

Geotechnical Investigation

Cell 20, Subcell 1 Clean Harbors Lambton Facility Landfill Corunna, Ontario

Clean Harbors Canada, Inc.

Table of Contents

1.	Introd	uction	. 1
2.	Field	and Laboratory Work Program	. 1
	2.1	Field Investigation	. 1
	2.2	Geotechnical Laboratory Testing	. 2
3.	Subsu	urface Conditions	. 2
	3.1	Surficial Fill	. 3
	3.2	Clayey Silt Deposits	. 3
	3.3	Groundwater Observations	. 3
4.	Discu	ssion and Recommendations	. 4
	4.1	Slope Stability Methodology and Approach	. 4
	4.2	Cross-Sections Analyzed	. 4
	4.3	Stratigraphy and Material Properties	. 4
	4.4	Piezometric Conditions	. 5
	4.5	Minimum Factors of Safety	. 5
	4.6	Slope Stability Evaluation Results and Conclusions	. 5
5.	Limita	itions of the Report	. 6

Figure Index

Figure 1	2020 Capital Works Phasing Plan
Figure 2	Borehole Location Plan and Cross-Sections
Figure 3 to 6	Slope Stability Modelling Results

Table Index

- Table 3.1Summary of Geotechnical Laboratory Test Results
- Table 4.1 Summary of Parameters and Slope Stability Analyses Results

Appendix Index

- Appendix A Borehole Logs
- Appendix B Geotechnical Laboratory Test Results

1. Introduction

Clean Harbors Canada, Inc. (Clean Harbors) operates a hazardous waste landfill facility (Facility or Site) in Corunna, Lambton County, Ontario. Hazardous solid waste, select non-hazardous waste, liquid waste, and untreated and pre-treated hazardous waste is accepted at the Facility. The Facility is located on Lots 8 and 9 of Concession 10, in St. Clair Township, Lambton County. The Site has a total property area of 140 hectares (ha). The layout of the existing Facility is shown on Figure 1.

GHD is currently designing a below-grade landfill expansion cell identified as Cell 20-1, at the location shown on Figure 2. The geotechnical division of GHD carried out a geotechnical investigation in the Fall of 2020 to support the design of the cell.

The following report summarizes the results of our geotechnical investigation, associated laboratory testing, subsurface soil and groundwater conditions encountered at the borehole locations. This information was used to carry out slope stability modelling of the proposed Cell 20-1 excavation, and to provide recommendations to aid in the design of the excavation and sides slopes for the new cell.

2. Field and Laboratory Work Program

2.1 Field Investigation

The scope of work (SOW) for the geotechnical investigation comprised drilling a total of four geotechnical boreholes BH20-1 through BH20-4 (one borehole approximately at each corner of the proposed rectangular shaped Cell). The boreholes were advanced to a depth of 25.0 metres (m) below the existing ground surface (bgs). The boreholes were located in the field by GHD staff with the assistance of Murphy Contracting, Clean Harbor's earthworks contractor present at Site. Murphy Contracting provided the coordinates and ground surface elevations of the staked borehole location. The borehole locations are shown on Figure 2.

A Site-specific Health and Safety Plan (HASP) was developed by GHD for implementation prior to commencement of any field activities and associated investigation program. Prior to commencement of field drilling activities, underground utility locates through Ontario One Call and a private utility locating company were arranged. The boreholes were advanced by Geo-Environmental Drilling Inc., a Ministry of the Environment, Conservation and Parks (MECP) licensed driller between October 5 to 8, 2020, using a rubber-track mounted drill rig equipped with hollow stem augers, and mud-rotary drilling arrangements under the full time supervision of GHD field personnel.

The boreholes were installed using 70 mm inside diameter hollow stem augers up to a depth of 4.5 m bgs, and mud rotary drilling techniques below this depth, by advancing a 100 mm diameter steel casing. Representative samples of the strata penetrated were obtained during drilling at depth intervals of 0.75 m and 1.5 m, as appropriate, utilizing a 50 mm diameter split-barrel sampler, advanced by dropping a 63.5 kg hammer from a height of 760 mm in accordance with the standard penetration test method (ASTM D1586). Undisturbed thin walled tube (Shelby tube) samples in accordance with ASTM D1587 were also collected at select depths for geotechnical lab testing. The

results of the Standard Penetration Tests (SPT) are reported as 'N' values at the corresponding depths on the respective borehole logs presented in Appendix A.

Groundwater observations were made in the boreholes as drilling progressed up to the 4.5 m depth. Groundwater observations in the borehole could not be made below 4.5 m due to the use of mud rotary drilling. Each borehole was dry with no groundwater present to a depth of 4.5 m bgs during drilling as noted on the borehole logs. Following completion of drilling, each borehole was backfilled using the cement-bentonite grout, and hydrated bentonite pellets in accordance with Ontario Regulation 903.

2.2 Geotechnical Laboratory Testing

The geotechnical laboratory testing program consisted of moisture content tests on all recovered split spoon samples. Eight Shelby tube samples (two samples from each of the four boreholes at select depths) were also collected for further geotechnical testing as noted below.

- Grainsize distribution analysis (ASTM D6913-17) and Atterberg limits tests (ASTM D4318) on five Shelby tube samples.
- Unconfined compressive strength test (ASTM D2166) on eight Shelby tubes samples.
- Dry density (unit weight) test (ASTM D7263) on all eight Shelby tube samples.
- Consolidated undrained (CU) triaxial compression tests (ASTM D4767) on three Shelby tube samples.

The laboratory test results are discussed in Section 3, and shown at their corresponding depths on the individual borehole logs provided in Appendix A. Detailed laboratory test results are provided in Appendix B.

3. Subsurface Conditions

Details of the subsurface conditions encountered at the Site are summarized in the following sections of the report. Detailed borehole stratigraphic logs are provided in Appendix A.

The Facility is located in the low-relief physiographic region of the approximately 5,800 square kilometres (km²) St. Clair Clay Plains¹. The clay till deposits are ablation till deposits left by retreating ice lobes, smoothed over by shallow lacustrine clays deposited by the early Lake Warren. The clay overburden thickness at the Facility consists of 42 to 50 m thick firm to very stiff clayey still deposited over Paleozoic black Shale bedrock of the Kettle Point formation.

The clay till has an over-consolidated crust underlain by lightly over-consolidated clay stratum becoming normally consolidated with depth. Based on the physical characteristics and shear strength parameters, the clay till deposits can be subdivided into four sublayers shown on the computer models.

¹ Chapman L.J., Putnam D.F. (1984): The Physiography of Southern Ontario; Ontario Geological Survey, Special Volume 2, 270p. accompanied by Map P.2715 (coloured), scale 1:600,0000

3.1 Surficial Fill

A thin veneer of surficial fill (surface soils reworked from grading activities) was encountered in the four boreholes. The thickness of the fill was noted to be 0.9 m, 2.2 m, 0.1 m, and 0.1 m in BH1-20, BH2-20, BH3-20 and BH4-20 respectively. The fill deposit in general comprise clayey silt, trace to some sand, trace gravel, and include topsoil roots at the location of BH1-20 and BH3-20.

The natural moisture content of the samples recovered from fill deposits generally ranged from 11 percent to 18 percent indicating a moist condition, except in BH1-20 where 31 percent moisture was noted, which indicates a moist-wet condition.

3.2 Clayey Silt Deposits

The surficial clayey fill deposits in all boreholes are further underlain by native clayey soils, which extend to the termination depth of the borehole. The native clayey deposits comprise clayey silt/ clay and silt/ silt and clay, and include a trace or some sand, and trace gravel.

SPT 'N' values recorded in the native clayey soils generally ranged from 5 to 23. The native deposits have a brown crust that is typically stiff to very stiff, and slightly desiccated from natural groundwater table variations. SPT values in the crust material tend to be in the range of 10 to 20. The crust extends to a depth of 3 to 4 m in the boreholes, and transitioned into a firm to stiff grey clayey silt deposit, with SPT values typically less than 12, and decreasing to as low as 3 in BH4-20 at 23 m depth bgs. The natural moisture content of the samples recovered from the native deposits generally ranged from 10 percent to 28 percent, indicating moist to moist-wet conditions.

Undisturbed samples of the clayey silt were collected with eight Shelby tubes for geotechnical laboratory testing, consisting of grain size distribution analyses, Atterberg limits, unconfined compressive strength tests, unit weight, and consolidated undrained (CU) triaxial compression tests. The test results are summarized and presented in the attached Table 3.1.

The laboratory results performed on the Shelby tube samples show that the clayey silt deposit is generally consistent in nature in the boreholes. The grain size analyses show a sand content of typically 6 to 8 percent (with one result of 17 percent), silt content of 42 to 57 percent, and a clay content of 36 to 49 percent. Atterberg limit results for the clayey silt samples show a liquid limit in the range of 30 to 41, and a plasticity index of 15 to 20, indicating low to medium plastic clay. Shear strengths were obtained from unconfined compressive strength testing on the clayey silt samples and range from 26 to 144 kPa. The shear strengths results confirm that the clayey silt deposits are stiff to very stiff to a depth of about 10 to 15 m and become softer below these depths. These shear strength values are generally consistent with the SPT values obtained in the boreholes. The three CU triaxial compressive strength tests were used to determine the effective strength parameters of the deposit, for use in the slope stability modelling.

3.3 Groundwater Observations

Groundwater observations were made in the boreholes as they were advanced. Mud rotary drilling techniques were used below a depth of 4.5 m bgs, and groundwater observations could not be obtained due to the presence of the mud slurry in the boreholes. The boreholes were backfilled with cement bentonite upon completion of drilling. These deposits generally do not have significant

groundwater bearing layers, due to the low permeability of the clayey silt materials. However, the stabilized groundwater table can generally be considered at the depth of the transition between the upper brown clay (desiccated crust), and the lower grey clay deposits. Seepage may occur from pockets of sandy soils within these clayey deposits.

4. Discussion and Recommendations

The purposes of this geotechnical investigation was to assist with GHD's design of the excavation and side slopes for Cell 20-1. The proposed draft design is shown on Figure 2. The Cell will be excavated to a depth of approximately 20 m below existing grades, and will have a base elevation of 182 m. The excavation side slopes have been preliminarily designed to have an excavation angle of 1 horizontal to 1 vertical (1H:1V), with horizontal benching part way down the slope to provide sufficient slope stability against sidewall collapse. GHD's geotechnical group utilized the subsurface information obtained from the recent geotechnical boreholes to evaluate the stability of the proposed excavation slopes. The following sections of the report describe the analyses and the results of the slope stability modelling, and provides recommendations based on the modelling.

4.1 Slope Stability Methodology and Approach

GHD utilized the Geo-Studio 2019 R2 suite of Software developed by Geo-Slope International of Calgary, Alberta for the slope stability modelling. The software comprises three modules-SEEP/W, SLOPE/W and SIGMA/W.

The SLOPE/W module employs mainly limit-equilibrium methods such as Bishop, Janbu, Spencer, or Morgenstern & Price methods. The slope stability analyses for this study were carried out using the Morgenstern & Price Method, which is a general method of slices developed on the basis of limit equilibrium that requires satisfying equilibrium of forces and moments acting on individual blocks. The blocks are created by dividing the soil above the slip surface by dividing planes.

4.2 Cross-Sections Analyzed

Four cross-sections were reviewed prior to commencing the slope stability models. The cross-section locations are shown on Figure 2. Section B-B' was selected for the detailed modelling analyses, as the other sections (A-A', C-C', and D-D') were considered to be similar, or more conservative (safer against slope stability issues) than Section B-B'.

4.3 Stratigraphy and Material Properties

The properties required for the stability analyses of the slopes are the bulk densities and shear strength parameters of the materials involved. Relevant geotechnical properties comprising bulk density and shear strength of the different subsurface units have been determined from the field investigation, laboratory test results, and GHD's previous experience with the subsurface conditions at this site. The material properties, including bulk density and effective shear strength parameters, assumed in the slope stability analyses are summarized in Table 4.1. The clayey silt units have been divided into geologic subunits based on their geotechnical properties. These are referred to as the St. Joseph Till, and Black Shale Till, based on historical geotechnical reports and geologic

descriptions. Lower bound and upper bound shear strength parameters were used in the model sections based on previous studies at the site, and the laboratory data obtained from the 2020 lab testing.

4.4 **Piezometric Conditions**

The stabilized pieziometric (groundwater table) surface in the model was assumed to be at elevation 195 m, or about 5 to 6 m below grade. The excavation for the cell is therefore mainly in the saturated clay deposits. The response of the clay during unloading was modelled using SIGMA/W module using the material model category of 'Effective stress with Porewater Changes'. This material category carried out a fully coupled volumetric consolidation analysis where deformation and porewater pressures are computed simultaneously using the effective stress parameters. The post-excavation phreatic surface is shown on the output computer models. When a saturated clay (clay below the groundwater table) is loaded, at time t=0, all the load goes into the porewater pressure. Conversely, if saturated clay is unloaded due to its low hydraulic conductivity, it cannot release porewater pressure fast enough to maintain equilibrium through release of porewater, and therefore to maintain equilibrium, negative porewater pressure develops, which acts as a pseudo-reinforcement.

4.5 Minimum Factors of Safety

The FS in slope stability analysis can be defined as the ratio of the available shear strength to that of the applied stresses along a potential failure plane. An FS of 1 or greater indicates stable conditions and a value of less than 1 represents unstable conditions and failure. Given the variability and uncertainty in the selection of strength parameters for natural soil and waste material, an FS above 1 is usually required to provide confidence in the model results. The Canadian Foundation Engineering Manual provides recommendations for typical accepted FS for various structures, depending on the risks associated with the failure. Generally, for landfills, the accepted FS for excavation side slopes is a minimum of 1.3.

4.6 Slope Stability Evaluation Results and Conclusions

The slope stability modelling is based on the following design assumptions for the Cell 20-1 excavation:

- The entire cell will be excavated to a base elevation of 182 m.
- Side slopes will be excavated at a slope of 1H:1V.
- A horizontal intermediate bench, 5 m wide, will be left unexcavated at elevation 192 m to provide side slope stability.
- An optional additional 5 m wide bench may be left at elevation 186 m, if required, to improve the overall slope stability.

The graphical outputs of the slope stability analyses for these conditions are provided on Figures 3 to 6 and are summarized in Table 4.1. The following conclusions can be made from the modelling:

- Based on previous experience at the site and the modelling, excavation side slopes of 1H:1V will be stable, however, horizontal benches are required to improve the side slope stability. With one 5 m wide bench at elevation 192 m, the FS values are 1.27 and 1.31 for the lower bound, and upper bound parameters, respectively. These FS values are considered marginal, especially when it is expected that the cell will remain open (unfilled) for an extended period of time (months).
- 2. The use of an additional horizontal bench at elevation 186 m improves the FS value, to 1.37 and 1.41 for the lower bound and upper bound parameters, respectively. For slopes that are going to be open for an extended period (months), it is recommended that the lower bench is incorporated into the design.

5. Limitations of the Report

This report is intended solely for GHD's internal design purposes. This report cannot be used by others without GHD's prior written consent. This report is considered GHD's professional work product and shall remain the sole property of GHD. Any unauthorized reuse, redistribution of or reliance on the report shall be at the third party's sole risk, without liability to GHD. No portion of this report may be used as a separate entity; it is to be read in its entirety and shall include all supporting drawings and appendices.

The recommendations made in this report are in accordance with our present understanding of the project, the current site use, ground surface elevations and conditions, and are based on the work scope approved by the Client and described in the report. The services were performed in a manner consistent with that level of care and skill ordinarily exercised by members of geotechnical engineering professions currently practicing under similar conditions in the same locality. No other representations, and no warranties or representations of any kind, either expressed or implied, are made. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties.

All of Which is Respectfully Submitted,

GHD

Bruce Polan, M.A.Sc., P.Eng. Associate- Geotechnical Group

Hassan Gilani, M.Sc., P.Eng.

7 TREELINE STORM WATER POND 20 40 60 80m PROCESSED WATER PROPOSED ACCESS ROAD GHD Reuse of Documents Titlo

Waterloo Ontario N2L 3X2 Canada T 519 884 0510 F 519 884 0525 W www.ghd.com

This document and the ideas and designs incorporated herein, as an instrument of professional service, is the property of GHD and shall not be reused in whole or in part for any other project without GHD's written authorization. © 2021 GHD

Client CLEAN HARBORS CANADA, INC. LAMBTON COUNTY, ONTARIO

2021 CAPITAL WORKS CELL DESIGN ECA 1065-9VVJSW

No.	Issue	Drawn	Approved	Date
Draw	m K. DHALIWAL	Designer		
Drafti Chec	^{ing} J. YARDLEY	Design Check	J. YARDL	EY
Proje Mana	ct ager J. YARDLEY	Date	-	
This constr constr	document shall not be used for uction unless signed and sealed for uction.	Scale	1:750	
Origi	ANSI D	Bar 0	is 20mm or size draw	n original ing 20mm

roject No. 44985-50

2020 CAPITAL WORKS PHASING PLANS

Sheet No.

FIGURE 1

°	6 12 18 24m
	LEGEND:
	LIMIT OF WASTE
_	CELL BOUNDARIES
	CELL 20-1 TOE OF SLOPE (ELEV. 182)
	EXISTING MAJOR CONTOUR (2m INTERVAL)
	EXISTING MINOR CONTOUR (1m INTERVAL)
)	MAJOR CONTOUR (PROPOSED BASE GRADES)
5	MINOR CONTOUR (PROPOSED BASE GRADES)
	EXISTING LEACHATE COLLECTION TRENCH
	EXISTING DRAINAGE DITCH
	EXISTING ACCESS ROADS
	LEACHATE COLLECTION TRENCH EXTENSION
	ACCESS ROAD/TIPPING FACE
	CELL 20-1 BENCH (ELEV, 192)
2-20	GEOTECHNICAL BOREHOLE AND GROUND
50	

EXISTING TOPOGRAPHICAL AND SITE FEATURES FROM MAY 22, 2020 GHD SURVEY. EXISTING TOPOGRAPHICAL SURVEY ADJUSTED 0.510m TO MATCH HISTORICAL VERTICAL DATUM.

GHD 455 Phillip Street Waterloo Ontario N2L 3X2 Canada T 519 884 0510 F 519 884 0525 W www.ghd.com

Reuse of Documents

This document and the ideas and designs incorporated herein, as an instrument of professional service, is the property of GHD and shall not be reused in whole or in part for any other project without GHD's written authorization. © 2015 GHD

Clean HARBORS CANADA, INC. LAMBTON COUNTY, ONTARIO

2021 CAPITAL WORKS CELL DESIGN

No.	lssue	Drawn	Approved	Date
Draw	m K. DHALIWAL	Designer		
Drafti Chec	^{ing} J. YARDLEY	Design Check	J. YARDL	EY
Proje Mana	ct ager J. YARDLEY	Date	-	
This construction	document shall not be used for uction unless signed and sealed for uction.	Scale	1:750	
Origi	ANSI D	Bar 0	is 20mm or size draw	n original ing 20mm

Project No. 44985-50

BOREHOLE LOCATION PLAN-CELL 20-1

Sheet No.

Title

FIGURE 2

Color Name Unit Cohesion' Phi' Weight (kPa) (kN/m³) (°) Bedrock Black Shale Till, Sub-unit 2A 20 26 13 Black Shale Till, Sub-unit 2B 18.2 13 26 St. Joseph Till, Sub-unit 1A 21.5 25 24 St. Joseph Till, Sub-unit 1B 21 15 28

LOWER BOUND

TABLE 3.1

SUMMARY OF GEOTECHNICAL LABORATORY TEST RESULTS CELL 20-1 GEOTECHNICAL INVESTIGATION CLEAN HARBORS LAMBTON FACILITY, CORUNNA, ON

				ю	le)	No.	Par	ticle §	Size I	Distribut	ion (%)	(%)	Atterb	erg Limi	ts (%)	Unconfine d Strength	Bulk Unit Weight	CU Comp	ression Test
Sample Number	Sample Location	Sample Date	Sample Type	Material Descripti	Sample Depth (metres below grac	Laboratory Sample	Gravel	Sand	Silt	Passing No. 200 Sieve	Clay (< 0.002 mm)	As Received Moisture Content (Liquid Limit (LL)	Plastic Limit (PL)	Plasticity Index (PI)	Shear Strength (kPa)	(kN/m ³)	Effective Strength (kPa)	Effective Angle of Internal Friction (degree)
1	BH1-20, ST-1	5-Oct-20	Shelby Tube	Silt and Clay, trace sand, trace gravel	13.0 m - 13.6 m	WLT 453-1	1	6	57	93	36	19	32	17	15	143.9	20.1		
2	BH1-20, ST-2	5-Oct-20	Shelby Tube	Clay and Silt, trace sand, trace gravel	22.9 m - 23.5 m	WLT 453-2	1	7	43	92	49	24	41	21	20	32.6	20.0	22	25
3	BH2-20, ST-1	8-Oct-20	Shelby Tube	Silt and Clay, some sand, trace gravel	10.7 m - 11.3 m	WLT 453-3	1	17	46	82	36	19	30	15	15	63.5	21.0	27	26
4	BH2-20, ST-2	8-Oct-20	Shelby Tube	Clayey Silt	21.3 m - 21.9 m	WLT 453-4										64.3	18.1		
5	BH3-20, ST-1	7-Oct-20	Shelby Tube	Clayey Silt	10.7 m - 11.3 m	WLT 453-5										105.0	21.0		
6	BH3-20, ST-2	7-Oct-20	Shelby Tube	Clay and Silt, trace sand, trace gravel	21.3 m - 21.9 m	WLT 453-6	2	7	42	91	49	25	41	21	20	42.9	19.9		
7	BH4-20, ST-1	6-Oct-20	Shelby Tube	Clayey Silt	10.7 m - 11.3 m	WLT 453-7										104.6	21.1		
8	BH4-20, ST-2	6-Oct-20	Shelby Tube	Clay and Silt, trace sand, trace gravel	21.3 m - 21.9 m	WLT 453-8	1	8	44	91	47	27	41	20	21	26.2	20.0	24	21
Notes:																			

(1) NP denotes Non Plastic

SUMMARY OF PARAMETERS AND SLOPE STABILITY ANALYSES RESULTS CELL 20-1 CLEAN HARBORS LAMBTON FACILITY CORUNNA, ONTARIO

Material Properties for Slope Stability Analyses

	ι	Jnit Weight (kN/m	³)		Cohesi	on (kPa)		Friction Angle (degrees)						
Unit	Previous Studies	2020 Geotechnical Lab Result	2021 Model Input	Previous Studies	2020 Geotechnical Lab Result	2021 Model Input- Lower Bound	2021 Model Input- Upper Bound	Previous Studies	2020 Geotechnical Lab Result	2021 Model Input- Lower Bound	2021 Model Input- Upper Bound			
St. Joseph Till- Unit 1A- Elevation 201 to 194 m	21.5		21.5	24		24	24	25		25	25			
St. Joseph Till- Unit 1B- Elevation 194 to 185 m	21.0	20.8	21.0	15	27	15	27	28	26	28	26			
Black Shale Till- Unit 1A- Elevation 185 to 180 m	20.5	19.5	20.0	13	22 to 24	13	24	26	21 to 25	26	21			
Black Shale Till- Unit 1B- Elevation 180 m and below	18.2	19.5	18.2	13	22 to 24	13	24	26	21 to 25	26	21			

Slope Stability Analyses Results

Slope Condition Analyzed	Slope Stability Factor of Safety (FS)	Reference Figure	Comments
Cross-Section B-B'- Lower Bound Strength Parameters, Bench at 192 m	1.27	Figure 3	Marginally Stable
Cross-Section B-B'- Upper Bound Strength Parameters, Bench at 192 m	1.31	Figure 4	Marginally Stable
Cross-Section B-B'- Lower Bound Strength Parameters, Bench at 192 m and Optional Lower Bench at 186 m	1.37	Figure 5	Stable
Cross-Section B-B'- Upper Bound Strength Parameters, Bench at 192 m and Optional Lower Bench at 186 m	1.40	Figure 6	Stable

GHD | Geotechnical Investigation | 044985 (45)

Appendix A Borehole Logs

REFEREN	ICE No.	:	044985-50-04								ENCLOSURE	No.: _		<u>A-1</u>		_
	G	HD		BOREHOLE No	.: .		BH1	-20		B	OREHOL	E R	EF	' OF	۲s	
	9			ELEVATION: _		201	. <u>56 r</u>	n			Page: <u>1</u>	_ of	3	_		
CLIENT:		Clea	an Harbors - Lambto	n Facility						LEC	GEND					
PROJECT	:	Geo	otechnical Investigation	on - Cell 20-1						\boxtimes	SS - SPLIT	SPOC)N			
LOCATIO	N:	Clea	an Harbors Lambton	Facility, 4090 Telfer Ro	I. C	orunna,	ON			\boxtimes	ST - SHEL	3Y TU	BE			
DESCRIB	ED BY:	Ahn	ned Mneina	CHECKED BY:		Abdul I	lafee	z Kha	<u>n</u>		RC - ROCK	CORE	Ξ			
DATE (ST	ART):	5 O	ctober 2020	DATE (FINISH)	: _	5 Octol	per 20)20		Ţ	- WATE	R LEV	'EL			
Depth	Elevation (m) BGS	Stratigraphy	DESCR SOIL ANI	IPTION OF D BEDROCK	State	Type and Number	Recovery	Moisture Content	Blows per 6 in. / 15 cm or RQD	enetration	Shear test (Cu) Sensitivity (S) O Water com M _p W ₁ Atterberg I	ent (%) mits (%		→ Field → Lab		
Feet Metres	201.56		GROUN	D SURFACE			%	%		N	10 20 30	40 50	60	70 8	0 90)
			FILL: CLAYEY SIL	T - brown, trace sand,	\mathbb{N}	CC 1	75	24	2222	6		\square	\mp	\square		
			moist-wet to moist	ייטיז טי נטףצטוו, וטטנצ,	Δ	33-1	10	51	J-J-J-J	0		\ddagger	\pm			
	200.66		NATIVE: CLAYEY	SILT - grey/brown	$\overline{\mathbf{A}}$	SS-2	96	17	3-5-7-9	12	•0		<u> </u>			22
5 - 1.4	200.16											+	_			_
			becoming brown		X	SS-3	83	16	4-6-8-10	14	•		-			19
												++	_			_
					X	SS-4	96	15	4-7-8-11	15	•					1
	198.66		becoming greyish	brown, very stiff	\square							+				
					X	SS-5	92	15	7-8-12-15	20		+	_		\square	-22
	197.86		becoming stiff		॑							+				
13 - 4.0 14 -					X	SS-6	100	18	3-5-4-9	9	• •	++	—		\square	-12
	197.06		becoming grey, so	 me sand									_			
					X	SS-7	100	16	3-4-5-7	9	• 0	++	_		\square	
	196.36		mud rotary drilling	with 100 mm diameter	\square							+	+			
			some gravel		X	SS-8	33	15	3-5-6-6	11	•0					
20 - 6.0	195.56		becoming grey		H											
					X	SS-9	75	18	2-4-6-7	10	• •		_			
22 - 70																
23 7.0	194.26											++	—			
25 -			becoming sandy to	some sand												
26 - 8.0					X	SS-10	100	14	3-4-5-6	9	•0	++	4			
													_			
20 - 1 = 29 - 8.8	192.76				4							\ddagger	+	\mp	\square	
30 + 9.0			nace sanu, occasi	onal gravel, moist-wel								++	+	+	\square	
31 —					X	SS-11	100	19	3-4-6-7	10			\pm			
32 - 10 0		11											\pm			
33 - 10.0													_			
	191.06 190.86		some gravel									++	_		\square	
		111	Attempted Shelby	tube sampling at 10.7	\otimes	GS-1		19								-

L LOG WITH GRAPH 044985-50-04 - BOREHOLE LOGS (FINAL).GPJ GHD Geotechnical

REFERENCE	No.:	044985-50-04							ENCLOSURE No.: <u>A-1</u>									
	CHD		BOREHOLE No.: BH1-20							OR	REH	OL	E	RE	PC)R.	Т	
	GILD		ELEVATION:		201	<u>.56 r</u>	n				Page:	_2		of _	3			
CLIENT:	Clea	an Harbors - Lambto	n Facility						LEC	GEN	D							
PROJECT:	Geo	technical Investigation	on - Cell 20-1						\boxtimes	SS	SF	PLIT	SPC	DON				
LOCATION:	Clea	an Harbors Lambton	Facility, 4090 Telfer Rd	. C	orunna,	ON				ST	- SH		BY T		-			
DESCRIBED E	BY: <u>Ahm</u>	ned Mneina	CHECKED BY:		Abdul H	lafee	z Kha	n		RC	- R(CK	COI	RE	-			
DATE (START	T): <u>5 Oo</u>	ctober 2020	DATE (FINISH):	_	5 Octob	per 20)20		Ţ		- W.	ATE	RLE	EVEL	•			
Depth Elevation	(m) BGS Stratigraphy	DESCR SOIL ANI	IPTION OF D BEDROCK	State	Type and Number	Recovery	Moisture Content	Blows per 6 in. / 15 cm or RQD	Penetration Index	She Ser ○ ₩ _p w	ear test nsitivity Water Atterb '' "N" Va	(Cu) (S) cont erg li alue (ent (9 mits (blows	%) (%) s / 12	△ F □ L in3(Field .ab 0 cm)		
Feet Metres 201	1.56					%	%		Ν	1(0 20	30 4	40 5	50 60	J 70) 80	90	
		m bgs, with zero re spoon sample at 1	covery. Grabbed split 0.7 m bgs without SPT												\pm	\pm	\pm	_
		count Attempted Shelby	tube sampling at 11.4												\pm	\pm	\pm	
$\begin{vmatrix} 39 \\ -12.0 \end{vmatrix}$ 189	9.66	m bgs, with zero re trace gravel	coveryJ												\pm	\pm	\pm	_
		Ū		M	SS-12	100	20	3-4-7-8	11		• • • •					_	_	
	2 56															\pm	\pm	
		Shelby tube sampl Grainsize Analysis	e at 12.96 m bgs <u>::</u>		ST-1	100	20					-1			\rightarrow	\pm	\pm	_
	7.96	Gr =1%, Sa =6%, 0	CI & Si =93%									-			\neg	—	—	
46 - 14.0		Second group can		M	SS-13	100	21	5-8-11-15	19		-				—	\mp	+	15
47 -				\square											\dashv	\mp	\mp	_
48												-			=		\mp	
⁴⁹ – 15.0															=	_	\pm	_
51 -				M	SS-14	100	23	5-8-12-15	20		•0				\Rightarrow	+	\pm	-12
52				\square											_	_	\pm	_
																_	\pm	
⁵⁴ 16.5 185 55	5.06	occasional gravel														_	\pm	
₅₆ 17.0				M	SS-15	58	23	4-8-10-14	18		•0				_		_	_13
57				\square								+	-		+	+	+	_
58 - 17.8	3.76	becomina stiff													_		—	_
		0									+	-			\neg	_	7	_
61				X	SS-16	100	25	3-7-8-10	15		• •	-		- 4	<u> </u>		+	_
62												-			_	_	\mp	
															$ \rightarrow$	+	+	
65	2.00	becoming firm													\pm	_	\pm	
66 - 20.0				M	SS-17	100	26	1-2-4-5	6		A				\pm	\pm	\pm	
67				\square											\pm	\pm	\pm	_
68 - 210															\pm	\pm	\pm	
												-			\neg	\mp	\mp	\neg
71 -										\square		-	-		7	\mp	+	\neg
									1									_

REFERENCE No.:044985-50-	04							ENCL	OSU	RE N	<u>o.:</u>		<u>A-1</u>		
CUD	BOREHOLE No	.: .		BH1	-20		BOREHOLE REPORT								
GHD	ELEVATION:		201	<u>.56 r</u>	n		_	F	age:	3	of	3	-		
CLIENT: Clean Harbors - La	nbton Facility						LEC	GEND	<u>)</u>						
PROJECT: Geotechnical Inves	igation - Cell 20-1						\boxtimes	SS	- SP	LIT §	SPOC	N			
LOCATION: Clean Harbors Lam	bton Facility, 4090 Telfer Ro	I. C	orunna,	ON				ST GS	- SH - GF	ELB` AB {	y tu Samf	BE ขF			
DESCRIBED BY: Ahmed Mneina	CHECKED BY:		Abdul H	lafee	z Kha	<u>n</u>	Ĩ	RC	- RC	CK	CORE	=			
DATE (START): 5 October 2020	DATE (FINISH)	:	5 Octob	per 20)20		Ţ		- VV <i>A</i>	11EF	(LEV	ΈL			
						I									
4 line 20 line		υ	and	ery	art e	Blows per	ation ×	Shea Sena	ar test (sitivity (Cu) S)		\square	Field Lab	1	
TIOS atigna Dept	AND BEDROCK	Stat	ype a Jumk	ecov	Aoisti Conte	15 cm	Inde		vvater Atterbe	rg lim	nt (%) 1its (%)			
Stt ~ H			μz	Ŕ	20	or RQD	Ре	ė	"N" Va	lue (b	lows /	12 in	30 cm	n)	
Feet Metres 201.56		-		%	%		N	10	20 3	30 40	0 50	60	70 8	.0 9	,0
										\square	_		\blacksquare	_	
74										\square					
76 – 23.0	ample at 22.87 m bgs Ilysis:		ST-2	96	24				Þ	H	-				_
77 – Gr = 1%, Sa =	7%, CI & SI =92%														
78 – 23.8 177.76 becoming mo	st-wet	1													
80 -															
81 -		X	SS-18	100	27	3-3-4-6	7		0						
82 - 25.0 176.56 END OF BOF	EHOLE AT 25.0 m bgs														
Borehole drill	ed using 70 mm inside														
85 – 26.0	ry drilling using 100 mm														
86 - Borehole dry	to 4.5 m bgs prior to														
	dilled with														
89 - 27.0	nite grout to drilled depth,														
90 – hydrated beni	onite pellets.														
m bgs - refers	to meters below ground														
Gr =gravel; S	a =sand; CI & Si =clay & silt														
[₹] 94 – <u></u>															
95										\square			+	-	
										\square			\square		
										\square			\square	<u> </u>	_
j 99 – 10.0 1 99 – 10.0									+	\square	\mp	-		<u> </u>	
								$\left \right $	_	\square	<u> </u>				
$\frac{101}{2}$ $\frac{1}{2}$ $$								\models	+	\square	+	-		<u> </u>	
									1		<u> </u>			<u> </u>	
									_						
									+		\rightarrow				
											=				
										\vdash			+		

	CE NO.:	044985-50-04						i		ENCLOS	UREI	NO.:		A-2		=
	C	HD	BOREHOLE No	.: .		BH2	-20		B	ORE	IOL	EF	REF	'OR	۲	
	G		ELEVATION: _		201	. <u>59 r</u>	n		_	Page	e: <u>1</u>	0	f _3	_	·	
CLIENT:		Clean Harbors - Lambto	on Facility					I	LEC	GEND						
PROJECT	:	Geotechnical Investigat	ion - Cell 20-1						\boxtimes	ss -s	SPLIT	SPO	NC			
LOCATION	۱:	Clean Harbors Lambton	i Facility, 4090 Telfer Rd	. Co	orunna,	ON				ST - S	SHELE		IBE			
DESCRIBE	ED BY:	Ahmed Mneina	CHECKED BY:		Abdul I	lafee	z Kha	<u>n</u>		RC - F	ROCK	COR	E			
DATE (ST	ART):	8 October 2020	DATE (FINISH)	:	8 Octol	per 20)20		Ţ	- \	NATE	R LE\	/EL			
Depth	Elevation (m) BGS	Stratigraphy DESCL SOIT AN	RIPTION OF D BEDROCK	State	Type and Number	Recovery	Moisture Content	Blows per 6 in. / 15 cm or RQD	Penetration Index	Shear te Sensitivit O Wat W _p W ₁ Atte	st (Cu) ty (S) er conte rberg lii Value (l	ent (% mits (% blows /	2 [) 6) / 12 in	⊥ Field] Lab 30 cm	n)	
Feet Metres	201.59	GROUN	ID SURFACE			%	%		Ν	10 20	30 4	40 50	60	70 80	0 90	
		FILL: CLAYEY SIL trace gravel, mois	_T - brown, some sand, t	\mathbb{X}	SS-1	12	11	3-6-6-5	12	-						
3 <u>-</u> 1.0 4 <u>-</u>					SS-2	63	15	3-3-4-5	7	• •						1:
$5 - \frac{1}{2}$ $6 - \frac{1}{2}$ $7 - \frac{1}{2} 2.0$					SS-3	54	18	4-4-6-11	10	• •						1
2.2 8 – 2.2 9 – 1	199.39	NATIVE: CLAYEY mottled, stiff, som moist	´SILT - grey/brown e sand, trace gravel,		SS-4	79	17	3-4-7-11	11							14
10 <u>-</u> 3:0 11 <u>-</u>	198.69	becoming rust-sta	ined, to greyish brown,	X	SS-5	100	16	6-10-12-12	22							2
12 - 3.7 13 - 4.0 14 - 4.0	197.89	becoming stiff		$\overline{\mathbb{X}}$	SS-6	100	15	4-6-8-12	14							
15 - 4.5 16 - 50	197.09	trace sand		\mathbb{X}	SS-7	95	16	3-5-7-7	12	•0						
17 <u>-</u> 5.0 17 <u>-</u> 5.2 18 <u>-</u>	196.39	mud rotary drilling casing	with 100 mm diameter	$\langle \rangle$	SS-8	100	16	3-4-5-7	9	• 0						
$ \begin{array}{c} 19 \\ -20 \\ -21 \\$	195.49	becoming firm		\mathbb{N}	SS-9	100	19	2-3-5-5	8							
22 <u>-</u> 23 <u>-</u> 7.0				Δ												
24 – 1 25 – 1 1				∇												_
26 + 8.0 27 - 8.0				Å	SS-10	75	20	3-3-4-5	7						\downarrow	
$ \begin{array}{c} 20 \\ 29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -29 \\ -9.0 \\ -29 \\$	192.79	becoming grey														
31 — 32 —				X	SS-11	83	19	W-3-3-4	6	• 0	Δ					
33 <u>-</u> 10.0 34 <u>-</u>															\downarrow	
35 - 10.7	190.92	Shelby tube samp	le at 10.67 m bgs													

REFERENCE NO.: 044985-50-04								ENC	LOSU	JRE N	10.:		<u>A-2</u>		
CHID	BOREHOLE No	.: _		BH2	-20		B	OR	EH	OL	EF	REP	OF	۲۶	
GHD	ELEVATION: _		201	<u>59 n</u>	n			F	Page:	_2	0	f <u>3</u>	-		
CLIENT: Clean Harbors - Lambt	on Facility						LEC	GENI	D						
PROJECT: <u>Geotechnical Investiga</u>	tion - Cell 20-1						\boxtimes	SS	- S	PLIT	SPO	ON			
LOCATION: Clean Harbors Lambton	n Facility, 4090 Telfer Ro	d. Co	orunna,	ON			\boxtimes	ST	- S			BE			
DESCRIBED BY: <u>Ahmed Mneina</u>	CHECKED BY:		Abdul H	lafee	z Kha	n		RC	- G - R	OCK	COR	E			
DATE (START): <u>8 October 2020</u>	_ DATE (FINISH)	:	8 Octol	ber 20	020		Ţ		- V	/ATEI	R LE\	/EL			
Depth Elevation BGS My TIOS Stratigraphy	RIPTION OF ND BEDROCK	State	Type and Number	Recovery	Moisture Content	Blows per 6 in. / 15 cm or RQD	Penetration Index	She Sen O W _p W ₁	ear test sitivity Wate Attert	t (Cu) r (S) r conte perg lir alue (t	ent (%) nits (% plows /	△ □)) ' 12 in	Field Lab	n)	
Feet Metres 201.59			<u>ет 1</u>	%	%		N	10) 20	30 4	0 50	60	70 8	09	0
37 - Grainsize Analys Gr =1%, Sa =179	<u>is:</u> 6, Cl & Si =82%	A	51-1	ΞZ	13										
38 -												_	+		
															_
		Μ	55-12	96	23	1355	8								
		Д	00-12	30	25	1-5-5-5	0								
43 - 13.0															
		\square										_	+		
		Å	SS-13	100	21	3-3-4-6	7				3				
49 - 14.9 186.69 1 becoming stiff. oc	casional gravel	-													
50	5														
51		М	SS-14	100	22	4-5-8-10	13		þþ				+		
52 - 16.0															
55		\square										_			
56 - 17.0		X	SS-15	83	25	4-4-5-6	9	•	C	>					
		Н													
		X	SS-16	100	24	3-4-6-7	10	-	0		4				
		Н													
		\square	SS-17		26	3-4-5-6	9				+		+		<u> </u>
		Д											\square		—
68															<u> </u>
													\square		
70 - 21.3 180.25 Shelby tube sam	ole at 21.34 m bgs		<u>ст о</u>	100											
			J1-2	100											

LOG WITH GRAPH 044985-50-04 - BOREHOLE LOGS (FINAL).GPJ GHD Geotechnica

REFEREN	NCE No.	:	044985-50-04								ENC	LOSL	IRE N	lo.:		<u> </u>		
				BOREHOLE No	.: .		BH2	-20		B	OR	EH	OL	ΕF	REF	POF	٦٢	
	G	HD		ELEVATION:		201.	<u>59 r</u>	n		-	F	Page:	3	c	of <u>3</u>		•••	
CLIENT:		Clea	n Harbors - Lambto	n Facility						LEC	GENI	<u>.</u>						
PROJECT	Г:	Geo	technical Investigati	on - Cell 20-1						\boxtimes	SS	- S	PLIT	SPO	ON			
LOCATIO	N:	Clea	n Harbors Lambton	Facility, 4090 Telfer Rd	I. C	orunna,	ON				ST	- S	HELB	ΥΤ	JBE			
DESCRIB	ED BY:	Ahm	ned Mneina	CHECKED BY:		Abdul H	lafee	z Kha	n		GS RC	- G - R	OCK	COR	E			
DATE (ST	ART):	8 Oo	ctober 2020	DATE (FINISH)	:	8 Octob	ber 20)20		Ţ		- W	ATE	R LE	VEL			
Depth	Elevation (m) BGS	Stratigraphy	DESCR SOIL AN	IPTION OF D BEDROCK	State	Type and Number	Recovery	Moisture Content	Blows per 6 in. / 15 cm or RQD	Penetration Index	She Sen O W _p W ₁	ar test sitivity Wate Attert "N" V	(Cu) (S) r conte perg lir alue (t	ent (% nits (% plows) %) / 12 in	∆ Fielo ∃ Lab 30 cr	d m)	
Feet Metres	201.59	r I/I					%	%		N	10	20	30 4	0 50) 60	70 8	30 9	90
73) 177.39) 176.59		END OF BOREHC Borehole drilled us diameter hollow st bgs. Mud rotary dr diameter casing be Borehole dry to 4.5 switching to mud r Borehole backfillee cement-bentonite using tremie pipe. hydrated bentonite W - refers to samp self weight m bgs - refers to r surface Gr = gravel: Sa = sc	DLE AT 25.0 m bgs sing 70 mm inside em augers up to 4.5 m illing using 100 mm elow 4.5 m bgs. 5 m bgs prior to otary drilling. d with grout to drilled depth, Surface sealed with e pellets. eler penetration under neters below ground and: CL& Si =clay & sit		SS-18 SS-19		27	2-4-6-8 4-3-5-6	8								
95 29.0 95 29.0 96 29.0 97																		

REFERENCE No.: 044985-50-04							ENCLOSURE NO	.:	A-3	
GHD	BOREHOLE No.:		BH3	-20		В	OREHOLE	REF	ORT	I
dinb	ELEVATION:	201	.02 r	n			Page: <u>1</u>	of <u>3</u>	_	
CLIENT: Clean Harbors - Lambto	on Facility					LE	GEND			
PROJECT: Geotechnical Investigat	ion - Cell 20-1					\boxtimes	SS - SPLIT SI	POON		
LOCATION: Clean Harbors Lambtor	Facility, 4090 Telfer Rd. C	Corunna,	ON				ST - SHELBY			
DESCRIBED BY: <u>Ahmed Mneina</u>	CHECKED BY:	Abdul H	lafee	z Kha	<u>n</u>		RC - ROCK C	ORE		
DATE (START): 7 October 2020	DATE (FINISH):	7 Octob	per 20)20		Ţ	- WATER	LEVEL		
Depth (m) BGS Stratigraphy VA TIOS	RIPTION OF TRANSPORT	Type and Number	Recovery	Moisture Content	Blows per 6 in. / 15 cm or RQD	Penetration Index	Shear test (Cu) Sensitivity (S) O Water content W _p W _i Atterberg limit • "N" Value (blc	∠ ⊑ ∑(%) s (%) ws / 12 in.	⊥ Field] Lab 30 cm)	
Feet Metres 201.02 GROUN	D SURFACE		%	%		Ν	10 20 30 40	50 60	70 80 9	90
1 0.1 200.92 FILL: CLAYEY SIL	T - dark brown, trace , inclusion of topsoil,	SS-1	33	16	2-1-2-7	3			+	1
2 - 0.7 3 - 1.0 200.32 MATIVE: CLAYEY moist NATIVE: CLAYEY moist	SILT - grey/brown	SS-2	79	16	6-8-9-12	17				<u>2</u>
4 becoming very still	/ [f/								+	-
6 - 20 becoming brown,	rust-stained	SS-3	88	15	5-7-10-14	17	•			2
9	X	SS-4		16	5-8-12-12	20				
		SS-5	100	15	3-5-6-8	11				
	X	SS-6	100	17	3-4-6-9	10	• •			
15		7								
	X	SS-7	100	14	3-4-6-8	10				
17 5.2 195.82 mud rotary drilling	with 100 mm diameter	7								
19 becoming very still	f	SS-8	100	17	6-9-9-11	18				-
20 6.0 195.02 becoming stiff	 \/	7							+	<u> </u>
$\begin{vmatrix} 21 \\ 22 \\ \pm \end{vmatrix}$	X	SS-9	100	18	3-4-7-8	11				+
23 - 7.0									++	<u> </u>
24 7.3 193.72 reddish brown mo										
25	Ν.	7								
	X	SS-10	100	10	2-4-6-8	10				
29 – 8.8 192.22 becoming firm of	casional gravel							\mp	+	
		7							++	+
31	X	SS-11	100	20	3-3-5-8	8	• •			
$\begin{vmatrix} 32 \\ 22 \end{vmatrix} = 10 0$	/									+
								++	+ $+$ $-$	+
35 - 10.7 190.35	lo at 10.67 m bas	2							+	—
Shelby tube samp	ie at 10.67 m bgs					[

OG WITH GRAPH 044985-50-04 - BOREHOLE LOGS (FINAL).GPJ GHD Geotechnic

REFERENCE No.: 044985-50-04								ENC	LOS	SUR		D.:		A-3		_
CHID	BOREHOLE No	.: .		BH3	-20		B	OR	E	HC)LE	ER	EP	OF	۲	
GHD	ELEVATION: _		201	<u>.02 r</u>	n			I	Pag	e: _	2	of	_3			
CLIENT: Clean Harbors - Lambte	on Facility						LEC	GEN	D							
PROJECT: Geotechnical Investigat	ion - Cell 20-1						\boxtimes	SS	-	SPL	_IT S	POOI	N			
LOCATION: Clean Harbors Lambtor	n Facility, 4090 Telfer Rd	I. C	orunna,	ON				ST	-	SHE	ELB	′ TUB	E			
DESCRIBED BY: Ahmed Mneina	CHECKED BY:		Abdul I	lafee	z Kha	n		GS RC	-	GR/ RO	AB S CK C	AMPI	-E			
DATE (START): 7 October 2020	DATE (FINISH)	:	7 Octol	ber 20)20		Ţ		-	WA	TER	LEVE	EL			
	,															
Depth Elevation WA TIOS Stratigraphy BGS MA TIOS	RIPTION OF ID BEDROCK	State	Type and Number	Recovery	Moisture Content	Blows per 6 in. / 15 cm or RQD	Penetration Index	She Sen O W _p W _l	ear te nsitiv Wa Atte	est (C ity (S iter c erber Valu	Cu) S) conter rg limi ue (bl	nt (%) its (%) ows / 1	 □ 2 in:	Field Lab 30 crr	 ו)	
Feet Metres 201.02				%	%		N	10) 20) 30	0 40	50	60 7	'0 8(0 90	D
37 -			ST-1	100									+	\square	\square	\square
													+	\square		
39 - 12.0 becoming stiff											_		+	$\left - \right $		
		\mathbb{N}	SS-12	75	21	3-5-8-12	13)			—			
		Δ											+	\square	=	
													+			
													<u> </u>			
45 - 140		∇	SS 12		21	2 5 9 11	12									
		Δ	55-13		21	3-5-6-11	13						+	$\left - \right $		
													—	\square	_	
49 - 15.0													+			
50 -		∇											+			
		Ň	SS-14	88	22	3-5-8-11	13			о 			+			
52 - 16.0																
54														\square	_	
55													—	\square		
56		X	SS-15	75	26	3-5-8-9	13		•	0			<u>+</u>			
													+			
													<u> </u>			
													+	\vdash		
		X	SS-16	58	26	3-4-6-6	10	-+	-	0				\square	_	
		\square											+	\square	=	
													<u>+</u>			
64 - 19.5 181.52 becoming firm, tra	ace sand, trace gravel												<u> </u>			
		M	SS-17	100	27	W-2-3-4	5		2	0						
67 —		μ											—	\square		
68 -													+	\square	\exists	
													+	Ħ	=	
71 - 21.3 179.68 Shelby tube same	e at 21.34 m bgs		ST 2	100	21					,			\pm	╞	=	
Gr = 2%, Sa = 7%,	Cl & Si =91%		51-2	100									\pm			

WITH GRAPH 044985-50-04 - BOREHOLE LOGS (FINAL).GPJ GHD Geoter

REFEREN	CE No.:		044985-50-04								ENC	LOSU		10.:			1-3		
	G	HD		BOREHOLE No	.:		BH3	-20		B	OR	EH	OL	ΕF	RE	PC)R	T	
				ELEVATION:		201	.02 r	n				Page:	3	_ 0	of _	3			
CLIENT:		Clea	n Harbors - Lambtor	n Facility						LEC	GEN	D							
PROJECT	:	Geo	technical Investigation	on - Cell 20-1						\boxtimes	SS	- S	PLIT	SPO	ON				
LOCATION	N:	Clea	n Harbors Lambton	Facility, 4090 Telfer Ro	l. C	orunna,	ON				ST GS	- S - G	HELB RAB	SAM	JBE PLE	-			
DESCRIBE	ED BY:	Ahm	ned Mneina	CHECKED BY:		Abdul H	lafee	z Kha	<u>n</u>	Ĩ	RC	- R	оск	COF	ε				
DATE (ST	ART):	7 Oc	tober 2020	DATE (FINISH)	: _	7 Octol	per 20)20		Ţ		- W	ATE	R LE	VEL	•			
Depth	Elevation (m) BGS	Stratigraphy	DESCR SOIL ANI	IPTION OF D BEDROCK	State	Type and Number	Recovery	Moisture Content	Blows per 6 in. / 15 cm or RQD	Penetration Index	She Ser ○ ₩ _p w	ear test sitivity Wate Attert	: (Cu) (S) r conte perg lir alue (t	ent (% nits (% plows	5) %) / 12	△ F □ L in3(ield .ab)	
Feet Metres	201.02						%	%		N	10) 20	30 4	0 50	0 60	J 70) 80) 90	C
73 -											$ - \bar{ }$		+		\neg	$\overline{+}$	-	$\overline{+}$	
74 22.5	178.52		becoming moist-we		-											\square		\neg	
75					∇								_			4	\square	4	
76					Ň	SS-18	46	28	1-3-5-7	8						_		\exists	
																	\pm		
7924.0															_	+	+	+	
80 –																_		\neg	
81					X	SS-19	100	28	1-3-5-6	8	•	2	0			=	\square	\dashv	
82 — 25.0	176.02		END OF BOREHO	LE AT 25.0 m bgs	\uparrow											_	_	_	
83 —			Borehole drilled us	ing 70 mm inside															
			diameter hollow ste bgs. Mud rotary dri	em augers up to 4.5 m lling using 100 mm									-			+	+	+	
86			diameter casing be Borehole dry to 4.5	low 4.5 m bgs. m bgs prior to												\neg		\neg	
87			switching to mud ro	otary drilling.												_	\square	\exists	
88			Borehole backfilled	with												$ \rightarrow $		=	
			using tremie pipe.	Surface sealed with												_			
				penets.												-	_	-	
92 <u>-</u> 28.0			self weight													\square		\neg	
⁹ 93 –			m bgs - refers to m surface	eters below ground												_	_	\dashv	
			Gr =gravel; Sa =sa	nd; Cl & Si =clay & silt												=			
95																\pm		_	
													-			+	_	+	
													-			\neg		\neg	
																_	$ \rightarrow$	\exists	
mm 100 – 10																$ \rightarrow $	\pm	\pm	
																		-	
																\neg	\neg	\neg	
													-			\downarrow	\downarrow	#	
																\pm	\pm	\pm	
																$ \rightarrow $	$ \rightarrow $	\pm	
											\vdash		+		\neg	$\overline{+}$	-	$\overline{+}$	
<u>, 108 – </u>																		\pm	

BORCHOLE No: BH4-20 LEVATON BORCHOLE Response CUENT: Clean Harbors - Lambon Facility 200.61 m Page 1 of 3. CUENT: Clean Harbors - Lambon Facility Monore Call 201 Image: Second S	REFERENCE No.:	044985-50-04								ENCL	OSURE	= No.:		A	.4	
ELEVATION: 200.61 m Page: 1 of 3 CUENT: Clean Hathers - Lambton Faelly ECCMION: S8 - SPLIT SPOON DCATION: Clean Hathers - Cell 20-1 S8 - SPLIT SPOON DESCRIBED BY: Ahmed Mineira CHECKED BY: Abdul Haters Khan DATE (START) 6 October 2020 DATE (FINSH) - GOCKBORD 00F B B B B B B B B B CHECKED 100 OF B B B B B B B B B B B B B B B CHECKED 100 OF B	01		BOREHOLE No	.: .		BH4	-20		B	OR	EHO	LE	RE	PO	RT	•
CLENT: Clean Harbors - Lambon Facility LECEND PROJECT: Gestechnical Investigation - Cell 20-1 S S - SPUT SPOON LOCATION: Chen Huttors Lambon Facility, 400 Telfer Rd Coruma, ON S S - SPUT SPOON DESCRIBED DY: Almad Minena CHECKED BY: Abdul Haleack Khan DATE (START): 0 October 2020 DATE (FINISH): 6 October 2020 Water Intelloy S S S S S S - SPUT SPOON Water Intelloy Water Intelloy S S - SPUT SPOON S S S S - SPUT SPOON Water Intelloy S S - SPUT SPOON Water Intelloy N N N N N N N N N N N N N N N N N N N	Gh		ELEVATION:		200	.61 n	n		_	F	Page: _	1	of _	<u>3</u>		
PROJECT:	CLIENT: 0	Clean Harbors - Lambto	n Facility						LEG	GENE)					
LOCATION: Clean Harbors Lambton Facility. 4090 Telfer Rd. Corunta. ON Corunta. ON State	PROJECT: 0	Geotechnical Investigat	on - Cell 20-1							SS	- SPU	IT SP				
DESCRIBED BY: Ahmed Mneina CHECKED BY: Abdul Hifeer Khan CHECKED BY: Abdul Hifeer Khan CROCK ORE DATE (START): 6 October 2020 DATE (FINISH): 6 October 2020 CHECKED BY: Abdul Hifeer Khan WATER LEVEL E E E October 2020 DATE (FINISH): 6 October 2020 CHECKED BY: Abdul Hifeer Khan WATER LEVEL E E E October 2020 DATE (FINISH): 6 October 2020 CHECKED BY: Abdul Hifeer Khan WATER LEVEL E E E E E E E E Share Twitt(Ch) Checker Checker 0 0 SOLLAND BEDROCK E E Share Twitt(Ch) Checker Chec	LOCATION: 0	Clean Harbors Lambton	Facility, 4090 Telfer Rd	. C	orunna.	ON				ST	- SHE	LBY T	UBE			
DATE (START): 6 October 2020 DATE (FINISH): 6 October 2020 •WATER LEVEL	DESCRIBED BY: A	Ahmed Mneina	CHECKED BY:		Abdul I	lafee	z Kha	 n		GS RC	- GRA - ROC	B SAI	MPLE RF			
g g	DATE (START): 6	October 2020	DATE (FINISH)		6 Octo	per 20)20		Ţ		- WAT	ER LI	EVEL			
Each Each <th< td=""><td></td><td></td><td>· · · · · ·</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>			· · · · · ·													
Feet Metrics 200.61 GROUND SURFACE % % N 10.203.040 90 60 70 80 90 1 0.1 200.51 1 10	Depth Elevation (m) BGS	DESCF DESCF SOIL AN	RIPTION OF D BEDROCK	State	Type and Number	Recovery	Moisture Content	Blows per 6 in. / 15 cm or RQD	Penetration Index	Shea Sens ○ ₩ _p ₩ _l	ar test (C sitivity (S) Water co Atterberg "N" Value	u)) ontent (g limits e (blow	%) (%) rs / 12 i	△ Fi □ La	∍ld b cm)	
1 0.1 200.51 FIL: CLAYEY SILT - dark brown, some MAR A some gravel, and some gravel, trace topol, moltal SS-1 63 13 5-5-7-9 12	Feet Metres 200.61	GROUN	D SURFACE			%	%		Ν	10	20 30	40	50 60) 70	80	90
2 0.7 199.91 NATWE: CLAYEY SLT - graybrown 3 1.0 10 199.91 NATWE: CLAYEY SLT - graybrown 4 1.0 199.21 Decoming brown, very stiff SS-2 67 15 11-11-12-12 23 6 2.0 198.41 Decoming brown, very stiff SS-3 100 16 57-11-13 18 7 2.2 198.41 Decoming strown, very stiff SS-4 100 16 58-10.14 18 9 3.0 197.61 Decoming strff, embedded brown moist SS-5 100 16 4-67-11 13 11 4.0 Decoming grey SS-6 100 16 4-67-11 13 13 4.0 Decoming grey SS-6 100 16 4-56-7 11 14 4.5 196.61 Decoming grey SS-6 100 12 3-4-6-8 10 16 5.0 196.41 Decoming grey.some sand SS-7 100 12 3-4-6-8 10 17 5.2 196.41 Decoming grey.some sand<		FILL: CLAYEY SIL	I - dark brown, some	1	SS-1	63	13	5-5-7-9	12						\pm	2
3 1.0 100 coning brown, very stiff SS-2 67 15 11-11-12-12 23 6 2.0 198.41 becoming brown SS-3 100 16 57-11-13 18 7 2.2 198.41 rust-stained, some sand SS-4 100 16 57-11-13 18 9 3.0 197.61 becoming strif, embedded brown moist sand seams SS-4 100 16 58-10-14 18 11 becoming grey SS-6 100 16 4-6-7-11 13 4 <td>2 0.7 199.91</td> <td>NATIVE: CLAYEY ⊓ mottled, stiff, trace</td> <td>SILT - grey/brown sand, trace gravel,</td> <td>H</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>$\downarrow \downarrow$</td> <td></td> <td></td> <td></td> <td>\pm</td> <td>+</td>	2 0.7 199.91	NATIVE: CLAYEY ⊓ mottled, stiff, trace	SILT - grey/brown sand, trace gravel,	H							$\downarrow \downarrow$				\pm	+
4 14 199.21 10 199.21 10 10 16 5-7-11-13 18 7 2.2 198.41 197.61 10 16 4-6-7-11 13 10 10 14 4.0 10 14 4.0 10 14 10 10 12 3-4-4-5 8 10 10 12 3-4-4-5 8 10 10 5-6-7-8 13 13 10 10 5-6-7-8 13 10 10 5-6-7-8 13 10 10 5-6-7-8 13 <		hmoist		\mathbb{N}	SS-2	67	15	11-11-12-12	23		• • +				\pm	2
6 - 2.0 198.41 - rust-stained, some sand SS-3 100 16 5-7.11.13 18 - - 2 9 - 3.0 197.61 - - - SS-4 100 16 5-8-10.14 18 - - - 2 11 - - - SS-4 100 16 5-8-10.14 18 - - - 2 11 - - - - SS-6 100 16 4-6-7-11 13 -		becoming brown,		Д									\square	_	-	
7 2.0 198.41 rust-stained, some sand SS-4 100 16 5-8-10-14 18 9				M	SS-3	100	16	5-7-11-13	18						—	22
8 - 10 10 16 5.8-10-14 18 - - 2 10 - 3.0 197.61 1 16 5.8-10-14 18 - - 2 11 - - - - - - - - - 2 12 3.7 196.91 - <	7 - 2.0 198.41			\square											+	
9 3.0 197.61 197.61 197.61 197.61 197.61 197.61 197.61 10 16 4.6-7-11 13 13 13 4.0 13 4.0 14 13 4.0 15 196.11 10 16 4.6-7-11 13 10 16 4.6-7-11 13 10 16 4.6-7-11 13 10 16 4.6-7-11 13 10 <td>8 –</td> <td>rust-stained, some</td> <td>sand</td> <td>M</td> <td>SS-4</td> <td>100</td> <td>16</td> <td>5-8-10-14</td> <td>18</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>+</td> <td>20</td>	8 –	rust-stained, some	sand	M	SS-4	100	16	5-8-10-14	18						+	20
10 − 0.0 10.0 <	9			Δ												
11 3.7 196.91 10 100		becoming stiff, em	bedded brown moist	\square	SS-5	100	16	4-6-7-11	13						+	-14
13 4.0 14 4.0 16 4.5 16 16 4.5-6-7 11 0 Δ 1 15 4.5 196.11 becoming firm SS-7 100 12 3.4-4-5 8 0 Δ 1 16 5.0 195.41 mud rotary drilling with 100 mm diameter casing SS-7 100 12 3.4-4-5 8 0 Δ 1 1 0 Δ 1 1 0 Δ 1 1 1 0 Δ 1		[]		Δ	00-0	100		40711							—	
14 4.5 196.11 becoming firm SS-8 100 16 4-3-6-7 11 0 4 16 5.0 195.41 mud rotary drilling with 100 mm diameter casing becoming grey-brown, stiff SS-8 100 10 5-6-7-8 13 19 6.0 194.61 becoming grey, some sand SS-9 100 12 3-4-6-8 10 21 - - - - - - - - 22 - <		becoming grey		\square	<u> </u>	100	10	4507	1.1						+	
15 4.5 196.11 becoming firm 16 5.0 195.41 mud rotary drilling with 100 mm diameter casing becoming grey-brown, stiff SS-7 100 12 3.4.4.5 8 19 6.0 194.61 becoming grey, some sand SS-8 100 10 5-6.7.8 13 21 - - - - - - - 23 7.0 193.31 - - - - - 24 7.3 193.31 - - - - - - 26 8.0 -				\square	55-6	100	16	4-5-6-7	11	Ţ					<u> </u>	
16 5.0 195.41 mud rotary drilling with 100 mm diameter casing becoming grey. some sand SS-7 100 12 3.4.4.5 8 ΦO Δ Δ 19 52 195.41 mud rotary drilling with 100 mm diameter casing becoming grey. some sand SS-8 100 10 5-67-8 13 Φ Δ		becoming firm		$\overline{\mathbb{N}}$											_	
17 5.2 195.41 mud rotary drilling with 100 mm diameter casing becoming grey-brown, stiff 19 6.0 194.61 becoming grey-brown, stiff SS-8 100 10 5-6-7-8 13 21 5 6.0 194.61 becoming grey. some sand SS-9 100 12 3-4-6-8 10 23 7.0 7.0 193.31 trace sand SS-9 100 12 3-4-6-8 10 24 7.3 193.31 trace sand SS-10 100 13 3-5-7-9 12 4 4 4 26 8.0 SS-10 100 13 3-5-7-9 12 4<				Ň	SS-7	100	12	3-4-4-5	8)				+	
19 -		mud rotary drilling	with 100 mm diameter												_	
20 6.0 194.61 <		becoming grey-bro	own, stiff	X	SS-8	100	10	5-6-7-8	13						+	
21	20 - 6.0 194.61	becoming grey, so		Ħ											+	
22 - 7.0 193.31 -				X	SS-9	100	12	3-4-6-8	10	-		-			\pm	
23 7.0 24 7.3 193.31 trace sand 25															—	
25 -	23 - 7.0 24 - 7.3 193.31														—	
$ \begin{array}{c} 26 \\ -8.0 \\ 27 \\ -8.0 \\ 28 \\ -9.0 \\ 30 \\ -9.0 \\ 30 \\ -9.0 \\ 31 \\ -32 \\ -33 \\ -10.0 \\ 34 \\ -35 \\ -10.7 \\ 189.94 \\ \end{array} $ Shelby tube sample at 10.67 m bgs $ \begin{array}{c} 35 \\ -10.67 \\ -10$	25 -	trace sand													—	
$ \begin{array}{c} 27 \\ 28 \\ -29 \\ -9.0 \\ 30 \\ -9.0 \\ 31 \\ -32 \\ -33 \\ -10.0 \\ 34 \\ -35 \\ -10.7 \\ 189.94 \end{array} $ Shelby tube sample at 10.67 m bgs	26 - 8.0			X	SS-10	100	13	3-5-7-9	12						4	
$ \begin{array}{c} 28 \\ 29 \\ 30 \\ 31 \\ 32 \\ 33 \\ 33 \\ 10.0 \\ 34 \\ 35 \\ 10.7 \\ 189.94 \end{array} $ Shelby tube sample at 10.67 m bgs	27			\square											<u> </u>	
29 -9.0 30 -9.0 31 - 32 - 33 -10.0 34 - 35 -10.7 189.94 Shelby tube sample at 10.67 m bgs															<u> </u>	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{vmatrix} 29 \\ 30 \end{vmatrix} = 9.0$									-	+		$+ \overline{+}$	_	+	+
32 33 10.0 33 10.0 34 35 10.7 189.94 189.94	31 -			M	SS-11	100	19	3-5-8-10	13				\square		—	\square
33 -10.0 34				Д											+	+
34	3310.0														\pm	
35 10.7 189.94 Shelby tube sample at 10.67 m bgs															\pm	+
		Shelby tube samp	le at 10.67 m bgs													

REFEREN	ICE No.	:	044985-50-04								ENCLO	JSUR	E No).: _		A-4	
	6			BOREHOLE No	.: .		BH4	-20		B	ORE	EHC)LE	ER	EP	OR	т
				ELEVATION: _		200	.61 r	n		_	Pa	nge:	2	of	3	_	-
CLIENT:		Clea	an Harbors - Lambto	n Facility						LEC	GEND						
PROJECT	:	Geo	otechnical Investigatio	on - Cell 20-1						\boxtimes	SS	- SPL	IT S	POC	N		
LOCATION	N:	Clea	an Harbors Lambton	Facility, 4090 Telfer Ro	d. Co	orunna,	ON				ST	- SHE	ELBY	' TUI	BE		
DESCRIB	ED BY:	Ahn	ned Mneina	CHECKED BY:		Abdul I	lafee	z Kha	n		GS RC	- GR/ - RO(AB S CK C	amf Ore	PLE		
DATE (ST	ART):	6 0	ctober 2020	DATE (FINISH)):	6 Octol	ber 20	20		Ţ		- WA	TER	LEV	ΈL		
	-	ح				σ.	۲	0	Plays no	u	Shear	test (C	Cu)			Field	
pth	atior BGS	grapł	DESCR	IPTION OF	ate	e an nber	over	sture	ыоws ре 6 in. /	tratio dex	Sensit O W	tivity (S Vater co	5) onten	t (%)		Lab	
ă	(m)	Strati	SOIL ANI	DBEDROCK	St	Type Nur	Rec	Moi Cor	15 cm or RQD	ene		tterber	g limi 19 (bla	ts (%) 12 in .	-30 cm)	
Feet Metres	200 61	0,					%	%		ц. N	10	20 30) 40	50	60	70 80	90
						ST-1	100									\square	
																	_
39 - 120																	
40 - 12.0																+	
41 —					X	SS-12	100	21	3-4-7-10	11	•	0				++	
42 + 13.0																\downarrow	+
																\pm	_
45 —																	+
4614.0					X	SS-13	100	23	4-6-10-12	16							
47 —												+	-	_		++	+
														_		++	_
⁴⁹ <u>–</u> 15.0 50 –													_			\mp	+
51 —					X	SS-14	75	18	4-5-8-10	13	•	2				\pm	
52 - 16 0					\square												_
													-			++	+
5617.0					Μ	SS-15	88	26	3-4-7-10	11	•	0	-			\square	
57 —					μ											++	+
58	182.81				_											++	+
59			becoming intri, mo	St-wet													+
					\square	SS-16	100	22	2-3-4-5	7							
62 + 100					Δ	00 10	100	~~~	2010				-	$\overline{+}$		++	_
63 - 19.0													-			\square	_
												$\downarrow \downarrow$				\ddagger	+
$\begin{bmatrix} 65 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $					\square	00 1-		<u> </u>	401-							\ddagger	\mp
					Ň	55-17		25	1-2-4-5	6							\pm
6921.0												+	-			+	+
70 - 21.3	179.27		Shelby tube sampl	e at 21.34 m bgs								+	_	_		++	+
71			Grainsize Analysis Gr =1%, Sa =8%, 0	<u>::</u> CI & Si =91%		ST-2	100	27					-			\ddagger	+
		A V	· · · · · · · · · · · · · · · · · · ·														

DG WITH GRAPH 044985-50-04 - BOREHOLE LOGS (FINAL).GPJ GHD Geotech

REFERENCE No.:044	1985-50-04							ENCL	JSU	KE N	o.:		<u>A-4</u>	
GHD	BOREHOLE No.	: _		BH4	-20		B	ORE	EHO	DLI	ER	EP	OR	T
	ELEVATION:		200.	61 n	n			Pa	age:	3	of	3		
CLIENT: Clean Harb	ors - Lambton Facility						LEC	GEND						
PROJECT: Geotechnic	al Investigation - Cell 20-1						\boxtimes	SS	- SP	LIT S	POO	N		
LOCATION: Clean Harb	ors Lambton Facility, 4090 Telfer Rd	. Co	orunna,	ON				ST GS	- SH		Y TUB Sampi	E		
DESCRIBED BY: Ahmed Mne	eina CHECKED BY:		Abdul H	lafee	z Khai	<u>n</u>		RC	- RC	CK C	ORE			
DATE (START): 6 October 2	2020 DATE (FINISH):		6 Octob	er 20)20		Ţ		- WA	ATER	LEVE	EL		
Depth Elevation (m) BGS Stratigraphy	DESCRIPTION OF SOIL AND BEDROCK	State	Type and Number	Recovery	Moisture Content	Blows per 6 in. / 15 cm or RQD	Penetration Index	Shear Sensi ○ V ₩ _{wp} W _I A • "	r test (tivity (Vater Atterbe N" Va	Cu) S) contei erg lim lue (bl	nt (%) its (%) ows / 1	△ □ 2 in3	Field Lab 30 cm)
Feet Metres 200.61				%	%		Ν	10	20 3	30 40) 50	60 7	0 80) 90
74 22.5 178.11 becom												+	\vdash	
75 - 23.0		\square	00.40		20	4.0.4.144							\square	
		Д	55-18		30	1-2-1-00	3 2						\square	
	ming firm maint wat												\square	_
79 - 24.0	ming mm, moist-wet													
80 -		\square												
		Ŵ	SS-19		26	1-2-3-5	5		0					
82 - 23.0 175.01 END	OF BOREHOLE AT 25.0 m bgs												\square	
84 - Boreh	nole drilled using 70 mm inside												\square	
85 – 26.0 bgs. I	Mud rotary drilling using 100 mm												\square	_
86 – Boreh	hole dry to 4.5 m bgs prior to													
87 — Switch	nole backfilled with													
5 89 - 27.0 ceme	ent-bentonite grout to drilled depth,													
	ated bentonite pellets.										_	+	\vdash	_
	efers to sampler penetration under												\square	
$\begin{bmatrix} 92 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	s - refers to meters below ground												\square	
GH 93	ce gravel; Sa =sand; Cl & Si =clay & silt												\square	_
Period 95														
										F		\square	\square	_
									_	H		\mp	\square	—
												\mp		_
													\square	<u> </u>
													\square	
									-	\square		\square		

Notes on Borehole and Test Pit Reports

Soil description :

Each subsurface stratum is described using the following terminology. The relative density of granular soils is determined by the Standard Penetration Index ("N" value), while the consistency of clayey sols is measured by the value of undrained shear strength (Cu).

	Classification	(Unified sys	stem)			Terminolo	ду	
Clay	< 0.002 mm							
Silt	0.002 to 0.075 mm						4.400/	
Sand	0.075 to 1.75 mm	fine	0.075 to 0.425 mm		"trac "sor	ce" ne"	1-10% 10-20%	
Sanu	0.075 10 4.75 1111	medium	0.075 to 0.425 mm		adie	ne octive (silty, sandy)	20-35%	
		coarse	2.0 to 4.75 mm		auje "and	vive (sity, salidy)	20-33 %	
Gravel	4.75 to 75 mm	fine	4.75 to 19 mm		and	4	00-00 %	
Cobbles Boulders	75 to 300 mm >300 mm	coarse	19 to 75 mm					
Douldoio								
Relati gra	ve density of nular soils	Standa inde	ard penetration ex "N" value		Consi cohes	stency of sive soils	Undraine strengt	d shear h (Cu)
		(BLO)	NS/ft – 300 mm)				(P.S.F)	(kPa)
					Ve	ry soft	<250	<12
V	ery loose		0-4		:	Soft	250-500	12-25
	Loose		4-10		F	Firm	500-1000	25-50
0	Compact		10-30		:	Stiff	1000-2000	50-100
	Dense		30-50		Ve	ry stiff	2000-4000	100-200
Ve	ery dense		>50		ŀ	Hard	>4000	>200
	Rock quality	docianatio	n	- -		STRATICRADHI		
"ROI	(%) Value	uesignatio	Quality			STRATIONALI		
RGL	27 (70) Value	,	Vorupoor			00	• Ċ	
	~25 25 50		Poor				••	
	20-30 50 75		Four		Sand	Gravel C	obbles& boulders	Bedrock
	J0-7J		Cood					
	>90		Excellent					
					Silt	Clay	Organic soil	Fill
Samples: Type and Numl The type of sam SS: Split spoon SSE, GSE, AGE	ber Iple recovered is shown o E: Environmental sampling	n the log by t	the abbreviation listed he ST: S PS: F	ereafter. The num Shelby tube Piston sample (Os	nbering of samples is terberg)	sequential for each t AG: RC: GS:	ype of sample. Auger Rock core Grab sample	
Recovery The recovery, sl	hown as a percentage, is	the ratio of le	ength of the sample obta	ined to the distan	ce the sampler was d	riven/pushed into the	soil	
RQD								
The "Rock Qual the run.	ity Designation" or "RQD"	value, expre	essed as percentage, is t	the ratio of the tot	al length of all core fra	agments of 4 inches	(10 cm) or more to th	e total length of
IN-SITU TEST	rs:							
N: Standard per	netration index			N₀: Dynamic	cone penetration inc	lex	k: Permeab	ility
R: Refusal to pe	enetration			Cu: Undr Pr:	ained shear strength Pressure meter		ABS: Absorption (P	acker test)
LABORATOR	RY TESTS:							0.1/1. 0
l _n : Plasticity inde	ex	H· Hv	drometer analysis	A: Atterber	a limits	C: Consolidation	ı	o.v.: Organic vapor
W _I : Liquid limit		GSA:	Grain size analysis	w: Water c	ontent	CS: Swedish fal	l cone	
Wp: Plastic limit				γ: Unit wei	ght	CHEM: Chemica	al analysis	

GHD PS-020.01 - Notes on Borehole and Test Pit Reports - Rev.0 - 07/01/2015

Appendix B Geotechnical Laboratory Test Results

Client	:	Clean Harbors - Lambto	on Facility		Lab No.:	WLT 453-	1							
Proje	ct, Site:	Geotechnical Investigat Clean Harbors, 4090 Te	ion - Cell 20-1 elfar Road, Co	l orunna, ON	Project No.:	044985-50)-04							
Во	prehole No.:	BH1	-20		Sample No.:	ST-1								
De	epth:	42.5 ft 44.5 ft. (13.0 m - 13.6 n	n)	Enclosure:	-								
100								0						
100														
90								10						
80)							20						
7(30						
6								ad 100						
Passin 90								Retain						
ercent 50) <u> </u>							50 bit						
<u>م</u> ــــــــــــــــــــــــــــــــــــ														
30								70						
20								80						
1(,							90						
(0.001	0.01	0.1 Diame	eter (mm)		10		100						
		Clay & Silt		Sand		Gravel								
		Partic	Fine cle-Size Limits	e Mediu as per USCS (ASTN	ım Coarse 1 D-2487)	Fine	Coarse							
		Soil Description		Gravel (%)	Sand (%)	Clay	& Silt (%)							
	Si	It and Clay, trace sand, trace g	gravel	1	6		93							
		Clay-size particles (<0.002 n	nm):			3	86 %							
Rema	rks:													
Perfo	rmed by:	Melanie Mito	hell / Matt Flo	od	Date:	Novem	per 3, 2020							
Verifie	ed by:	Abdul Hafeez Khan, P.	Melanie Mitchell / Matt FloodDate:November 3, 2020Abdul Hafeez Khan, P.Eng.; Laboratory ManagerDate:November 4, 2020											

Clie	nt:		Cle	ean	Harbo	ors - La	amb	ton I	Faci	lity					Lab No.:		V	NLT 4	53-2				_
Proj	ect, S	Site:	Ge Cle	eoteo ean l	chnica Harbo	al Inve ors, 40	stiga 90 T	ation Telfa	n - C ar Ro	ell 20- bad, C	-1 Sorunr	na, C	DN		_Project N	lo.:)4498	5-50-	04			_
	Boreh	ole No.:					B⊦	11-20	C						Sample N	o.:	5	ST-2					_
	Depth	:			75.0	ft 77	7.0 ft.	(22.	.9 m	- 23.5	m)				Enclosure	:							_
																				_		_	
												-		•)
	90 -				سو ا			T	•														10
	80 -				\mathbb{K}	_																	20
	70																						30
6	10		1																				pe
Passin	60 —																						Retain 01
ercent	50 -																						ercent
₽.	40																						م 50
	30 —																						70
	20 —											_											30
	10 —					_																	90
	0.001	1		(0.01				0.	.1 Diar	neter (n	nm)		1	I		1	10				100	100
					0.014							5	Sand					Gr	avel]	
	-				s Siit		Part	ticle-	Size	Fir Limits	ne as pe	r USO	M CS (A	edi STI	um Coa M D-2487)	arse	Fir	ne	(Coars	e	-	
											1				1		<u> </u>						7
				Soi	l Desc	riptio	n				G	irave	el (%))	Sand	(%)		С	lay &	Silt ((%)		
		Cla	ay and	Silt,	trace	sand, 1	trace	gra∖	vel			1			7				9	2			
			Clay-	y-size particles (<0.002 mm):															49	%			
Rem	arks	:																					_
																							-
Perf	orme	ed by:			Ν	lelani	e Mit	tche	II / N	/latt Fl	ood				Date):		Nov	embe	er 3,	202	0	_
Veri	fied b	oy:	Al	bdul	Hafe	ez Kh	an, F	P.En	ng.; l	_abora	atory I	Man	ager		Date):		Nov	embe	er 4,	202	0	-

Client:		Clean Harbors - Lambton	Facility		Lab No.:	WLT 453-3	3	
Projec	t, Site:	Geotechnical Investigatior Clean Harbors, 4090 Telfa	n - Cell 20-1 ar Road, Co	1 prunna, ON	_Project No.:	044985-50	-04	
Boi	ehole No.:	BH2-2	0		Sample No.:	ST-1		
De	oth:	35.0 ft 37.0 ft. (10).7 m - 11.3 r	m)	Enclosure:	-		
100							· · • • • •	·
90								10
80								20
70								30
88 ing								40 tai
sent Pa								Sent Re
Pero								Lerc 00
40								60
30								70
20								80
10								
10								90
0 0	.001	0.01	0.1 Diam	eter (mm)		10		100 100
		Clav & Silt		Sand		Gravel		
		Particle	Fine Size Limits	e Medi as per USCS (AST	um Coarse M D-2487)	Fine	Coarse	
		Soil Description		Gravel (%)	Sand (%)	Clay 8	silt (%)	
	Sil	t and Clay, some sand, trace gra	ivel	1	17		82	
		Clay-size particles (<0.002 mm	ו):			30	6 %	
Remar	ks:							
Perfor	ned bv:	Melanie Mitche	ell / Matt Flo	ood	Date:	Novemb	er 3. 2020	
Verifie	d by:	Abdul Hafeez Khan, P.Er	ng.; Labora	tory Manager	Date:	Novemb	er 4, 2020	

Client	::	Clean Harbors - Lambton F	Facility		Lab No.:	WLT 453-6		
Proje	ct, Site:	Geotechnical Investigation Clean Harbors, 4090 Telfa	- Cell 20-1 r Road, Co	orunna, ON	Project No.:	044985-50-0)4	_
B	orehole No.:	BH3-20)		Sample No.:	ST-2		
D	epth:	70.0 ft 72.0 ft. (21.	3 m - 21.9 n	n)	Enclosure:	-		
10	0							0
10								Ţ
9	0							- 10
8	0							- 20
7								- 30
5								pg 00
Passing	0							Retaine
5 prcent								50 Di
č					4 60			
3	0							- 70
2	0							- 80
1	0							90
	0.001	0.01	0.1 Diame	eter (mm)		10		⊥ 100 100
				Sand		Gravel		
		Particle-	Fine Size Limits a	e Mediu as per USCS (ASTN	um Coarse 1 D-2487)	Fine C	oarse	
								_
		Soil Description		Gravel (%)	Sand (%)	Clay & S	Silt (%)	
		Clay and Silt, trace sand, trace gra	vel	2	7	9^		
		Clay-size particles (<0.002 mm)):			49	%	
Rema	rks:							
Perfo	rmed by:	Melanie Mitchel	ll / Matt Flo	od	Date:	Novembe	r 3, 2020	
Verifi	ed by:	Abdul Hafeez Khan, P.En	g.; Laborat	ory Manager	Date:	Novembe	r 4, 2020	

Client		Clean Harbors - Lambton	Facility		Lab No.:	WLT 453-8		
Projec	t, Site:	Geotechnical Investigation Clean Harbors, 4090 Telf	n - Cell 20-1 ar Road, Co	l orunna, ON	Project No.:	044985-50-	04	
Во	rehole No.:	BH4-2	20		Sample No.:	ST-2		
De	pth:	70.0 ft 72.0 ft. (21	1.3 m - 21.9 r	n)	Enclosure:	-		
100								0
100								$\prod_{i=1}^{n}$
90								10
80								20
70						30		
70						30		- 30
assing					Aetaine 05			
50 tue					50 50			
e 40	40 40							B
40								00
30								70
20								80
10								
10								
0 0	0.001	0.01	0.1 Diame	1 eter (mm)		10		100 <u>100</u>
		Clay & Silt		Sand		Gravel		
		Particle	Fine Size Limits	e Mediu as per USCS (ASTM	um Coarse 11 D-2487)	Fine (Coarse	
		Soil Description		Gravel (%)	Sand (%)	Clay &	Silt (%)	
	(Clay and Silt, trace sand, trace gra	avel	1	8	g	1	
		Clay-size particles (<0.002 mn	n):			47	%	
Rema	'ks:							
Perfor	med by:	Melanie Mitche	ell / Matt Flo	od	Date:	Novembe	er 3, 2020	
Verifie	d by:	Abdul Hafeez Khan, P.E	ng.; Laborat	tory Manager	Date:	Novembe	er 4, 2020	

Client:		Clean	Harbors - Lamb	ton Facility		Lab no.:	WLT 453-1
Project/Site:	(Geotech Clean Harbor	inical Investigatio s, 4090 Telfar Ro	on - Cell 20-1 oad, Corunna, O	N	Project no.:	044985-50-04
Borehole no.:	BH1-20		Sample no.:	ST	-1	Depth:	42.5 ft 44.5 ft. (13.0 m - 13.6 m)
Soil description:		Silt and Cla	y, trace sand, trace	e gravel		Date sampled:	October 5, 2020
Apparatus:	Hand	Crank	Balance no.:	WLG	6-15	Porcelain bowl no.:	Br-12
Liquid limit device no.:	WLS	A-3B	Oven no.:	WLO	G-2	Spatula no.:	2
Sieve no.:	VVL	5-47	Glass plate no.:	1			
Γ	Liquid Limit (LL):		Soil Preparation			
	Test No. 1	Test No. 2	Test No. 3		ohesive <425 µm	n 🗸	Dry preparation
Number of blows	35	22	16		ohesive >425 µm		Wet preparation
_	Water Conte	ent:	1		on-cohesive		
Tare no.	11	12	23	22.5 -		Results	
Wet soil+tare, g	32.04	30.86	31.93				
Dry soil+tare, g	30.54	29.10	30.20	-			
Mass of water, g	1.50	1.76	1.73	it (%)			
Tare, g	25.53	23.62	24.98	Conter			
Mass of soil, g	5.01	5.48	5.22	0 31.5 - te			
Water content %	29.9%	32.1%	33.1%	>			
Plastic Limit (Pl	-) - Water Cont	ent:	_				
Tare no.	123	135	_	-			
Wet soil+tare, g	20.45	15.35	_	29.5 – 14	16 18 2	0 22 24 26 2	28 30 32 34 36
Dry soil+tare, g	19.45	14.15	_			Nb Blows	
Mass of water, g	1.00	1.20	_	70	Soil	Plasticity Chart	
Tare, g	13.65	7.17	_	60		LL 50	
Mass of soil, g	5.80	6.98	_		ow plasticity organic clay	High plastic Inorganic c	sity lay
Water content %	17.2%	17.2%	_				
Average water content %	17.	2%	_	¥ 40			
Natural Wate	r Content (W ⁿ):	_	- 30	(CL)		(MH) and (CH)
Tare no.	99		_		w compressibility	- High	
Wet soil+tare, g	64.40		_	10		♦ inor - Inorg	ganic silt ganic day
Dry soil+tare, g	54.60		_			Inorganic si ML and OL - Organic cla	npressibility ilt iy
Mass of water, g	9.80		_	0	10 20 3	0 40 50 60	70 80 90 100
Tare, g	4.30		_	Linuid Linuid	Disstis Limit		1
Mass of soil, g	50.30		_	(LL)	(PL)	Plasticity Index (PI)	Natural Water Content W ⁿ
Water content %	19.5%			32	17	15	19
Remarks:							
Performed by:		Melan	ie Mitchell		Date:	Nov	ember 3, 2020
Verified by:	Abdul Ha	feez Khan P	Eng.: Laboratory	/ Manager	Date:	Nov	ember 4, 2020
vernieu by:	715441114		Elig., Euboratory	y Manager	Bute.	1107	

Client:		Clean	Harbors - Lamb	ton Facility		Lab no.:	WLT 453-2
Project/Site:	(Geotech Clean Harbor	nical Investigatic s, 4090 Telfar Ro	on - Cell 20-1 oad, Corunna,	ON	Project no.:	044985-50-04
Borehole no.:	BH1-20		Sample no.:	:	ST-2	Depth:	75.0 ft 77.0 ft. (22.9 m - 23.5 m)
Soil description:		Clay and Si	lt, trace sand, trace	e gravel		Date sampled:	October 5, 2020
Apparatus:	Hand	Crank	Balance no.:	W	LG-15	Porcelain bowl no.:	15
Liquid limit device no.:	WLS	A-3B	Oven no.:	V	/LG-2	_Spatula no.:	2
Sieve no.:	VVL	5-47	Glass plate no.:			-	
Γ	Liquid Limit (LL):		Soil Preparati	on:		
	Test No. 1	Test No. 2	Test No. 3	I	Cohesive <425 µn	n 🗸	Dry preparation
Number of blows	32	25	19		Cohesive >425 µn	n 🗌	Wet preparation
	Water Conte	ent:			Non-cohesive		
Tare no.	125	18	104	42.5		Results	
Wet soil+tare, g	20.01	33.65	20.78	42.5			
Dry soil+tare, g	18.24	31.47	18.68	_			
Mass of water, g	1.77	2.18	2.10	nt (%)			
Tare, g	13.71	26.06	13.67	Conter			
Mass of soil, g	4.53	5.41	5.01	0 40.5 ate			
Water content %	39.1%	40.3%	41.9%	3			
Plastic Limit (PL	-) - Water Cont	ent:	-				
Tare no.	2	7	_				
Wet soil+tare, g	30.80	29.88	_	38.5	17 19 21	23 25 2	27 29 31 33
Dry soil+tare, g	29.61	28.59	_		0	Nb Blows	
Mass of water, g	1.19	1.29	_	70 —	3011		
Tare, g	23.88	22.30	-	60		LL 50	
Mass of soil, g	5.73	6.29			Low plasticity Inorganic clay	High plasti Inorganic c	city clay
Water content %	20.8%	20.5%				C	
Average water content %	20.	6%		40 –			
Natural Water	r Content (W"):	-				(MH) and (CH)
Tare no.	KH28			⁸ 20 –	Low compressibility	- ніді	h compressibility
vvet soli+tare, g	74.00			10 —		inor - Inor - Medium co	rganic şilt ganic day ompressibility
Dry soll+tare, g	60.40		-	0		ML and OL - Organic s	silt ay
Taxa a	13.60		-	0	10 20 3	0 40 50 60 Liquid Limit LL	70 80 90 100
Tare, g	4.50		-	Liquid Limit	Plastic Limit		
Mass of soil, g	55.90		-	(LL)	(PL)	Plasticity Index (PI)	Natural Water Content W"
Water content %	24.3%			41	21	20	24
Remarks:							
Performed by:		Melani	e Mitchell		Date:	Nov	vember 3, 2020
Verified by:	Abdul Ha	feez Khan, P.	Eng.; Laboratory	y Manager	Date:	Nov	vember 4, 2020

Client:		Clean	Harbors - Lambi	ton Facility		Lab no.:	WLT 453-3
Project/Site:	(Geotech Clean Harbors	nical Investigatic s, 4090 Telfar Ro	on - Cell 20-1 oad, Corunna,	ON	Project no.:	044985-50-04
Borehole no.:	BH2-20		Sample no.:		ST-1	Depth:	35.0 ft 37.0 ft. (10.7 m - 11.3 m)
Soil description:		Silt and Clay	/, some sand, trace	e gravel		Date sampled:	October 8, 2020
Apparatus:	Hand	Crank	Balance no.:	W	LG-15	Porcelain bowl no.:	Bts
Liquid limit device no.:	WLS	A-3B	Oven no.:	V	/LG-2	Spatula no.:	2
Sieve no.:	VL	5-47	Glass plate no.:		1	-	
	Liquid Limit (LL):		Soil Preparati	on:		
	Test No. 1	Test No. 2	Test No. 3	✓	Cohesive <425 µm	ו ער די די די	Dry preparation
Number of blows	34	28	20		Cohesive >425 µm		Wet preparation
	Water Conte	ent:			Non-cohesive		
Tare no.	Q6	5	1			Results	
Wet soil+tare, g	22.40	33.01	31.55	- 31.1	•		
Dry soil+tare, g	20.70	31.38	29.90	_			
Mass of water, g	1.70	1.63	1.65	nt (%)			
Tare, g	14.89	25.91	24.56	Conter			
Mass of soil, g	5.81	5.47	5.34	ater C			
Water content %	29.3%	29.8%	30.9%	3		· ·	
Plastic Limit (Pl	L) - Water Cont	ent:	-				
lare no.	25	138					
Wet soil+tare, g	34.05	20.71	-	29.1	19 21 23	25 27 2	29 31 33 35
Dry soil+tare, g	33.04	18.91			Soil	Nb Blows	
Mass of water, g	1.01	1.80	-	70 —	3011		
Tare, g	26.50	7.20	-	60		LL 50	
Mass of soil, g	6.54	11.71	-	뤽	Low plasticity Inorganic clay	Inorganic c	lay
Average water content %	15.4%	15.4%	-			C	H
Average water content %	n Contont ()8/ ⁿ	4 70	-	40 –			
).		- 06 asticity			(MH) and (CH)
Wet soil+tare a	TA31 76.10			ā 20 —	Low compressibility	- High	n compressibility
Dry soil+tare a	64.60			10 -		- Inorg - Medium co	ganic clay mpressibility
Mass of water g	11.50			0		ML and OL Organic cla	ay
Tare, q	4 30			0	10 20 3	0 40 50 60 Liquid Limit LL	70 80 90 100
Mass of soil. q	60.30			Liquid Limit	Plastic Limit	Plasticity Index (PI)	Natural Water Content W ⁿ
Water content %	19.1%			(LL) 30	(PL) 15	15	19
Bomorkoj	10.170			00	10		
Nemarks:							
					_		
Performed by:		Melani	e Mitchell		Date:	Nov	vember 3, 2020
Verified by:	Abdul Ha	feez Khan, P.	Eng.; Laboratory	y Manager	Date:	Nov	vember 4, 2020

Client:		Clean	Harbors - Lamb	ton Facility		Lab no.:	WLT 453-6
Project/Site:	(Geotech Clean Harbor	nical Investigations, 4090 Telfar Ro	on - Cell 20-1 oad, Corunna,	ON	Project no.:	044985-50-04
Borehole no.:	BH3-20		Sample no.:		ST-2	Depth:	70.0 ft 72.0 ft. (21.3 m - 21.9 m)
Soil description:		Clay and S	Silt, trace sand, trac	ce gravel		Date sampled:	October 7, 2020
Apparatus:	Hand	Crank	Balance no.:	W	LG-15	Porcelain bowl no .:	12
Liquid limit device no.:	WLS	A-3B	Oven no.:	V	/LG-2	Spatula no.:	2
Sieve no.:	VVL	5-47	Glass plate no.:		1	-	
[Liquid Limit (LL):	1	Soil Preparati	on:		
	Test No. 1	Test No. 2	Test No. 3	\checkmark	Cohesive <425 µn	n 🗸	Dry preparation
Number of blows	28	22	18		Cohesive >425 µn	n 🗌	Wet preparation
	Water Conte	ent:	1		Non-cohesive		
Tare no.	17	14	146	43.0		Results	
Wet soil+tare, g	30.99	31.72	20.51	43.0			
Dry soil+tare, g	29.12	29.83	18.49	4			
Mass of water, g	1.87	1.89	2.02	ıt (%)			
Tare, g	24.42	25.26	13.69	Conter			
Mass of soil, g	4.70	4.57	4.80	0 41.0 te		+	
Water content %	39.8%	41.4%	42.1%	Š			
Plastic Limit (PL	L) - Water Cont	ent:	4				
Tare no.	3	24	-				
Wet soil+tare, g	31.68	34.34	-	39.0	17 19	21 23	25 27 29
Dry soil+tare, g	30.46	32.66	4			Nb Blows	20 2
Mass of water, g	1.22	1.68	-	70 —	Soil	Plasticity Chart	
Tare, g	24.62	24.62	-	60		LL 50	
Mass of soil, g	5.84	8.04	-		Low plasticity Inorganic clay	High plastic Inorganic c	city lay
Water content %	20.9%	20.9%	4	50 			
Average water content %	20.	9%	4	40 +			
Natural Water	r Content (W ⁿ):		- 06 sticity			(MH) (CH)
Tare no.	KH12			20 —	Low compressibility Inorganic silt	- Hint	a compressibility
Wet soil+tare, g	89.90			10 -		irlor - Inpr	ganic silt ganic day
Dry soil+tare, g	72.60		4			ML and OL - Organic cla	ilt ay
Mass of water, g	17.30		4	0	10 20 3	0 40 50 60	70 80 90 100
Tare, g	4.30		-	Liquid Limit	Diactic Limit		1
Mass of soil, g	68.30		_	(LL)	(PL)	Plasticity Index (PI)	Natural Water Content W ⁿ
Water content %	25.3%			41	21	20	25
Remarks:							
Performed by:		Melani	ie Mitchell		Date:	Nov	vember 3, 2020
Verified by:	Abdul Ha	feez Khan. P.	.Eng.: Laborator	/ Manager	Date:	Nov	rember 4. 2020

Client:		Clean	Harbors - Lambi	ton Facility		Lab no.:	WLT 453-8
Project/Site:	(Geotech Clean Harbor:	nical Investigations, 4090 Telfar Ro	on - Cell 20-1 oad, Corunna,	ON	Project no.:	044985-50-04
Borehole no.:	BH4-20		Sample no.:		ST-2	Depth:	70.0 ft 72.0 ft. (21.3 m - 21.9 m)
Soil description:		Clay and Sil	It, trace sand, trace	e gravel		Date sampled:	October 6, 2020
Apparatus:	Hand	Crank	Balance no.:	W	LG-15	Porcelain bowl no .:	B3
Liquid limit device no.:	WLS	A-3B	Oven no.:	V	/LG-2	Spatula no.:	2
Sieve no.:		5-47	Glass plate no		1	-	
[Liquid Limit (LL):		Soil Preparati	on:	_	
	Test No. 1	Test No. 2	Test No. 3	\checkmark	Cohesive <425 µm	n 🗸	Dry preparation
Number of blows	32	29	22	✓ 	Cohesive >425 µm	n 🗌	Wet preparation
	Water Conte	/nt:	T		Non-cohesive		
Tare no.	8	135	115	42.0		Results	
Wet soil+tare, g	29.08	19.56	20.49	42.0			
Dry soil+tare, g	27.46	17.91	18.46	-			
Mass of water, g	1.62	1.65	2.03	nt (%)			
lare, g	23.27	13.70	13.53	Contei			
Mass of soil, y	4.19	4.15	4.93	0.04 (
Plastic Limit (Pl	38.7%	39.0%	41.270	\$			
	-) - Water Joint	127	-				
Wet soil+tare a	10 30	21 32	-				
Drv soil+tare g	18.30	21.02	-	38.0	21 23	25 27	29 31 33
Mass of water. d	0.96	1 28	-		Soil	Plasticity Chart	
Tare, q	13.60	13,71	-	70		,	
Mass of soil, g	4.74	6.33	-	60 -	Low plasticity	High plastic	sity
Water content %	20.3%	20.2%	-	14 	Inorganic clay	Inorganic c	
Average water content %	20.	2%	-	= = 		Ľ ľ	
Natural Water	r Content (W ⁿ)):	-	ty Inde			
Tare no.	JA		-		Low compressibility		(MH) and (CH)
Wet soil+tare, g	91.20		1	- 20 +	Inorganic silt	- High irlor	i compressibility ganic ş ilt
Dry soil+tare, g	72.80		1	10 +		- inpro- - Medium co norganic si	ganic clay mpressibility ilt
Mass of water, g	18.40		1	0	10 20 3	^{ML}) _{and} (^{OL}) - Organic ¢la 60 40 50 60	70 80 90 100
Tare, g	4.50		1			Liquid Limit LL	
Mass of soil, g	68.30		1	Liquid Limit (LL)	Plastic Limit (PL)	Plasticity Index (PI)	Natural Water Content W ⁿ
Water content %	26.9%		1	41	20	21	27
Remarks:				•		I	
Daufarmand hur		Malani	ia Mitaball		Date:	Neu	ambar 2, 2020
Performed by:						Nov	emper 3, 2020
Verified by:	Abdul Hat	ieez Khan, P.	Eng.; Laboratory	y Manager	Date:	Nov	ember 4, 2020

ENT:		ambton Facility	y LAB No.: WLT 453-3					
OJECT/ SITE:	Geotechnical Investigat	ion Cell 20-1, Cle Ol	ean Harbors, 409 N	0 Telfar Rd. Co	orunna, P	ROJECT No	0.:044985-50	0-04
ehole No.:		BH2-20		Sample No.:			ST 1	
th:			Sample desc	cription	Silt and C	lay, some sand, trace	gravel	
				_				
Diamete	er	le Parameters	5.03	_				
Height		cm	10.46			-		
Volume	4	om ³	207.6			1	- 1.7.	
Height-t	to-Diameter Ratio	CIII	21			11. *		
Wet Ma		0	444.9			1	·	
Dry Der	nsitv	g ka/m ³	1800	_			- / 1 - "	
*Water	Content	%	19.1	_		1 Cites	- j Fi	
Specific	Gravity	assumed	2.68			1	atter Diskelow	
Void Ra	atio		0.49			14 : 1	It is a is	
Degree	of Saturation		1.0			*****		
*The wa	ater content was obtained after	shear from the en	tire specimen.			· · · ·	the second	
Unconfi	ined Compressive Strength	kPa	127 1			1	-	
Shear S	Strength	kPa	63.5			No.	· · · · · ·	
Rate of	Strain	%/min	0.9		10	AL. T		
Strain a	t Failure	%	9.6		-			
Maximu	m strain reached	%	% 9.6 % 15.3		449	985 BH2	2 ST-1	
		1						
150				200			Cu =	63.5 kPa
				180				
125				160				
				140				
100 —	1			е 4 120				
ess, kR 22 − 22 − − −				Stress, 1				
ssive Str				- Shear				
50				60				-
č				40				
25				20				
o 🗕				0		50	100	150
0.0	0 4.0 8.0 12.0 16.0 20.0 Axial Strain. % Normal Stress, kPa							
	Axiai Stra	, /0					-	
ARKS:								
FORMED BY	':	O.Rey	nolds		D	ATE:	28-Oct-2	20
IFIED BY:	DBY: Michael Braverman DATE: 9-Nov-20		Michael Braverman DATE: 9-Nov-20		20			

CLIENT:	(Clean Harbors -	LAB No.: WLT 453-4				
PROJECT/ SIT	Geotechnical Investigat	ion Cell 20-1, Cl Ol	ean Harbors, 409 N	0 Telfar Rd. Corunna	, PROJECT No.:	. 044985-50-04	
Borehole No.:		BH2-20		Sample No.:	ST 2		
Depth:		21.3-21.9 m			Clay and S	ilt, trace sand, trace gravel	
Depth:							
	Initial Sampl	le Parameters					
Diar	neter	cm	5.04	_	(manufacture)	and the second se	
Heiç	ght	cm	11.38	_			
Volu	ime	cm ³	226.6		1.1		
Heiç	ght-to-Diameter Ratio		2.3		1 - 3	The later	
Wet	Mass	g	419.0		FA: A		
Dry	Density	kg/m ³	1466		and the second second	and the second se	
*Wa	ater Content	%	26.1				
Spe	cific Gravity	assumed	2.65		11200		
Void	d Ratio		0.81		1 4 4 1 1	A CONTRACTOR OF	
Deg	ree of Saturation		0.9		All and and a		
*The	e water content was obtained after	shear from the er	tire specimen.		Constant and	A	
Unc	onfined Compressive Strength	kPa	128.6		E la la la		
She	ar Strength	kPa	64.3	-	CHAR S	Share and the second second	
Rate	e of Strain	%/min	0.8	- 🗾		the strong the state of the	
Stra	in at Failure	%	11 1	- 📃	44985 E	BH2 ST-2	
Max	rimum strain reached	%	14.0	-		-	
IVIAA		70	14.0				
150 - 125 - 100 - 4 5 5 5 5 5 75 - 5 5 75 -				200 180 180 160 140 40 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$			
25 - 0 -					50	100 150	
0.	.u 4.0 8.0 Axial Stra	12.0 16.0 in, %	J 20.0		Norma	ll Stress, kPa	
REMARKS:							
PERFORMED	BY:	O.Rev	nolds		DATE:	28-Oct-20	
VERIFIED BY:		Michael B	raverman		DATE:	9-Nov-20	

ENT:	(Clean Harbors - L	ambton Facility		LAB No.:	WLT 453-5	
DJECT/ SITE:	Geotechnical Investigat	ion Cell 20-1, Cle ON	ean Harbors, 409 N	90 Telfar Rd. Corunna	PROJECT No.:	044985-50-0	4
hole No.:		BH3-20		Sample No.:		ST 1	
th:		10.7-11.3 m		Sample description	Clay and Sil	, trace sand, trace gra	avel
Initial Sample Parameters							
	Initial Sampl	e Parameters					
Diameter		cm	5.01	_			
Height		cm	10.46	_	The second	1 1 1	
Volume		cm ³	206.5	_	1		
Height-to	D-Diameter Ratio		2.1		1	A A	
Wet Mas	S	g	440.4		and the set	1 . 1	
Dry Dens	sity	kg/m ³	1795	_			
*Water C	Content	%	18.8		a start and		
Specific 0	Gravity	assumed	2.65		at a second	1.18	
Void Rati	io		0.48		-	1	
Degree o	of Saturation		1.0		1. A	A Barris	
*The wate	er content was obtained after	ontent was obtained after shear from the entir		_	a up a		
Unconfine	ed Compressive Strength	kPa	210.0		71.		
Shear Str	rength	kPa	105.0		1 the		-
Rate of S	Strain	%/min	0.9	-	CI C	A COLORED	6
Strain at	Failure	%	3.5	-	14005 0	UD OT 1	
Maximum	n strain reached	%	15.3	-	44985 B	H3 51-1	
maximum		70	1010				
225	Compressive Stress v	vs. Axial Strain		300	Iohr Stress Circle	Cu =	105.0 kPa
200				250			
150 8 2125 × Lag 125 = 010				hear Stress, kPa			
ssiv				N N			
bre				100			
δ ⁷⁵							
0							
50							
				50			
25				 		<u> </u> \	
				0			
0	10 00	42.0 40.0		0	100	200	300
0.0	4.0 δ.0 Δvial Stra	12.0 16.0 in %	5 20.0		Normal	Stress, kPa	
		iii, 70					
MARKS:							
FORMED BY:		O.Rey	nolds		DATE:	28-Oct-20	
		Michael Br	raverman			0 Nov 20	

CLIENT:		Clean Harb	ors - Lambton Facility		LAB No.:	WLT	453	
PROJECT/SITE:	Geotechnical Inves	stigation - Cell 20-1/	'Clean Harbors, 4090 Telfar Road, Corunna, (ON	PROJECT No.:	04498	5-50-04	
Lab No.	Sample I.D.	Sample Depth (m)	Sample Description (visual)	Moisture Content %	Bulk Density (kg/m ³)	Bulk Unit Weight (kN/m ³)	Dry Bulk Density (kg/m³)	Dry Unit Weight (kN/m³)
WLT 453-1	BH1-20 ST-1	13.0-13.6	Clay and Silt, trace sand, trace gravel	21.3	2054	20.1	1694	16.6
WLT 453-2	BH1-20 ST-2	22.9-23.5	Clay and Silt, trace sand, trace gravel	23.3	2038	20.0	1653	16.2
WLT 453-3	BH2-20 ST-1	10.7-11.3	Clay and Silt, some sand, trace gravel	19.1	2142	21.0	1798	17.6
WLT 453-4	BH2-20 ST-2	21.3-21.9	Clay and Silt, trace sand, trace gravel	26.1	1846	18.1	1464	14.4
WLT 453-5	BH3-20 ST-1	10.7-11.3	Clay and Silt, trace sand, trace gravel	18.8	2137	21.0	1799	17.6
WLT 453-6	BH3-20 ST-2	21.3-21.9	Clay and Silt, trace sand, trace gravel	24.1	2027	19.9	1634	16.0
WLT 453-7	BH4-20 ST-1	10.7-11.3	Clay and Silt, trace sand, trace gravel	17.9	2152	21.1	1825	17.9
WLT 453-8	BH4-20 ST-2	21.3-21.9	Clay and Silt, trace sand, trace gravel	24.7	2039	20.0	1636	16.0
TESTED BY:	M.Mitchel	П			TEST DATE:	Novembe	er 4, 2020	
APPROVED BY:	M. Braverm	an			APPROVED DATE:	Novembe	r 13, 2020	

	Geotechnical Investigation Ce	Il 20-1, Clean Harbor	s, 4090 Telfar Rd.		WET 400-2
ROJECT/ SITE:	Cc	orunna, ON	-,	PROJECT No.:	044985-50-04
	BH No.			BH1-20]
	Sample ID				
	Depth m			22 9-23 5 m (75'-77	'
	Sampling Da	ato		-	/
	Sample Descrip	ntion	Silt and (- Nav trace cand tr	
	Venticel stacks of feilure		Sint and C	Slay, trace sailu, tr	ace graver
	vertical strain at failure t	aken based on Specim	WidXIII on Parameters	ium Deviator Stres	SRAIIO
	Initial Specimen Parameters	Opeening	Specimen A	Specimen B	Specimen C
	Diameter	cm	3.69	3.68	3.65
	Height	cm	7.84	7.95	7.95
	Height-to-Diameter Ratio			2.2	2.2
	Volume	cm ³	84.0	84.6	83.0
	Wet Mass		161.0	167.3	171.0
		y	161.9	107.3	1670
	Motor Content	kg/m	1320	1377	1079
		%	26.2	25.4	23.3
	Specific Gravity		2.75	2.75	2.75
	Void Ratio		0.80	0.74	0.64
	Degree of Saturation	%	90	94	100
	B-Value at end of Saturation		0.99	0.99	0.97
	Volume change due to the cor	nsolidation, cm ³	4.2	6.8	8.7
	Before Shear			- 	
	Volume	cm³	79.8	77.8	74.3
	Dry Density	g	159.5	162.9	163.0
	Water Content	<u> </u>	24.4	22.0	16.9
	Water Content Void Ratio		0.71	0.60	0.47
	Degree of Saturation	%	94	100	100
			Specimen A	Specimen B	Specimen C
	Cell pressure	kPa	802.4	800.1	807.2
	Back pressure	kPa	403.4	602.3	158.4
	Consolidation stress	kPa	399	197.8	648.8
	Rate of strain	%/hour	0.6	0.6	0.6
	Vertical strain at failure	%	5.70	5.70	14.00
	Deviator stress at failure	kPa	347	240	532
	Excess pore pressure at foilure	kPa	195.2	82.8	329.1
	A _f coefficient		0.56	0.35	0.62
			1		
	Total Stresse	es	Specimen A	Specimen B	Specimen C
	Minor principal stress, σ_3	kPa	399	197.8	648.8
	Major principal stress, σ_1	kPa	745.7	437.6	1180.8
	Radius, $(\sigma_1 - \sigma_3)/2$	kPa	173.4	119.9	266.0
	Intersection point, $(\sigma_1+\sigma_3)/2$	kPa	572.4	317.7	914.8
	Effective Stres	ses	Specimen A	Specimen B	Specimen C
	Minor principal stress, σ'2	kPa	203.8	115	319.7
	Major principal stress σ'	kPa	550.5	254.9	951.7
	Padius $(\sigma', \sigma')/2$	kDo	172.4	110.0	266.0
	Radius, $(\sigma_1 - \sigma_3)/2$	кра	173.4	119.9	200.0
	intersection point, $(\sigma_1 + \sigma_3)/2$	кРа	3/7.2	234.9	585.7
	Shear Termination Criteria		Maxir	num Deviator Stres	s Ratio
EMARKS:	Sample Reconstituted				
ERFORMED BY:		C.Ackley		DATE:	Oct 28 -Nov 5, 2020
ERIFIED BY:	Micha	ael Braverman		DATE:	11-Nov-20

CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST FOR COHESIVE SOILS (ASTM D4767 - 11)

CLIENT:	Clean Harb	ors - Lambton Facility	/	LAB No.:	WLT 453-3		
PROJECT/ SITE:	Geotechnical Investigation Cell 20-1, Clean Harbors, 4090 Telfar Rd. Corunna, ON			PROJECT No.: 044985-50-04			
	BH No.			BH2			
	Sample IE		ST-1				
	Depth, m		ʻ)				
	Sampling D						
	Sample Descri	Silt and C	ace gravel				
	Vertical strain at failure	Maxim	s Ratio				
		Specimo	n Parameters				
	Initial		Specimen A	Specimen B	Specimen C		
	Diameter	cm	4.98	4.99	4.99		
	Height	cm	10.43	10.44	10.42		
	Height-to-Diameter Ratio		2.1	2.1	2.1		
	Volume	cm ³	203.2	204.0	204.1		
	Wet Mass	g	435.4	439.6	441.8		
	Dry Density	kg/m ³	1816	1813	1838		
	Water Content	%	18.0	18.9	17.8		
	Specific Gravity (Assumed)		2.75	2.75	2.75		
	Void Ratio		0.51	0.52	0.50		
	Degree of Saturation	%	96	100	99		
	B-Value at end of Saturation	3	0.95	0.95	1.00		
	Volume change due to the co	nsolidation, cm [*]	6.2	9.3	8.6		
	Volume	cm ³	197.0	194 7	195.5		
	Wet Mass	g	429.1	435.1	440.2		
	Dry Density	kg/m ³	1873	1899	1918		
	Water Content	%	16.3	17.6	17.4		
		0/	0.47	0.45	0.43		
	Degree of Saturation	%	96	100	100		
			Specimen A	Specimen B	Specimen C		
		kPa	400.6	600.4	601.7		
	Back pressure	kPa	306	400.2	203.5		
	Consolidation stress	kPa	94.6	200.2	398.2		
	Rate of strain	%/hour	0.5	0.6	0.6		
	Vertical strain at failure	%	4 00	4 00	5.00		
	Deviator stress at failure	kPa	178	256	394		
	Excess pore pressure at	kDe	21.6	20 F	100.0		
	failure	кра	31.0	80.5	199.9		
	A _f coefficient		0.18	0.31	0.51		
	Total Stress	Specimen A	Specimen B	Specimen C			
	Minor principal stress, σ ₃ kPa		94.6	200.2	398.2		
	Major principal stress, σ_1	kPa	272.6	455.8	792.2		
	Radius, (σ ₁ -σ ₃)/2	kPa	89.0	127.8	197.0		
	Intersection point, $(\sigma_1 + \sigma_3)/2$	kPa	183.6	328.0	595.2		
	Effective Stre	Specimen A	Specimen B	Specimen C			
	Minor principal stress, σ'_3	kPa	63	. 119.7	198.3		
	Maior principal stress. σ'	kPa	241.0	375.3	592.3		
	Radius. $(\sigma'_1 - \sigma'_3)/2$	kPa	89.0	127.8	197.0		
	Intersection point, $(\sigma'_1 + \sigma'_3)/2$	kPa	152.0	247.5	395.3		
	Shear Termination Criteria		Maxin	num Principal Stres	s Ratio		
REMARKS:							
PERFORMED BY:	O. Reynolds			DATE:		Oct 28 -Nov 6, 2020	
	Michael Braverman		DATE		24-Nov-20		

CONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TEST FOR COHESIVE SOILS (ASTM D4767 - 11)

CLIENT:	Clean Harbors - Lambton Facility LAB No.: WLT 453-8					-8			
PROJECT/ SITE:	Geotechnical Investigation Ce	ell 20-1, Clean Harbor Corunna, ON	rs, 4090 Telfar Rd.	PROJECT No.: 044985		-04			
				_					
	BH No. BH4								
	Sample II	ST2							
	Depth, m	21.3-21.9 (70'-72')							
	Sampling D								
	Sample Descr	iption	Clay and	Clay and Silt, trace sand, trace gravel					
	Vertical strain at failure	Maximum Stress Ratio							
		Specime	en Parameters						
	Initial	1	Specimen A	Specimen B	Specimen C				
	Diameter	cm	5.03	4.99	5.01				
	Height	cm	10.41	10.42	10.39				
	Height-to-Diameter Ratio		2.1	2.1	2.1				
	Volume	cm ³	206.5	203.7	205.2				
	Wet Mass	g	409.3	404.5	412.0				
	Dry Density	kg/m ³	1593	1564	1589				
	Water Content	%	24.4	27.0	26.3				
	Specific Gravity (Assumed)		2.78	2.78	2.78				
	Void Ratio		0.74	0.78	0.75				
	Degree of Saturation	%	91	96	98				
	B-Value at end of Saturation		0.99	0.99	1.00				
	Volume change due to the co	onsolidation, cm ³	7.4	12.5	14.5				
	Before Shear	3	400.4	404.0	100.7				
	Wet Mass		409.4	395.2	399.7				
	Dry Density	ka/m ³	1653	1666	1710				
	Water Content	%	24.4	24.0	22.6				
	Void Ratio		0.68	0.67	0.63				
	Degree of Saturation	%	99	100	100				
			Specimen A	Specimen B	Specimen C				
	Cell pressure	kPa	799.8	800.4	801.6				
	Back pressure	kPa	600.9	407.4	200.3				
	Consolidation stress	kPa	198.9	393	601.3				
	Rate of strain	%/hour	0.6	0.6	0.6				
	Vertical strain at failure	%	6.00	7.50	9.00				
	Deviator stress at failure	kPa	193	288	386				
	Excess pore pressure at	kPa	91.1	188.3	299.4				
	A _f coefficient		0.47	0.65	0.78				
	Total Stresses		Specimen A	Specimen B	Specimen C				
	Minor principal stress, σ_3 kPa		198.9	393	601.3				
	Major principal stress, σ_1	kPa	392.0	681.1	987.0				
	Radius, $(\sigma_1 - \sigma_3)/2$	kPa	96.5	144.1	192.8				
	Intersection point, $(\sigma_1 + \sigma_3)/2$	kPa	295.4	537.1	794.1				
	Effective Stre	Specimen A	Specimen B	Specimen C					
	Minor principal stress, σ'_3	kPa	107.8	204.7	301.9				
	Major principal stress, σ'_1	kPa	300.9	492.8	687.6				
	Radius, (σ'₁-σ'₃)/2	kPa	96.5	144.1	192.8				
	Intersection point, $(\sigma'_1 + \sigma'_3)/2$	kPa	204.3	348.8	494.7				
	Shear Termination Criteria		Ν	Aaximum Stress Ra	tio				
REMARKS:									
						<u> </u>			
PERFORMED BY:	M. R. Metupalli			DATE:		Oct 28 - Nov 10 , 2020			
VERIFIED BY:	Michael Braverman		DATE:		24-Nov-20				

about GHD

GHD is one of the world's leading professional services companies operating in the global markets of water, energy and resources, environment, property and buildings, and transportation. We provide engineering, environmental, and construction services to private and public sector clients.

Bruce Polan, M.A.Sc., P. Eng. Bruce.polan@ghd.com 519.340.4139

www.ghd.com