Cell 20-1		S						_ - SF	LIT	SPO	ON			
LOCATION:	Clea	an Harbors Lambton	Facility, 4090 Telfer Rd	. C	orunna,	ON				ST	- S⊦ - GF		SAN				
DESCRIBED E	BY: <u>Ahm</u>	ned Mneina	CHECKED BY:		Abdul H	lafee	z Kha	<u>n</u>			- RC	оск	COF	RE			
DATE (START	T): <u>5 Oc</u>	ctober 2020	DATE (FINISH):		5 Octob	per 20	20		Ţ		- W/	ATE	R LE	VEL			
Depth Elevation	(m) BGS Stratigraphy		IPTION OF D BEDROCK	State	Type and Number	Recovery	Moisture Content	Blows per 6 in. / 15 cm or RQD	Penetration Index	She Ser ○ ₩ _p w	ear test nsitivity Water Atterbe "N" Va	(S) conte erg lir	ent (% mits ('	6) %)	△ Fi □ La n30	ab	
Feet Metres 201	.56					%	%		Ν	1(0 20 3	30 4	40 5	0 60	70	80	90
37 11.4 190		spoon sample at 1	covery. Grabbed split 0.7 m bgs without SPT													_	+
38 —	111	count Attempted Shelby	tube sampling at 11.4														+
39 - 11.9 189 40 - 12:0	9.66	m bgs, with zero re trace gravel	covery													_	+
		Ū		M	SS-12	100	20	3-4-7-8	11		• 0A						
42 - 43 -13.0 188	56			\square													
43 -		Shelby tube sampl Grainsize Analysis	5:		ST-1	100	20				∖ ⊫	-1				_	
44 <u>+</u> 45 <u>-</u> 13.6 187	.96	Gr =1%, Sa =6%, 0 becoming very stiff		R							+						
46		Second group can		M	SS-13	100	21	5-8-11-15	19		-					—	1
47				μ												+	+
48																_	
49 <u>-</u> 15.0																_	
51 -				M	SS-14	100	23	5-8-12-15	20		•0					<u> </u>	12
52				\square												_	
54 <u>-</u> 16.5 185 55 -	5.06	occasional gravel														_	
₅₆ 17.0				M	SS-15	58	23	4-8-10-14	18		•0						1:
				\square											_	—	
	3.76	becoming stiff															
59 <u>1</u> 18.0		0															_
61				X	SS-16	100	25	3-7-8-10	15		• •			-	-		
62				\square												—	
64 <u>+</u> 19.5 182		becoming firm														+	
66 - 20.0				M	SS-17	100	26	1-2-4-5	6		AO					<u> </u>	
67				Д												_	
68 <u></u> 69 <u></u> 21.0																\pm	+
69 <u>-</u> 21.0											-				-	+	+
71										\square						—	\square
																	+

REFERENCE No.: 044985-50-	04							ENCL	OSU	RE N	<u>o.:</u>		A-1		
CUD	BOREHOLE No	BOREHOLE No.:BH1-20						BOREHOLE REPORT							
GHD	ELEVATION:		201	<u>.56 r</u>	n		_	-	age:	-			-		
CLIENT: Clean Harbors - La	nbton Facility						LEC	GEND	<u>)</u>						
PROJECT: Geotechnical Inves	igation - Cell 20-1						\boxtimes	SS	- SP	LIT §	SPOC	N			
LOCATION: Clean Harbors Lam	bton Facility, 4090 Telfer Ro	I. C	orunna,	ON				ST GS	- SH - GF		Y TU SAMF				
DESCRIBED BY: Ahmed Mneina	CHECKED BY:		Abdul H	lafee	z Kha	<u>n</u>			- RC	OCK (CORE	Ξ			
DATE (START): 5 October 2020	DATE (START): <u>5 October 2020</u> DATE (FINISH): <u>5 October 2020</u>									11EF	RLEV	ΈL			
						I									
4 line 20 line		υ	and	ery	art e	Blows per 6 in. / 15 cm or RQD	ation ×	-	ar test (sitivity (S)			Field Lab	1	
	SCRIPTION OF AND BEDROCK	State	Type and Number	Recovery	Aoisti Conte	15 cm	Index		Water Atterbe	rg lim	nt (%) 1its (%)			
			μz			or RQD	1	•	"N" Va	lue (b	lows /	12 in		<i>'</i>	
Feet Metres 201.56		-		%	%		N	10	20 3	30 40	0 50	60	70 8	.0 9	,0
										\square	_		\blacksquare	_	
										\square					
76 – I I Grainsize An	ample at 22.87 m bgs a lysis:		ST-2	96	24				Þ	H	•				_
	7%, Cl & Si =92%														
78 <u>23.8</u> 177.76 becoming mo	st-wet	1													
80 -															
81 -		X	SS-18	100	27	3-3-4-6	7		0						
	EHOLE AT 25.0 m bgs														
83 + Borehole drill	ed using 70 mm inside w stem augers up to 4.5 m														
85 - bgs. Mud rota	ry drilling using 100 mm ng below 4.5 m bgs.														
86 – Borehole dry	o 4.5 m bgs prior to ud rotary drilling.														
87															
	nite grout to drilled depth, ipe. Surface sealed with														
90 – hydrated beni															
≝ 91 –	to meters below ground														
ğ 92 ————28.0 9 — — — — — — — — — — — — — — Gr =gravel; S	a =sand; CI & Si =clay & silt														
[₹] 94 – <u></u>															
95									_	\square			+	-	
2 96										\square			\square		
										\square			\square	<u> </u>	_
									+	\square	\mp	-		<u> </u>	
								$\left - \right $	+	\square	<u> </u>			—	
5 101 – 102 – 31.0								\vdash	+	\square	+	-			
									1		<u> </u>			<u> </u>	
									_						
									+		\rightarrow				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											=				
										\vdash			+		

	CE No.:	044985-50-04						i		ENCLOS	UREI	NO.:		A-2		=
	C	HD	BOREHOLE No	.: .		BH2	-20		B	ORE	IOL	EF	REF	'OR	۲	
	G		ELEVATION: _		201	. <u>59 r</u>	n		_		e: <u>1</u>				·	
CLIENT:		Clean Harbors - Lambto	on Facility					I	LEC	GEND						
PROJECT	:	Geotechnical Investigat	ion - Cell 20-1						\boxtimes		SPLIT	SPO	NC			
LOCATION	۱:	Clean Harbors Lambton	r Facility, 4090 Telfer Rd	. Co	orunna,	ON			\boxtimes		SHELE GRAB					
DESCRIBE	ED BY:	Ahmed Mneina	CHECKED BY:		Abdul I	lafee	z Kha	<u>n</u>		RC - F	ROCK	COR	E			
DATE (ST	ART):	8 October 2020	DATE (FINISH)	:	8 Octol	per 20			Ţ		NATE	R LE\	/EL			
Depth	Elevation (m) BGS		RIPTION OF D BEDROCK	State	Type and Number	Recovery	Moisture Content	Blows per 6 in. / 15 cm or RQD	Penetration Index	Shear te Sensitivit O Wat W _p W ₁ Atte	ty (S) er conte rberg lii	ent (% mits (%) 6)	∆ Field] Lab 30 cm		
Feet Metres	201.59		ID SURFACE			%	%		Ν	10 20	30 4	40 50	60	70 80	0 90	
		FILL: CLAYEY SIL trace gravel, mois	_T - brown, some sand, t	\mathbb{X}	SS-1	12	11	3-6-6-5	12	-						
3 <u>-</u> 1.0 4 <u>-</u>					SS-2	63	15	3-3-4-5	7	• •						1:
$5 - \frac{1}{2}$ $6 - \frac{1}{2}$ $7 - \frac{1}{2}$ 2.0					SS-3	54	18	4-4-6-11	10	• •						1
8 — 2.2 8 — 1 9 — 1	199.39	<pre>/[]/] NATIVE: CLAYEY</pre>	´SILT - grey/brown e sand, trace gravel,		SS-4	79	17	3-4-7-11	11							14
10 <u>-</u> <u>3</u> .0 11 <u>-</u>	198.69	becoming rust-sta	ined, to greyish brown,	X	SS-5	100	16	6-10-12-12	22							2
12 <u>3.7</u> 13 <u>4.0</u> 14 <u>5</u>	197.89	becoming stiff		$\overline{\mathbb{X}}$	SS-6	100	15	4-6-8-12	14							1
	197.09	trace sand		\mathbb{X}	SS-7	95	16	3-5-7-7	12	•0						
17 <u>-</u> 5.0 17 <u>-</u> 5.2 18 <u>-</u>	196.39	mud rotary drilling casing	with 100 mm diameter	$\langle \rangle$	SS-8	100	16	3-4-5-7	9	• 0						
19 <u>-</u> 20 <u>-</u> 6:0 21 <u>-</u>	195.49	becoming firm		\mathbb{N}	SS-9	100	19	2-3-5-5	8							
22 <u>-</u> 23 <u>-</u> 7.0				Δ												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				∇												_
26 <u>-</u> 8.0 27 <u>-</u>				Å	SS-10	75	20	3-3-4-5	7	• •					\downarrow	
28 — 29 — 8.8 30 — 9.0	192.79	becoming grey														
31 <u>-</u> 32 -				X	SS-11	83	19	W-3-3-4	6	• 0	Δ					
33 <u>-</u> 10.0 34 <u>-</u>															\downarrow	
35 - 10.7	190.92	Shelby tube samp	le at 10.67 m bgs													

REFERENCE No.: 044985-50-04								ENC	LOSL	JRE N	10.:		A-2		
CHID	BOREHOLE No	B	OR	EH	OL	EF	REP	OF	۲۶						
GHD	ELEVATION: _		201	<u>59 n</u>	n							f <u>3</u>			
CLIENT: Clean Harbors - Lambt	on Facility						LEC	GENI	D						
PROJECT: <u>Geotechnical Investiga</u>	tion - Cell 20-1						\boxtimes	SS	- S	PLIT	SPOO	ON			
LOCATION: Clean Harbors Lambton	n Facility, 4090 Telfer Ro	d. Co	orunna,	ON					- S - G						
DESCRIBED BY: <u>Ahmed Mneina</u>	CHECKED BY:	n			- G - R										
DATE (START): <u>8 October 2020</u>	_ DATE (FINISH)	:	8 Octol	ber 20	020		Ţ		- V	/ATEI	R LE\	/EL			
	RIPTION OF ND BEDROCK	State	Type and Number	Recovery	Moisture Content	Blows per 6 in. / 15 cm or RQD	Penetration Index	She Sen O W _p W ₁	ear test sitivity Wate Attert	r (S) r conte perg lir	ent (% nits (%)	Field Lab		
Feet Metres 201.59			<u>ет 1</u>	%	% 15		N	10) 20	30 4	0 50	60	70 8	09	0
37 Grainsize Analys Gr =1%, Sa =17%	<u>is:</u> 6, Cl & Si =82%	A	ST-1	92	13										
38 -												_	+		
															_
		Μ	SS-12	96	23	1-3-5-5	8								
		Д	00-12	30	25	1-5-5-5	0								
43 - 13.0															
		\square										_	+		
46 - 14.0		Å	SS-13	100	21	3-3-4-6	7				3				
49 - 15.0 186.69 becoming stiff, oc	casional gravel	-													
50	5														
51		М	SS-14	100	22	4-5-8-10	13		þþ				+		
52 <u></u> 53 <u></u> 53 <u></u> 16.0															
54															
55		\square										_			
56 - 17.0		X	SS-15	83	25	4-4-5-6	9	•	C	>					
		Н													
58															
		X	SS-16	100	24	3-4-6-7	10	-	0		4				
		Н													
		\square	SS-17		26	3-4-5-6	9				+		+		<u> </u>
67		Д					-						\square		—
68													\square		<u> </u>
69 -21.0													\square		
	ole at 21.34 m bgs		<u>ст о</u>	100											
			ST-2	100											

LOG WITH GRAPH 044985-50-04 - BOREHOLE LOGS (FINAL).GPJ GHD Geotechnica

REFEREN	VCE No.	:	044985-50-04								ENC	LOSL	IRE N	lo.:		A-2		
				BOREHOLE No	.: .		BH2	-20		B	OR	EH	OL	ΕF	REF	POF	٦٢	
	9	HD		ELEVATION:		201.	<u>59 r</u>	n		-		Page:					•••	
CLIENT:		Clea	n Harbors - Lambto	n Facility						LEC	GENI	<u>.</u>						
PROJECT	Г:	Geo	technical Investigati	on - Cell 20-1						\boxtimes	SS	- S		SPO	ON			
LOCATIO	N:	Clea	n Harbors Lambton	Facility, 4090 Telfer Rd	. C	orunna,	ON				ST		HELB					
DESCRIB	ED BY:	Ahm	ned Mneina	CHECKED BY:	_	Abdul H	lafee	z Kha	n	\boxtimes	GS RC		RAB OCK					
DATE (ST	ART):	8 Oo	ctober 2020	DATE (FINISH)		8 Octob	ber 20)20		Ţ		- W	ATE	R LE	VEL			
Depth	Elevation (m) BGS	Stratigraphy		IPTION OF D BEDROCK	State	Type and Number	Recovery	Moisture Content	Blows per 6 in. / 15 cm or RQD	Penetration Index	Sen ⊖ ₩ _p w _i	ar test sitivity Wate Attert "N" V	(S) r conte erg lir	ent (% nits (%) %)	∆ Fielo ⊐ Lab 30 cr		
Feet Metres	201.59	r I/I					%	%		N	10	20	30 4	0 50) 60	70 8	30 9	90
$ \begin{array}{c} 80 \\ 81 \\ 81 \\ 82 \\ 82 \\ 83 \\ 84 \\ 85 \\ 84 \\ 85 \\ 86 \\ 87 \\ 88 \\ 88 \\ -27 \\ 0 \end{array} $) 177.39) 176.59		bgs. Mud rotary dr diameter casing be Borehole dry to 4.5 switching to mud r Borehole backfilled cement-bentonite using tremie pipe. hydrated bentonite W - refers to samp self weight m bgs - refers to r surface	sing 70 mm inside em augers up to 4.5 m illing using 100 mm elow 4.5 m bgs. 5 m bgs prior to otary drilling. d with grout to drilled depth, Surface sealed with e pellets. oler penetration under neters below ground		SS-18 SS-19		27	2-4-6-8 4-3-5-6	8								
$\begin{array}{c} 89 \\ 90 \\ 91 \\ 92 \\ 93 \\ 93 \\ 93 \\ 93 \\ 93 \\ 93 \\ 93$			Gi -giavei, Sa -se	and; CI & Si =clay & silt														

BOREHOLE No.: BH3- ELEVATION: 201.02 m		REHOLE REPORT
ELEVATION:201.02 m		
		Page: <u>1</u> of <u>3</u>
CLIENT: Clean Harbors - Lambton Facility		ND
PROJECT: Geotechnical Investigation - Cell 20-1	🛛 🖂 ss	- SPLIT SPOON
LOCATION: Clean Harbors Lambton Facility, 4090 Telfer Rd. Corunna, ON	ST ────────────────────────────────────	
DESCRIBED BY: Ahmed Mneina CHECKED BY: Abdul Hafeez		
DATE (START): <u>7 October 2020</u> DATE (FINISH): <u>7 October 202</u>)	- WATER LEVEL
Depth Depth Stratigraphy Stratigraphy Stratigraphy Stratigraphy Mumber Note and Number Note and Note and Number Note and N	Blows per 6 in. / 5 cm 0 r RQD 0 r RQD	near test (Cu) △ Field ensitivity (S) □ Lab Water content (%) A Atterberg limits (%) "N" Value (blows / 12 in30 cm)
Feet Metres 201.02 GROUND SURFACE %	% N 1	10 20 30 40 50 60 70 80 90
	16 2-1-2-7 3	0 1
2 - 0.7 3 - 1.0 200.32 200.32 MATIVE: CLAYEY SILT - grey/brown moist NATIVE: SS-2 79	16 6-8-9-12 17	
4 – 1.4 199.62 becoming very stiff		
6 = 20 SS-3 88	15 5-7-10-14 17	
		2
	16 5-8-12-12 20	
10 - 3.0 197.92 becoming grey, stiff, trace sand SS-5 100	15 3-5-6-8 11	•0 1
13 - 4.0 SS-6 100	17 3-4-6-9 10	• O
	14 3-4-6-8 10	
17 = 5.0 17 = 5.2 195.82 195.82 mud rotary drilling with 100 mm diameter		
18 – Casing SS-8 100	17 6-9-9-11 18	
$\begin{array}{c} 19 \\ 20 \end{array} + 6.0 \\ 195.02 \end{array} \begin{array}{c} 195.02 \\ becoming stiff \end{array}$		
	18 3-4-7-8 11	
24 7.3 193.72 reddish brown moist sand seems		
	10 2-4-6-8 10	• • • • • • • • • • • • • • • • • • • •
29 - 8.8 192.22 1 becoming firm, occasional gravel		
30 – 1 31 – SS-11 100	20 3-3-5-8 8	
35 - 10.7 190.35 Shelby tube sample at 10.67 m bgs		

OG WITH GRAPH 044985-50-04 - BOREHOLE LOGS (FINAL).GPJ GHD Geotechnic

EDORCHOLE No: BH3-20 LEVATION: DORCHOLE Response CLEINT: Clean Harbors - Lambton Fuelly: 201.02 m Page: 2, or .3, CLEINT: Clean Harbors - Lambton Fuelly: March 120 m S S30LIT SPOON IDCATION: Clean Harbors - Lambton Fuelly: 4000 Taffer Rd. Counna, ON S S30LIT SPOON DESCRIPED BY: Amed Media CHCXED BY: Amed Hafaez Roan S S00C KORE DATE (START): Z-October 2020 DATE (FINSH): Z October 2020 S S00L T SPOON State Mark (S): S S00C KORE S S00C KORE S S00C KORE State Mark (S):	REFERENC	CE No.:	044985-50-04								ENC	LO	SUF	REN	o.: _		A-3		_
ELEVATION: 201.02 m Page: 2 of 3. CUENT: Cean Harbors - Lambton Facility Lecentrol Investigation - Cell 20-1 Second multi-level (above - Cell 20-1) Second multi-level (above - Cell 20-1) LOCATION: Clean Harbors - Lambton Facility. CHECKED BY: About Halfors - Cell 20-1 Second multi-level (above - Cell 20-1) Second multi-level (above - Cell 20-1) DESCRIBED BY: Abmed Mania CHECKED BY: About Halfors - Cell 20-1 Second multi-level (above - Cell 20-1) Second multi-level (above - Cell 20-1) DATE (START): COckoord Second multi-level (above - Cell 20-1) Gene Matrice 20102 DESCRIPTION OF Second multi-level (above - Cell 20-1) Feet Matrice 20102 DESCRIPTION OF Second multi-level (above - Cell 20-1) 118 ISS22 DESCRIPTION OF Second multi-level (above - Cell 20-1) Second multi-level (above - Cell 20-1)		CI		BOREHOLE No	.: .		BH3	-20		B	OR	RE	НС	DLI	ER	EP	OF	۲۶	
PROJECT: Geodechnical Investigation - Cell 20-1 SS SPLIT SPOON LOCATION: Cener Harbors Lambton Facility, 400 Teller Rd: Corunna, ON SS - SPLIT SPOON DISCRIBED BY: Admini Minisia CHECKED BY: Abdul Hafeaz Khan Water Rd: Corunna, ON DATE (START): / October 2020 DATE (FINISH): / October 2020 Water Rd: Corunna, ON Image: State Rd: State Rd: State Rd: Corunna, ON State Rd: Corunna, ON Water Rd: Corunna, ON Image: State Rd: State Rd: State Rd: Corunna, ON Water Rd: Corunna, ON Water Rd: Corunna, ON Image: State Rd: State Rd: State Rd: Corunna, ON State Rd: Corunna, ON Water Rd: Corunna, ON Image: State Rd: State Rd: State Rd: Corunna, ON State Rd: Corunna, ON Water Rd: Corunna, ON Image: State Rd: State Rd: State Rd: Corunna, ON State Rd: Corunna, ON Mathematic Rd: Corunna, ON Image: State Rd: State Rd: State Rd: Corunna, ON State Rd: Corunna, ON Mathematic Rd: Corunna, ON Image: State Rd: State Rd: State Rd: Corunna, ON Mathematic Rd: Corunna, ON Mathematic Rd: Corunna, ON Image: State Rd: <		Gh		ELEVATION: _		201	.02 r	n										•••	
LOCATION: Clean Harbors Lamblon Facility. 4090 Telfor Rd. Corunna. ON DESCRIBED BY: Ahmed Mineina CHECKED BY: Abdul Haleaz Khan DATE (START): Totober 2020 DATE (FINISH): Totober 2020 Totober 2020 DATE (FINISH): Totober 2020 DESCRIPTION OF SOIL AND BEDROCK BY State Sample State	CLIENT: _	C	lean Harbors - Lambto	n Facility						LEC	GEN	D							
EUCONING. End Halling Control (Control (Contro) (Control (Control (Contro) (Control (Control (Cont	PROJECT:	0	Seotechnical Investigati	on - Cell 20-1						\boxtimes	SS	-	SPI	LIT S	SPOC	N			
DESCRIPTION OF B B	LOCATION	I:C	lean Harbors Lambton	Facility, 4090 Telfer Rd	. C	orunna,	ON												
DATE (START): 7 October 2020 DATE (FINISH): 7 October 2020 * WATER LEVEL	DESCRIBE	DBY: A	hmed Mneina	CHECKED BY:	_	Abdul I	Hafee	z Kha	in										
Preet Metrics O102 O	DATE (STA	ART): _7	October 2020	DATE (FINISH)		7 Octol	per 20	020											
Preet Metrics O102 O																			
Preet Metrics O102 O	Depth	Elevation (m) BGS	DESCR SOIL AN		State	Type and Number	Recovery	Moisture Content	Blows per 6 in. / 15 cm or RQD	Penetration Index	She Ser ○ ₩ _p w	ear t nsitiv Wa Att	vity (S ater c erbe	S) conte rg lim	nits (%)] Lab		
37	Feet Metres 2	201.02				OT 1		%		N	1() 2	03	0 40) 50	60	70 8	,0 9'	0
39 -11.8 188 22	37 —	Į,				SI-1	100								_		+		
30 -12.0 Decoming sam 41		100 00																	
41 -	³³ 12.0	189.22	becoming stiff		1														
$\begin{array}{c} 42 \\ 43 \\ 44 \\ 44 \\ 44 \\ 46 \\ 44 \\ 46 \\ 47 \\ 48 \\ 49 \\ 49 \\ 15.0 \\ 50 \\ 51 \\ 51 \\ 51 \\ 51 \\ 53 \\ 56 \\ -17.0 \\ 57 \\ 56 \\ -18.0 \\ 60 \\ -18.0 \\ 60 \\ -16.0 \\ 51 \\ -16.0 \\ 51 \\ -16.0 \\ 53 \\ -16.0 \\ 53 \\ -16.0 \\ 53 \\ -16.0 \\ 54 \\ -55 \\ -17.0 \\ 57 \\ -16 \\ -17.0 \\ 57 \\ -16 \\ -17.0 \\ -17$		1			\mathbb{N}	SS 12	75	21	25912	12			0						
43 -13.0 44 - 45 - 46 -14.0 47 - 48 - 49 - 49 - 51 - 52 - 53 - 56 - 57 - 58 - 58 - 58 - 58 - 59 - 58 - 59 - 58 - 59 - 19.0 - 64 - 65 - 20.0 - 65 - 66 - 66 - 66 - 66 - 67 - 68 - 69 - 60 - 61 - 62 - 64 <td>42 —</td> <td></td> <td></td> <td></td> <td>\square</td> <td>55-12</td> <td>/3</td> <td></td> <td>3-5-6-12</td> <td>15</td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td>	42 —				\square	55-12	/3		3-5-6-12	15					_				
45 - 14.0 - 21 3.5.8-11 13 48 - 15.0 - 21 3.5.8-11 13 49 15.0 - - 21 3.5.8-11 13 50 - - - 21 3.5.8-11 13 51 - - - - - - - 52 - 16.0 -	43 - 13.0														_				
$\begin{array}{c} 46 & -14.0 \\ 47 & -48 \\ 49 & -15.0 \\ 50 & -51 \\ 51 & -52 \\ 52 & -16.0 \\ 53 & -16.0 \\ 54 & -55 \\ 56 & -17.0 \\ 57 & -58 \\ 56 & -17.0 \\ 57 & -58 \\ 59 & -18.0 \\ 60 & -61 \\ 62 & -19.0 \\ 63 & -19.0 \\ 63 & -19.5 \\ 64 & -19.5 \\ 66 & -20.0 \\ 66 & -20.0 \\ 67 & -68 \\ 69 & -21.0 \\ 70 & -21.3 \\ 179.68 \end{array}$	44	1															+		_
$\begin{array}{c} 47 \\ -48 \\ -49 \\ -15.0 \\ 50 \\ -17.0 \\ 53 \\ -16.0 \\ 53 \\ -16.0 \\ 54 \\ -55 \\ -17.0 \\ 56 \\ -17.0 \\ 56 \\ -17.0 \\ 57 \\ -88 \\ -88 \\ -18.0 \\ 60 \\ -18.0 \\ 60 \\ -61 \\ -19.0 \\ 61 \\ -62 \\ -19.0 \\ 61 \\ -61 \\ -62 \\ -19.0 \\ 63 \\ -19.0 \\ 64 \\ -19.5 \\ 181.52 \\ -19.0 \\ 66 \\ -20.0 \\ 66 \\ -20.0 \\ 66 \\ -21.0 \\ 70 \\ -21.3 \\ 179.68 \end{array}$					∇										_			\square	_
48 49 -15.0 50 -15.0 51 52 -16.0 53 -16.0 54 -55 55 -17.0 54 -55 56 -17.0 57 26 58 -17.0 57 26 58 -17.0 57 26 58 -17.0 58 -17.0 57 26 58 -17.0 59 18.0 60 -19.0 61 -19.0 62 -19.0 63 -20.0 64 19.5 65 -20.0 66 -20.0 67 -19.0 70 -21.3 179.68 Shelby tube sample at 21.34 m bgs 51-2 100 21 61 -10 - 62 -21.0 - - 70 -21.3 179.68 Shelby tube sample at		ĺ			Ň	SS-13		21	3-5-8-11	13		•	0						
49 -15.0 51 - 52 -16.0 53 - 54 - 55 - 56 - 57 - 58 - 59 - 58 - 59 - 58 - 59 - 58 - 59 - 60 - 61 - 62 - 19.0 - 63 - 64 - 19.5 181.52 66 - 67 - 66 - 70 - 21.3 179.68 Shelby tube sample at 21.34 m bgs Grainsize Analysis:															_				
50																			
52 16.0 53 16.0 54 55 56 17.0 57 56 56 17.0 57 56 58 59 59 18.0 60 60 61 19.0 63 19.5 64 19.5 19.5 181.52 becoming firm, trace sand, trace gravel SS-16 66 20.0 67 68 69 21.0 70 21.3 179.68 Shelby tube sample at 21.34 m bgs Grainsize Analysis: ST-2 100 21															+		+		
53 16.0 54 55 56 17.0 57 56 58 18.0 60 18.0 61 19.0 63 19.5 18.152 181.52 becoming firm, trace sand, trace gravel SS-16 65 20.0 66 20.0 67 68 69 21.0 70 21.3 71 179.68 Shelby tube sample at 21.34 m bgs Grainsize Analysis:	-	1			X	SS-14	88	22	3-5-8-11	13		•	0						
54 -	-16.0		1												_				
55 - 17.0 56 - 17.0 58 59 - 13 • 0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td></t<>															_				
$\begin{array}{c} 0.0 \\ 57 \\ -58 \\ -59 \\ -18.0 \\ 60 \\ -61 \\ -62 \\ -19.0 \\ 63 \\ -19.5 \\ 64 \\ -19.5 \\ 181.52 \\ 66 \\ -20.0 \\ 66 \\ -20.0 \\ 67 \\ -68 \\ 69 \\ -21.0 \\ 70 \\ -21.3 \\ 179.68 \end{array}$		1													_				
58 - 59 - 18.0 $60 - 58 - 19.0$ $61 - 62 - 19.0$ $63 - 19.5 - 181.52$ $becoming firm, trace sand, trace gravel$ $65 - 20.0$ $66 - 20.0$ $67 - 68 - 69 - 21.0$ $70 - 21.3 - 179.68$ $Shelby tube sample at 21.34 m bgs$ $Grainsize Analysis:$ $ST-2 - 100 - 21 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -$	56 <u>-</u> 17.0				X	SS-15	75	26	3-5-8-9	13		•	0			4			
$\begin{array}{c} 59 & -18.0 \\ 60 & -1 \\ 61 & -1 \\ 62 & -19.0 \\ 63 & -1 \\ 64 & -19.5 \\ 65 & -20.0 \\ 66 & -20.0 \\ 67 & -1 \\ 68 & -1 \\ 68 & -1 \\ 69 & -21.0 \\ 70 & -21.3 \\ 71 & -1 \end{array}$	57	Į,			\square							\vdash			_		+	$\left \right $	
$ \begin{array}{c} 60 \\ 61 \\ 62 \\ 63 \\ 64 \\ 64 \\ 19.5 \\ 65 \\ 66 \\ 65 \\ 66 \\ 66 \\ 67 \\ 68 \\ 69 \\ 21.0 \\ 70 \\ 21.3 \\ 179.68 \end{array} \begin{array}{c} 181.52 \\ 66 \\ 68 \\ 69 \\ 71 \\ 68 \\ 71 \\ 68 \\ 69 \\ 71 \\ 68 \\ 71 \\ 68 \\ 71 \\ 68 \\ 71 \\ 68 \\ 71 \\ 68 \\ 71 \\ 71 \\ 71 \\ 71 \\ 71 \\ 71 \\ 71 \\ 7$	i - I																		
$ \begin{array}{c} 61 \\ 62 \\ -19.0 \\ 63 \\ -64 \\ -19.5 \\ 65 \\ -66 \\ -20.0 \\ 66 \\ -20.0 \\ 66 \\ -21.0 \\ 70 \\ -21.3 \\ 71 \\ -1 \end{array} \\ \begin{array}{c} 181.52 \\ -20.0 \\ 66 \\ -20.0 \\ 67 \\ -1 \\ 68 \\ -68 \\ -68 \\ -69 \\ -21.0 \\ 70 \\ -21.3 \\ 179.68 \end{array} \\ \begin{array}{c} Shelby tube sample at 21.34 m bgs \\ Grainsize Analysis: \end{array} \\ \begin{array}{c} ST-2 \\ -20.0 \\ -20.0 \\ -20.0 \\ -21.0 \\ -2$	₹ −⊂														_				
$\begin{array}{c} 62 \\ -19.0 \\ 63 \\ -4 \\ -19.5 \\ 64 \\ -19.5 \\ 65 \\ -20.0 \\ 65 \\ -20.0 \\ 66 \\ -20.0 \\ 67 \\ -1 \\ 68 \\ -68 \\ -69 \\ -21.0 \\ 70 \\ -21.3 \\ 179.68 \end{array}$ $\begin{array}{c} 181.52 \\ becoming firm, trace sand, trace gravel \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	킹 -	1			M	SS-16	58	26	3-4-6-6	10		,	0						
63 - 64 - 19.5 181.52 → becoming firm, trace sand, trace gravel → SS-17 100 27 W-2-3-4 5 → A O					μ												-		
$\begin{array}{c} 65 \\ 66 \\ -20.0 \\ 67 \\ -68 \\ -69 \\ -21.0 \\ 70 \\ -21.3 \\ 179.68 \end{array}$ $\begin{array}{c} becoming inm, trace sand, trace graver \\ -80 \\ -10 \\ $															_		+	$\left \right $	
66 - 20.0 67 - 68 - 69 - 21.0 70 - 21.3 179.68 Shelby tube sample at 21.34 m bgs Grainsize Analysis: ST-2 100 21		181.52	becoming firm, tra	ce sand, trace gravel	1						\square								
67	∛I ––200	1			∇	00.47	100	07	M 0 0 4	_					_				
68	Ž –				\land	55-17	100	27	VV-2-3-4	5		<u> </u>	0						
69 - 21.0 70 - 21.3 71 - 21.3 Tr9.68 Shelby tube sample at 21.34 m bgs Grainsize Analysis: ST-2 100 21			1												\pm				
71 – Grainsize Analysis: ST-2 100 21 – – – – –	¥ —	1									\square				-+		+		
71	70 - 21.3	179.68	Shelby tube sampl	e at 21.34 m bgs							\square				—		\square	\square	
			Grainsize Analysis Gr =2%, Sa =7%,	<u>s:</u> Cl & Si =91%		ST-2	100	21			$\left \right \right $	(Þ₽		\square			F	

REFEREN	CE No.:		044985-50-04								ENC	LOSU	RE N	0.:		A	۹-3		
	G	HD		BOREHOLE No						B	OR	EH	OL	EF	RE	PC)R	Т	
				ELEVATION: _		201	02 r	n			I	Page:	_3	0	f _	3			
CLIENT:		Clea	n Harbors - Lambtor	n Facility						LEC	GEN	<u>D</u>							
PROJECT	:	Geo	technical Investigation	on - Cell 20-1						\boxtimes			PLIT						
LOCATION	N:	Clea	n Harbors Lambton	Facility, 4090 Telfer Ro	l. C	orunna,	ON				ST GS	- SH - GI	HELB						
DESCRIBE	ED BY:	Ahm	ned Mneina	CHECKED BY:		Abdul H	lafee	z Kha	<u>n</u>			- R(DCK	COR	Е				
DATE (ST	ART):	7 Oc	tober 2020	DATE (FINISH)	: _	7 Octol	per 20)20		Ţ		- W	ATEF	R LE	/EL				
Depth	Elevation (m) BGS	Stratigraphy	DESCR SOIL ANI	IPTION OF D BEDROCK	State	Type and Number	Recovery	Moisture Content	Blows per 6 in. / 15 cm or RQD	Penetration Index	She Sen O W _p W _I	ar test sitivity Water Atterb "N" Va	(S) conte erg lin	ent (% hits (%) 6)	△ F □ L: in30	ab.)	
Feet Metres	201.02						%	%		Ν	10	20	30 4	0 50	60) 70	80	90	
73 —											$ + \bar{ }$			-	-	-	$\overline{+}$	-	
74 22.5	178.52		becoming moist-we		-												7	-	
75					∇											#	4	—	
76 —					Ň	SS-18	46	28	1-3-5-7	8						#	\pm	\pm	
78 —																_	\pm	\pm	
7924.0													-			+	+	+	
80 –																	\neg	_	
81					X	SS-19	100	28	1-3-5-6	8	•	<u> </u>				—	\mp	_	
	176.02		END OF BOREHO	LE AT 25.0 m bgs	\uparrow											_	\pm	\pm	
83 — 84 —			Borehole drilled us														\pm	\pm	
85 -26.0			bgs. Mud rotary dri	em augers up to 4.5 m lling using 100 mm									-			+	+	+	
86			diameter casing be Borehole dry to 4.5	low 4.5 m bgs. m bgs prior to												_	—	\mp	
87			switching to mud ro	otary drilling.												_	\mp	\mp	
88			Borehole backfilled	l with grout to drilled depth,												_	\pm	\pm	
				Surface sealed with													\pm	\pm	
																	+	+	
92 <u>-</u> 28.0			self weight	ler penetration under												_	7	-	_
⁹ 93 –			surface	eters below ground												+	\mp	_	
			Gr =gravel; Sa =sa	nd; Cl & Si =clay & silt												_	\pm	\pm	
95																_	\pm	\pm	
																+	+	+	
																—	—	_	
																_	\mp	\pm	
mm 100 – 10																\pm	\pm	\pm	
$\frac{1}{100}$ $\frac{1}$																-	_		
																\neg	$\overline{+}$	$\overline{+}$	
																\mp	\mp	\mp	
																\pm	\pm	\pm	
																\pm	\pm	\pm	_
89											\vdash			\square	-	-	$\overline{+}$	-	_
<u>, 108 – </u>																			_

	ICE No.	·	044985-50-04								ENC	LOSU	REN	0.:		A-4	
	6			BOREHOLE No	.: .		BH4	-20		В	OR	REHO	OLI	ER	EΡ	OR	T
	G	שחו		ELEVATION: _		200	.61 r	n		_		Page:					
CLIENT:		Clea	n Harbors - Lambto	n Facility						LE	GEN	D					
PROJECT	:	Geo	technical Investigati	on - Cell 20-1						\boxtimes	SS	- SF	LIT S	SPO0	N		
LOCATIO	N:	Clea	n Harbors Lambton	Facility, 4090 Telfer Ro	I. C	orunna,	ON				ST			y tue Sampi			
DESCRIB	ED BY:	Ahm	ed Mneina	CHECKED BY:		Abdul I	lafee	z Kha	<u>n</u>		GS RC	-					
DATE (ST	ART):	6 Oc	tober 2020	DATE (FINISH)	: _	6 Octol	ber 20)20		Ţ		- W/	ATER	R LEVE	EL		
Depth	Elevation (m) BGS	Stratigraphy		IPTION OF D BEDROCK	State	Type and Number	Recovery	Moisture Content	Blows per 6 in. / 15 cm or RQD	Penetration Index	She Ser ⊖ W _p w	ear test nsitivity (Water Atterbe "N" Va	(S) contei erg lim	nt (%) iits (%)		Field Lab 30 cm))
Feet Metres				D SURFACE			%	%		N	10) 20 3	30 40	0 50	60 7	'0 8C) 90
	200.51	Ĩ	sand, some gravel	T - dark brown, some , trace topsoil, moist / SILT - grey/brown	1	SS-1	63	13	5-5-7-9	12							2
$\begin{vmatrix} 2 & -2 & 0.7 \\ 3 & -2 & 1.0 \\ 4 & -4 & -4 \end{vmatrix}$	199.91		mottled, stiff, trace <u>است</u> <u>hoist</u> becoming brown, h	sand, trace gravel,		SS-2	67	15	11-11-12-12	23		0					2
	199.21		becoming brown		\mathbb{N}	SS-3	100	16	5-7-11-13	18							2
0 <u>-</u> 2.0 7 <u>-</u> 2.2 8 <u>-</u>			rust-stained, some	sand	<u>N</u>	00-0	100		071110								
9 —	197.61				ľ	SS-4	100	16	5-8-10-14	18							2
$10 \pm 11 - 11 - 12 + 12 - 12 - 12 - 3.7$			becoming stiff, em sand seams	bedded brown moist		SS-5	100	16	4-6-7-11	13							1
12 <u>-</u> 3.7 13 <u>-</u> 4.0			becoming grey			SS-6	100	16	4-5-6-7	11		0					
	196.11		becoming firm		\mathbb{N}	SS-7	100	12	3-4-4-5	8		о С					
10 <u>-</u> 5.0 17 <u>-</u> 5.2 18 <u>-</u>	195.41		casing	with 100 mm diameter	\mathbb{N}												
$19 - \frac{1}{20} - 6.0$	194.61		becoming grey-bro		Å	SS-8	100	10	5-6-7-8	13							
					X	SS-9	100	12	3-4-6-8	10		0					
23 - 7.0 24 - 7.3	193.31																
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					\mathbb{V}	SS-10	100	13	3-5-7-9	12		•					
27 – 28 –																	
29 – 30 – 9.0																	
31 32					X	SS-11	100	19	3-5-8-10	13		• 0				Δ	
3310.0																	
35 - 10.7	189.94		Shelby tube sampl	e at 10.67 m bgs													

REFEREN	ICE No.	:	044985-50-04								ENCLO	JSUR	ENC	D.: _		A-4		_
	G			BOREHOLE No	.: .		BH4	-20		B	ORE	ЕНС)LE	ΞF	REF	OR	T	
				ELEVATION: _		200	.61 r	n		_		age:						
CLIENT:		Clea	an Harbors - Lambto	n Facility						LEC	GEND							
PROJECT	:	Geo	otechnical Investigation	0 11 00 1						\boxtimes		- SPL	IT S	POC	Л			
				Facility, 4090 Telfer Ro						\square	ST	- SHE	ELBY	γ TU	BE			
				CHECKED BY:						\boxtimes		- GRA - ROO						
			ctober 2020							Ţ		- WA						
																		-
	_	2				σ.	>	0	Blows pe 6 in. / 15 cm or RQD	L	Shear	test (C				Seld		┥
Depth	Elevation (m) BGS	Stratigraphy		IPTION OF	State	Type and Number	Recovery	Moisture Content	6 in. /	tratic	Sensi OV	tivity (S Vater o	onter	nt (%))] Lab		
ă	(m)	Strati	SOIL ANI	DBEDROCK	St	Type Nur	Rec	Moi Cor	15 cm or RQD	ene						-30 cm	`	
Feet Metres	200 61						%	%		N	10		`			70 80	,	-
						ST-1	100									\square		_
37 <u>-</u> 38																		_
³⁹ 12.0																		
40 - 12.0																+		_
41 —					X	SS-12	100	21	3-4-7-10	11	-	0				++		
42 <u>+</u> 43 <u>-</u> 13.0																++	+	
																+	<u> </u>	
45 —																	<u> </u>	
4614.0					X	SS-13	100	23	4-6-10-12	16								<u>. </u>
47 —																++	+	_
48																+		
⁴⁹ <u>–</u> 15.0 50 –																\mp	_	
51 —					X	SS-14	75	18	4-5-8-10	13	•	2 C				+		1
52 <u>-</u> 					\square												<u> </u>	_
53																		
54 — — 55 — —																++	+	-
5617.0					Μ	SS-15	88	26	3-4-7-10	11		0				\square		7
					μ											++	—	_
58 - 17.8	182.81		becoming firm, mo		_											++	_	
59 - 18.0			becoming intri, mo	SI-WEI													_	
60 <u>-</u> 61 <u>-</u>					\square	SS-16	100	22	2-3-4-5	7		0						
62					Δ	00 10	100	~~~	2010		\vdash			$\overline{+}$				-
63 — 19.0																+	_	_
												+				$\downarrow \downarrow$	_	コ
65 20.0					\square	00 1-		07	401-							\ddagger	\mp	\exists
					Ň	SS-17		25	1-2-4-5	6						\pm	\pm	
6921.0															-	+	+	4
70 - 21.3	179.27		Shelby tube sampl	e at 21.34 m bgs								+		-		\mp	—	7
71 —			Grainsize Analysis Gr =1%, Sa =8%, 0			ST-2	100	27					-			++	_	4
		A V	· · · · · · · · · · · · · · · · · · ·															

DG WITH GRAPH 044985-50-04 - BOREHOLE LOGS (FINAL).GPJ GHD Geotech

REFERENCE No.: 044985-50	-04							ENCL	OSU	RE N	0.: _		A-4	
GHD	BOREHOLE No						B	OR	EHO	DL	ER	EP	OR	۲
	ELEVATION: _		200.	61 r	n			Pa	age:	3	of	3		
CLIENT: Clean Harbors - La	ambton Facility						LEC	GEND						
PROJECT: Geotechnical Inve	stigation - Cell 20-1						\boxtimes				SPOO			
LOCATION: Clean Harbors Lar	nbton Facility, 4090 Telfer Ro	. C	orunna,	ON				ST GS			y tue Samp			
DESCRIBED BY: <u>Ahmed Mneina</u>	CHECKED BY:		Abdul H	lafee	z Khai	n			- RC	СК (CORE			
DATE (START):6 October 2020	DATE (FINISH)	: _	6 Octob	er 20)20		Ţ		- WA	ATEF	RLEVI	ΞL		
	SCRIPTION OF AND BEDROCK	State	Type and Number	Recovery	Moisture Content	Blows per 6 in. / 15 cm or RQD	Penetration Index	Shea Sens ○ V ₩ _{wp} W _l	itivity (Vater Atterbe	S) conte erg lim	nt (%) nits (%)		Field Lab 30 cm	
Feet Metres 200.61				%	%		Ν	10	20 3	30 40	0 50	60 7	70 80) 90
73 -												\pm		
74 22.5 178.11 becoming sc	ft, wet											+	\vdash	
		∇	00.40			10114						—	\square	
		\square	SS-18		30	1-2-1-W	3 4					+	\square	
78 - 23.8 176.81												+	\square	—
79 <u>-</u> 24.0	n, moisi-wei											<u> </u>	\square	
		∇												
81 - 82 - 25.0 175.61		Ň	SS-19		26	1-2-3-5	5		0					
82 - 23.0 173.81 END OF BO	REHOLE AT 25.0 m bgs													
Borehole dri	led using 70 mm inside low stem augers up to 4.5 m											—	\square	
85 - bgs. Mud rot	ary drilling using 100 mm ing below 4.5 m bgs.											+	\square	_
86 Borehole dry	to 4.5 m bgs prior to mud rotary drilling.											+	\square	
87												+		
-27.0 comont bont	onite grout to drilled depth, pipe. Surface sealed with													
90 – hydrated ber	itonite pellets.													
W - refers to W - refers to self weight	sampler penetration under											+	\vdash	
self weight m bgs - reference	s to meters below ground											—	\square	
93 – Surface 9 94 – C Gr = gravel; S	Sa =sand; Cl & Si =clay & silt											+	\square	
95												+	\square	
												+	\square	
												<u> </u>		
												_		
									-			+	\vdash	
									-			+	\square	—
$\frac{7}{102} - 31.0$									-			+	\square	_
									+			+	Ħ	_
104 <u>-</u> 2 105 - 32.0												\pm	╞	<u> </u>
												\pm		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$													\square	
<u></u> <u> </u>														

Notes on Borehole and Test Pit Reports

Soil description :

Each subsurface stratum is described using the following terminology. The relative density of granular soils is determined by the Standard Penetration Index ("N" value), while the consistency of clayey sols is measured by the value of undrained shear strength (Cu).

Clay Silt Sand	< 0.002 mm	(Unified system)			Terrin	nology	
	0.002 to 0.075 mm						
Sand		fin a 0.075 to 0.405 mm			ice"	1-10%	
	0.075 to 4.75 mm	fine 0.075 to 0.425 mm medium 0.425 to 2.0 mm			me"	10-20% ndy) 20-35%	
				adj "an	ective (silty, sai d"	1dy) 20-35% 35-50%	
a 1				an	u	35-50%	
Gravel	4.75 to 75 mm	fine 4.75 to 19 mm coarse 19 to 75 mm					
Cobbles Boulders	75 to 300 mm >300 mm						
	ve density of nular soils	Standard penetration index "N" value			istency of sive soils	Undraine strengt	
		(BLOWS/ft – 300 mm)				(P.S.F)	(kPa)
				Ve	ery soft	<250	<12
Ve	ery loose	0-4			Soft	250-500	12-25
	Loose	4-10			Firm	500-1000	25-50
С	Compact	10-30			Stiff	1000-2000	50-100
	Dense	30-50		V	ery stiff	2000-4000	100-200
Ve	ery dense	>50			Hard	>4000	>200
	Rock quality	designation]		STRATIGRA	PHIC LEGEND	
"RQE	D" (%) Value	Quality		100000000		•	
	<25	Very poor			00	20	
	25-50	Poor		Sand	Gravel	Cobbles& boulders	Bedrock
	50-75	Fair		Gana			Deditock
	75-90 >90	Good Excellent					
	- 00	Excellent		Silt	Clay	Organic soil	Fill
: Split spoon E, GSE, AGE	nple recovered is shown o		Shelby tube Piston sample (Os	terberg)		AG: Auger RC: Rock core GS: Grab sample	
e and Numb e type of sam : Split spoon E, GSE, AGE covery e recovery, sh	nple recovered is shown o	ST: S g PS: P	Shelby tube Piston sample (Os	terberg)		AG: Auger RC: Rock core GS: Grab sample	
e and Numb e type of sam : Split spoon E, GSE, AGE covery e recovery, sh	nple recovered is shown o E: Environmental samplin hown as a percentage, is	ST: S g PS: P	shelby tube Piston sample (Os ined to the distance	terberg) ce the sampler was	driven/pushed int	AG: Auger RC: Rock core GS: Grab sample	ne total lengt
pe and Numt a type of sam : Split spoon E, GSE, AGE covery a recovery, sh D a "Rock Quali	nple recovered is shown o E: Environmental samplin hown as a percentage, is ity Designation" or "RQD	ST: S Ig PS: P	shelby tube Piston sample (Os ined to the distance	terberg) ce the sampler was	driven/pushed int	AG: Auger RC: Rock core GS: Grab sample	ne total lengt
e and Numb e type of sam : Split spoon E, GSE, AGE covery e recovery, sh 2D e "Rock Quali run. -SITU TEST	nple recovered is shown o E: Environmental samplin hown as a percentage, is ity Designation" or "RQD FS: netration index	ST: S Ig PS: P	shelby tube Piston sample (Os ined to the distand the ratio of the tota N _c : Dynamic Cu: Undr	terberg) ce the sampler was	driven/pushed int ragments of 4 inc dex	AG: Auger RC: Rock core GS: Grab sample	ility
e and Numb e type of sam : Split spoon E, GSE, AGE covery e recovery, sh 2D e "Rock Quali run. SITU TEST Standard pen	nple recovered is shown of E: Environmental samplin hown as a percentage, is ity Designation" or "RQD FS: netration index metration	ST: S Ig PS: P	shelby tube Piston sample (Os ined to the distand the ratio of the tota N _c : Dynamic Cu: Undr	terberg) ce the sampler was al length of all core f cone penetration in ained shear strength	driven/pushed int ragments of 4 inc dex	AG: Auger RC: Rock core GS: Grab sample o the soil hes (10 cm) or more to th k: Permeab	ility
e and Numb e type of sam : Split spoon E, GSE, AGE covery e recovery, sh 2D e "Rock Quali run. SITU TEST Standard pen Refusal to pe BORATOR	aple recovered is shown of E: Environmental samplin hown as a percentage, is ity Designation" or "RQD FS: netration index enetration RY TESTS:	ST: S g PS: P	Shelby tube Piston sample (Os ined to the distance the ratio of the tota N _c : Dynamic Cu: Undr Pr: I	terberg) ce the sampler was al length of all core f cone penetration in ained shear strength Pressure meter	driven/pushed int ragments of 4 inc dex	AG: Auger RC: Rock core GS: Grab sample o the soil hes (10 cm) or more to th k: Permeab ABS: Absorption (F	olity Packer test) O.V.: Organ
e and Numt a type of sam : Split spoon E, GSE, AGE covery a recovery, sh 2D a "Rock Quali run. SITU TEST Standard pen Refusal to pe	aple recovered is shown of E: Environmental samplin hown as a percentage, is ity Designation" or "RQD FS: netration index enetration RY TESTS:	ST: S Ig PS: P	shelby tube Piston sample (Os ined to the distand the ratio of the tota N _c : Dynamic Cu: Undr	terberg) ce the sampler was al length of all core f cone penetration in ained shear strength Pressure meter g limits	driven/pushed int ragments of 4 inc dex	AG: Auger RC: Rock core GS: Grab sample of the soil hes (10 cm) or more to th k: Permeab ABS: Absorption (F	ility Packer test)
e type of sam : Split spoon E, GSE, AGE	nple recovered is shown o	ST: S g PS: P	Shelby tube Piston sample (Os	terberg)		AG: Auger RC: Rock core GS: Grab sample	

GHD PS-020.01 - Notes on Borehole and Test Pit Reports - Rev.0 - 07/01/2015

ghd.com

