

March 27, 2019

Alberta Environment and Parks (AEP) Monitoring Branch 11th Floor Oxbridge Place 9820-106 Street Edmonton, Alberta T5K 2J6

RE: Annual Ambient Air Monitoring Report (IAM-00010348-2019)

Calendar year 2019

Clean Harbors Canada, Inc. Approval 10348-03-00

To whom it may concern:

Clean Harbors Canada, Inc. (Clean Harbors) is presenting this Annual Ambient Air Monitoring Report, which was prepared by GHD Limited (Consultant), for the 2019 calendar year to Alberta Environment and Parks (AEP). The Clean Harbors Ryley Industrial Waste Management Facility (Facility) is located in SE 09-050-17 W4M near Ryley, Alberta.

This ambient air-monitoring program at the Facility is conducted in accordance with the requirements outlined in the Facility's Environmental Protection and Enhancement Act (EPEA) Approval, Approval Number: 10348-02-00 (Approval). As part of the Approval requirements, the Facility submitted a Proposal for a new Ambient Air Monitoring Program, which was subsequently approved on June 24, 2009 by the AEP (formally AENV). Operating under the Approval and the approved proposal, Clean Harbors operates two ambient air-monitoring stations: AEP Station ID 00010348-I-1 and AEP Station ID 00010348-C-1. There have been no changes to the monitoring locations, monitoring methods or significant changes to monitoring equipment during the 2019 calendar year.

During the 2019 calendar year, the meteorological station (AEP Station ID 00010348-C-1) operated at 98.81 percent annual uptime, which is above the 90 percent uptime threshold required by the Air Monitoring Directive, 2016. For January 2019, Clean Harbors reported a non-compliance event for the wind monitoring station, where the station operated at an uptime of 86.8 percent. This instance was reported to the AEP under the reference No.: 349140. This event is described in full in the following report.

During the 2019 calendar year, for the Particulate Matter < 10 microns (PM₁₀) station (AEP Station ID 00010348-I-1), Clean Harbors reported non-compliance events in January 2019 (Reference No.: 349679). This event is described in full in the following report.

During the 2019 calendar year, Clean Harbors reported one non-compliance event in December 2019 (Reference No.: 352691) for the VOC and TNMOC station (AEP Station ID 00010348-I-1). This event is described in full in the following report.

Included in this report are the following:

- Summary of the ambient air monitoring program undertaken at the Facility for 2019
- Summary of AMD Electronic Transfer System Submittals
- Results for Particulate Matter < 10 microns (PM₁₀) reported in ug/m³
- Results for water-soluble cations; metals or anions if the PM₁₀ results were >50 ug/m³

- Results for Total Non-Methane Organic Compounds (TNMOC) and Volatile Organic Compounds (VOC)
- 5-year average plots for measured compounds outlined in the approval
- Annual wind rose and monthly uptime summary
- Any sampling issues or data issues that occurred during the 2019 calendar year

Should there be any questions and comments regarding this report, please do not hesitate to contact the undersigned.

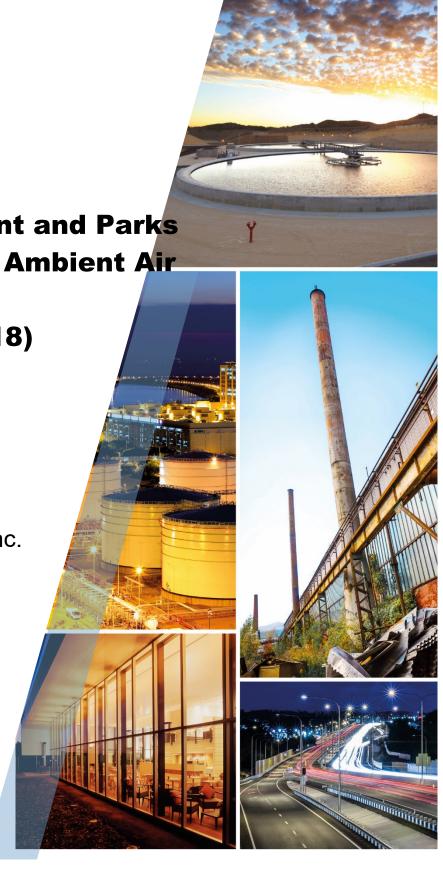
Yours truly,

CLEAN HARBORS CANADA INC.

Ctan Yuha

Stan Yuha

Facility Manager Ryley Facility


Alberta Environment and Parks (AEP) 2019 Annual Ambient Air

Monitoring Report

(IAM-00010348-2018)

Approval Number: 10348-03-00 Ryley Facility, Alberta

Clean Harbors Environmental Services Inc.

Table of Contents

1	. Intro	duction	1
	1.1	Background	1
	1.2	Contact Information	1
	1.3	Summary of Electronic Transfer System (ETS) Submittals	2
	1.4	Monitoring Locations and Methodology	2
		1.4.1 Clean Harbors AEP Mandated Air Monitoring Program	
2	. Resu	ults and Discussions	5
	2.1	Meteorological Data for Wind Speed and Direction (AEP Station ID 00010348-C-1) Results and Discussion	
		2.1.1 Meteorological Data Verification, Validation and Uptime	6
	2.2	PM10 Monitoring Station (AEP Station ID 00010348-I-1) Results and Discussion	6
		2.2.1 PM ₁₀ Sampling Issues	6
	2.3	Metal Concentrations	7
	2.4	VOC and TNMOC Station (AEP Station ID 00010348-I-1) Results and Discussion	7
		2.4.1 VOC and TMNOC Sampling Issues	7
	2.5	Dust Suppression Activities	7
Figu	ıre In	dex	
F	igure 1	Site Location and Air Monitoring Location Map	
Tab	le Ind	lex	
Т	able 1.1	Metal Parameters	3
Т	able 1.2	VOCs	4
Table	Index	(Following Text)	
Т	able 1	2019 Calendar Year - Particulate Matter Results	
T	able 2	2019 Calendar Year - Volatile Organic Compounds and Total Non-Methane Organic Compounds Analytical Results	
Т	able 3	2019 Calendar Year – Meteorological Station Untime Summary	

Appendix Index

Appendix A Annual Wind Rose

Appendix B Quarterly Calibration Records for Partisol

Appendix C 5-Year Averages for PM₁₀, VOC and TNMOC Concentrations

1. Introduction

1.1 Background

GHD Limited (GHD), on behalf of Clean Harbors Canada (Clean Harbors), is presenting to Alberta Environment and Parks (AEP) the Annual Clean Harbors Ambient Air Monitoring Report for the 2019 calendar year. The Clean Harbors Ryley Industrial Waste Management Facility (Facility) is located in SE 09-050-17 W4M near Ryley, Alberta. Figure 1 presents the site location and air monitoring station location map.

The ambient air monitoring program at the Facility is conducted in accordance with the requirements outlined in the Facility's Environmental Protection and Enhancement Act (EPEA) Approval, Approval Number: 10348-03-00 (Approval). As part of the Approval requirements, the Facility submitted a proposal for a new ambient air monitoring program, which was subsequently approved on June 24, 2009 by the AEP (formally AENV).

1.2 Contact Information

As required by AMD Chapter 9, Section 2, contact information is provided for the following Facility personnel and Contractors that assisted with the performance of the Facility's Air Monitoring Program.

Name: Mr. Stan Yuha Title: Plant Manager Company: Clean Harbors

Responsibilities: Report Certifier/ETS Submitter
Address: PO Box 390, Ryley, AB T0B 4A0

Phone: 780-663-2509

Email: yuha.stan@cleanharbors.com

Name: Mr. Todd Webb
Title: Laboratory Chemist
Company: Clean Harbors

Responsibilities: Station Field Operator and Field Sampler

Address: PO Box 390, Ryley, AB T0B 4A0

Phone: 780-663-2513

Email: webb.todd@cleanharbors.com

Name: Mr. Brandon Lawrence
Title: Project Manager
Company: GHD Limited

Responsibilities: Senior QA/QC, Project Management Address: 3445-114th Ave. SE, Suite 103 Calgary, AB

Phone: 403-271-2000

Email: brandon.lawrence@ghd.com

Name: Mr. Trevor Lewis Title: Field Technician Company: GHD Limited

Responsibilities: Maintenance/Calibration Services/Report Preparer/ETS Submitter

Address: 3445-114th Ave. SE, Suite 103 Calgary, AB

Phone: 587-991-2378

Email: trevor.lewis@ghd.com

Company: InnoTech

Responsibilities: Laboratory Analytical Services Address: PO Bag 4000, Vegreville, Alberta

Phone: 780-632-8211

Email: EAS.Results@albertainnovates.ca

1.3 Summary of Electronic Transfer System (ETS) Submittals

The "Alberta Environment and Parks (AEP) 2019 Annual Ambient Air Monitoring Report for Approval Number: 10348-03-00" for the Clean Harbors, Ryley Alberta Facility was submitted to the ETS as IAM-00010348-2019.pdf, by March 31, 2019.

1.4 Monitoring Locations and Methodology

Clean Harbors undertakes ambient air monitoring at three locations to assess ambient air quality at and around the Facility. These locations include two AEP mandated stations; AEP Station ID 00010348-I-1 and AEP Station ID 00010348-C-1 and one voluntary ambient air monitoring station. The locations of the air monitoring stations are identified on Figure 1.

A full description of the monitoring locations and methodology for the AEP mandated air monitoring program is outlined in Section 1.4.

In addition to the two AEP mandated stations, Clean Harbors operates a voluntary air monitoring program for the Village of Ryley. The voluntary air monitoring program utilizes a hi-volume sampler station located at the same location as AEP Station ID 00010348-C-1, and an additional hi-volume sampler/meteorological station that is located at the Ryley School and is described in Section 1.4.2.

1.4.1 Clean Harbors AEP Mandated Air Monitoring Program

The intermittent monitoring station, known as the Ryley Lift Station (AEP Station ID 00010348-I-1), is located on Secondary Road 854, approximately 350 metres southeast of the Facility. At this location, samples are collected and analyzed for the following: particulate matter less than or equal to 10 micrometers (μ m) in diameter (PM₁₀), volatile organic compounds (VOCs), and total non-methane organic compounds (TNMOC). Additionally, PM₁₀ samples that exceed 50 micrograms per cubic metre (50 μ g/m3) are analyzed for a target list of metals, anions, and cations. Sampling is conducted every 12-days as required by the Facility's Approval.

The second station, located on the roof of the administration building at the Facility (AEP Station ID 00010348-C-1), is a continuous meteorological station that collects wind speed and wind direction data.

1.4.1.1 PM₁₀ Sampling Station (AEP Station ID 00010348-I-1)

PM₁₀ is sampled over a 24-hour period at a volumetric flow rate of 16.7 litres per minute. PM₁₀ samples are collected on a Teflon[®] filter using a federal reference method (FRM) sampler called a Partisol air sampler. Calibration of the Partisol sampler is conducted and documented on a quarterly basis. The filter samples are collected and sent to InnoTech Alberta (Laboratory) under chain of custody procedures. The filters are analyzed gravimetrically utilizing laboratory method AC-029. Should it be determined that the PM₁₀ threshold of 50 μ g/m³ is exceeded, the laboratory would proceed with the metal analysis using accepted methodology. The following is a list of the metal parameters that are analyzed when the PM₁₀ threshold is exceeded.

Table 1.1 Metal Parameters

Parameter	CAS No.
Particulate Matter (PM ₁₀)	Not available
Antimony	7440-36-0
Arsenic	7440-38-2
Beryllium	7440-41-4
Cadmium	7440-43-9
Chromium	7440-47-3
Cobalt	7440-48-4
Copper	7440-50-8
Lead	7439-92-1
Manganese	7439-96-5
Mercury	7439-97-6
Nickel	7440-02-0
Silver	7782-49-2
Thallium	7440-28-0
Tin	7440-31-5
Ammonia-N	Not available
Calcium Ion	Not available
Chloride	Not available
Magnesium Ion	Not available
Nitrate	Not available
Potassium Ion	Not available
Sodium Ion	Not available
Sulphate	Not available

1.4.1.2 Volatile Organic Compound (VOC) and Total Non-Methane Organic Compound (TNMOC) Station (AEP Station ID 00010348-I-1)

For VOC and TNMOC sampling and analysis, 6 litre evacuated SUMMA® canisters are used to collect the sample over a 24-hour period. Flow controllers and pressure gauges supplied by the laboratory are used to maintain a constant sample flowrate over the 24-hour sampling period. The VOC analysis is conducted utilizing laboratory method AC-058 by gas chromatography mass spectrometry. The TNMOC analysis is conducted utilizing laboratory method NA-028 by gas chromatography flame ionization detector. The following is a list of VOCs that are analyzed:

Table 1.2 VOCs

Compound	CAS No.	Compound	CAS No.
1,2,3-Trimethylbenzene	526-73-8	Isoprene	78-79-5
1,2,4-Trimethylbenzene	95-63-6	Isopropylbenzene	98-82-8
1,3,5-Trimethylbenzene	108-67-8	m, p-Xylene	108-38-3/ 106-42-3
1-Butene/Isobutylene	106-98-9	m-Diethylbenzene	141-93-5
1-Hexene/2-Methyl-1- pentene	592-41-6	Methylcyclohexane	108-87-2
1-Pentene	109-67-1	Methylcyclopentane	96-37-7
2,2,4-Trimethylpentane	540-84-1	m-Ethyltoluene	620-14-4
2,2-Dimethylbutane	75-83-2	n-Butane	106-97-8
2,3,4-Trimethylpentane	565-75-3	n-Decane	124-18-5
2,3-Dimethylbutane	79-29-8	n-Dodecane	112-40-3
2,3-Dimethylpentane	565-59-3	n-Heptane	142-82-5
2,4-Dimethylpentane	108-08-7	n-Hexane	110-54-3
2-Methylheptane	592-27-8	n-Nonane	111-84-2
2-Methylhexane	591-76-4	n-Octane	111-65-9
2-Methylpentane	107-83-5	n-Pentane	109-66-0
3-Methylheptane	589-81-1	n-Propylbenzene	103-65-1
3-Methylhexane	589-34-4	n-Undecane	1120-21-4
3-Methylpentane	96-14-0	o-Ethyltoluene	611-14-3
Benzene	71-43-2	o-Xylene	95-47-6
cis-2-Butene	590-18-1	p-Ethyltoluene	622-96-8
cis-2-Pentene	627-20-3	Styrene	100-42-5
Cyclohexane	110-82-7	Toluene	108-88-3
Cyclopentane	287-92-3	trans-2-Butene	624-64-6
Ethylbenzene	100-41-4	trans-2-Pentene	646-04-8
Isobutane	75-28-5	p-Diethylbenzene	105-05-5
Isopentane	78-78-4		

Meteorological Station (AEP Station ID 00010348-C-1)

Clean Harbors operates a RM Young 05305-10A metrological station at the Facility. The meteorological station continuously collects wind speed and wind direction at the site. Reporting for this station is conducted on a monthly and annual basis where 24-hour wind speed and wind direction, wind class frequency distribution and wind roses are presented. As part of the Approval Clean Harbors is also required to ensure that operation of the station is maintained at no less than 90 percent uptime. The uptime data is also presented on a monthly and annual basis.

1.4.2 Clean Harbors Voluntary Air Monitoring Program

Clean Harbors operates two hi-volume sampler stations that collect total particulate matter. One hi-volume sampler station is located on the roof of the administration building at the Facility, near the AEP Station ID 00010348-C-1, and is intended to collect background ambient air data. The second hi-volume sampler station is located at the Ryley School with a meteorological station and is intended to collect sample data. The samples collected are measured gravimetrically for total particulate and then analyzed for metals by the laboratory when the particulate weight is greater than 50 mg. The two air monitoring stations are configured such that the stations only collect air samples when the wind direction is oriented in a north-east to south-west direction and the wind speed is greater than 5 km/hour. The objective of the voluntary program is to determine airborne particulates from landfill operations that could potentially impact the Village of Ryley.

The results of this voluntary air monitoring program are communicated in a letter presented to the Village of Ryley on an annual basis.

2. Results and Discussions

The following section presents the results from the ambient air monitoring program that was conducted by Clean Harbors in 2019. Where applicable, comparisons were made to Alberta Ambient Air Quality Objectives (AAAQO) for parameters that had 24-hour average objectives and annual objectives. These parameters include m,p,o-xylene, hexane, toluene and benzene. For all other parameters, AAAQO have not been established limits or the limits have averaging periods other than 24-hours or annual.

2.1 Meteorological Data for Wind Speed and Direction (AEP Station ID 00010348-C-1) Results and Discussion

In accordance with the Approval, the Facility is required to collect wind data continuously when operations are occurring at the Facility. In 2019, the wind station collected 98.81 percent of usable data. Appendix A presents the wind data that was collected and also wind rose plots. As illustrated in the wind rose and frequency distribution chart for 2019, the predominant wind direction is from the West, which is consistent with historical information and data.

The 2019 annual wind rose and frequency distribution chart is presented in Appendix A.

2.1.1 Meteorological Data Verification, Validation and Uptime

In the 2019 calendar year, the meteorological station had an annual uptime of 98.81 percent, above the 90 percent uptime required. The station maintained an uptime above 90 percent for 11 of the 12-months in the calendar year. For the month of January, the uptime for the station was 86.8 percent. This contravention is described below.

2.1.1.1 Meteorological Station Issues

In January of 2019, the meteorological station experienced multiple power losses spanning from Friday January 4, 2019 until Tuesday January 15, 2019 resulting in multiple episodes of data loss. The electrical issue regarding the power supply circuit was thought to have been fixed on multiple occasions without success until the outlet was split into two individual circuits in order for the air monitoring equipment to operate correctly. This resolved the electrical issues and resulted in the wind station to be in working order. This non-compliance event was reported to the AEP on February 5, 2019 under the reference No.: 349140.

2.2 PM₁₀ Monitoring Station (AEP Station ID 00010348-I-1) Results and Discussion

In 2019, 31 samples were collected for PM_{10} analysis at 12-day intervals. One sample was discarded and is described in Section 2.2.1.

The PM $_{10}$ samples in 2019 had a minimum concentration of 0.17 $\mu g/m^3$, a maximum concentration of 35.28 $\mu g/m^3$, and an average concentration of 12.18 $\mu g/m^3$. There is currently no AAAQO is specified for PM $_{10}$ over a 24-hour or 1-hour averaging period, however, the Facility is required to analyze for metals should the PM $_{10}$ concentration exceed 50 $\mu g/m^3$. Metal results are discussed in Section 2.3. The 2019 test results from the PM $_{10}$ monitoring are presented in Table 1 and include maximum, minimum, and average values for the reporting period. The previous 5-year averages for PM $_{10}$ concentrations can be found in Appendix C.

The Partisol sampling instrument was calibrated on a quarterly basis in 2019. The quarterly calibration records are included in Appendix B.

2.2.1 PM₁₀ Sampling Issues

On February 8, 2019 (Test 698) the Partisol air sampler experienced a power failure which caused the total sample time to be less than 24-hours. Clean Harbors discarded this test. After Clean Harbors investigated this issue, it was discovered the screen was not producing a display due to the extreme cold weather, so the power failure was not noticed during the retrieval of sample 698. The power failure appears to have happened between 17:25 on February 7 to 00:10 on February 8. It was operational from 00:10 to 00:40 on February 8, then without power from February 8 at 12:40 am to 13:05 on February 9. After 13:05 on February 9 the power was restored. This non-compliance event was reported to AEP on February 19, 2019 under reference No.: 349679.

2.3 Metal Concentrations

As the concentrations of PM_{10} for all samples collected in 2019 were below 50 μ g/m³, analysis for metal ions was not conducted on any PM_{10} samples during the reporting period.

2.4 VOC and TNMOC Station (AEP Station ID 00010348-I-1) Results and Discussion

In 2019, 31 samples were collected for VOC and TNMOC analysis at 12-day intervals. One sample was deemed invalid and is described in Section 2.4.1.

There are three VOC parameters that that have corresponding AAAQO with 24-hour averaging periods including o,p,m-xylene, hexane and toluene. There is one VOC parameter (benzene) that has a corresponding annual AAAQO. The annual AAAQO for benzene is 0.9 ppbv. The annual result for benzene samples at the lift station was 0.2 ppbv.

The 2019 sample results from the VOC and TNMOC monitoring are presented in Table 2 and include maximum, minimum, and average values. The previous 5-year averages for VOC and TNMOC parameters can be found in Appendix C.

2.4.1 VOC and TMNOC Sampling Issues

On December 29, 2019 (Test 725) the VOC and TMNOC sampling system had a non-compliance event due to an operator error. The control valve on the sample canister did not appear to close after the 24-hour sampling period. This caused the total sample time for test 725 to be estimated at 56-hours and resulted in the canister vacuum to equal approximately 0 inHg. When tested, the control valve seemed to be in good working order. Clean Harbors is unable to confirm, but it is suspected the incident may have been caused by a programming error, which caused the valve to not close. The data was still sent to the lab for analysis, but the data is considered to be invalid due to failing QA/QC protocols. This non-compliance event was reported to the AEP on January 2, 2020 under reference No.: 352691.

2.5 **Dust Suppression Activities**

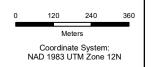
In 2019, Clean Harbors did not conduct dust suppression activities at the Facility using leachate spread on the surface of the active landfill.

3. Certification

Per the requirements of AMD, Chapter 9, the following certification is provided for the 2019 Annual Ambient Air Monitoring Report.

"I certify that I have reviewed and verified this report and that the information is complete, accurate and representative of the monitoring results, reporting timeframe and the specified analysis, summarization and reporting requirements."

Stan Yuha


Stan Yuha

Plant Manager/Report Certifier

Figure

Image Source: © (2020) Google. Image Aquisition Date: 09/17/2019.

CLEAN HARBORS CANADA, INC. RANGE ROAD 854, RYLEY, ALBERTA 11114644 Mar 27, 2020

SITE LOCATION AND AIR MONITORING LOCATION MAP FIGURE 1

Tables

Table 1
2019 Calendar Year
PM₁₀ Analytical Results
AEP Station ID 00010348-I-1
Clean Harbors Canada, Inc.

	Parameter Units	PM ₁₀ μg/m³ ⁽¹⁾⁽²⁾	Particulate Weight mg
Date	Test ID		
19/01/03	695	4.304	0.102
19/01/15	696	3.900	0.099
19/01/27	697	0.170	0.000
19/02/08	698	Sample Discarded	Sample Discarded
19/02/20	699	8.950	0.220
19/03/04	700	11.700	0.303
19/03/16	701	10.330	0.252
19/03/28	702	9.340	0.225
19/04/09	703	19.570	0.460
19/04/21	704	10.470	0.250
19/05/03	705	16.570	0.400
19/05/15	706	4.660	0.110
19/05/27	707	32.260	0.730
19/06/08	708	17.450	0.410
19/06/20	709	3.260	0.075
19/07/02	710	14.220	0.327
19/07/14	711	13.510	0.304
19/07/26	712	17.560	0.395
19/08/07	713	13.290	0.303
19/08/19	714	10.390	0.239
19/08/31	715	8.970	0.209
19/09/12	716	7.330	0.170
19/09/24	717	35.280	0.815
19/10/06	718	17.170	0.400
19/10/18	719	18.660	0.431
19/10/30	720	25.140	0.611
19/11/11	721	8.570	0.221
19/11/23	722	4.850	0.113
19/12/05	723	7.863	0.195
19/12/17	724	7.407	0.180
19/12/29	725	2.308	0.057
	Maximum	35.28	0.82
	Minimum	0.17	0.00
	Average	12.18	0.29

Note:

- (1) Alberta Ambient Air Quality Objectives do not currently provide an objective fo PM₁₀.
- (2) In accordance with the Facility's Approval, PM_{10} samples that exceed 50 μ g/m³ are analyzed for a target list of metals, anions, and cations.

Table 2 2019 Calendar Year VOC and TNMOC Analytical Results AEP Station ID 00010348-I-1 Clean Harbors Canada, Inc.

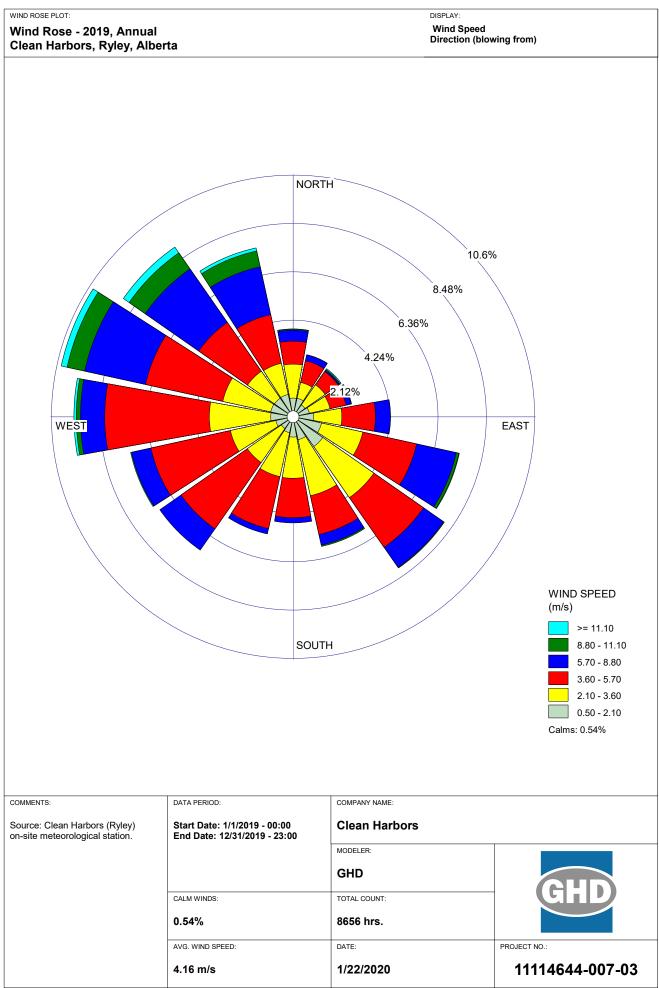
		Date	e 19/01/03	19/01/15	19/01/27	19/02/08	19/02/20	19/03/04	19/03/16	19/03/28	19/04/09	19/04/21	19/05/03	19/05/15	19/05/27	19/06/08	19/06/20	19/07/02	19/07/14	19/07/26	19/08/07	19/08/19	19/08/31	19/09/12	19/09/24	19/10/06	19/10/18	9/10/30	19/11/11	19/11/23	19/12/05	19/12/17	19/12/29	Maximum	Minimum ⁽³⁾	Average (4)
		Test II	0 695	696	697	698	699	700	701	702	703	704	705	706	707	708	709	710	711	712	713	714	715	716	717	718	719	720	721	722	723	724	725 ⁽⁵⁾			
Parameter	Units	AAAQO ⁽¹⁾⁽²)																																	
1,2,3-Trimethylbenzene	ppbv	-	0.18	0.24	< 0.07	< 0.07	< 0.07	0.09	< 0.07	< 0.07	< 0.12	< 0.07	< 0.07	< 0.07	< 0.08	0.11	< 0.05	0.09	< 0.08	< 0.08	< 0.08	< 0.08	< 0.05	< 0.08	0.25	< 0.08	0.11	< 0.07	< 0.07	< 0.08	< 0.09	0.13	< 0.07	0.25	0.05	0.10
1,2,4-Trimethylbenzene 1.3.5-Trimethylbenzene	ppbv ppbv	-	1.22 0.47	0.51 0.10	0.16 0.11	0.17 0.13	0.16 < 0.03	0.39 0.04	< 0.07 < 0.03	< 0.07 < 0.03	< 0.12 < 0.05	< 0.07 < 0.03	< 0.07 < 0.03	0.12 < 0.03	< 0.08 < 0.03	0.31 0.11	< 0.05 < 0.02	0.49 < 0.02	0.10 0.25	< 0.08 < 0.03	< 0.08 < 0.03	< 0.08 < 0.03	< 0.05 < 0.02	< 0.08 < 0.03	0.98 0.43	< 0.08 < 0.03	0.19 < 0.03	< 0.07 < 0.03	< 0.07 < 0.03	< 0.08 < 0.03	< 0.09 < 0.04	0.18 < 0.03	< 0.07 < 0.03	1.22 0.47	0.05 0.02	0.21 0.08
1-Butene/Isobutylene	vdqq	-	0.32	0.31	1.28	< 0.03	0.31	0.29	0.33	1.36	8.65	2.34	0.20	2.30	0.22	4.39	0.40	< 0.02	0.09	< 0.03	0.28	2.25	1.11	1.29	1.61	0.06	0.52	0.47	0.62	0.79	< 0.04	0.21	0.05	8.65	0.02	1.07
1-Hexene/2-Methyl-1-pentene	ppbv	-	0.27	< 0.03	0.15	0.18	< 0.03	< 0.03	< 0.03	< 0.03	< 0.05	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.02	< 0.02	< 0.03	< 0.03	0.31	< 0.03	< 0.02	< 0.03	< 0.03	< 0.03	0.23	< 0.03	< 0.03	< 0.03	0.15	< 0.03	0.31	0.31	0.02	0.07
1-Pentene	ppbv	-	0.18	0.14	0.09	0.16	< 0.01	< 0.01	< 0.01	0.06	< 0.02	0.07	0.05	< 0.01	< 0.02	0.17	< 0.01	< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	< 0.01	< 0.02	0.06	< 0.01	< 0.01	0.09	0.09	0.07	0.07	0.18	0.01	0.05
2,2,4-Trimethylpentane 2,2-Dimethylbutane	ppbv ppbv	-	0.29 0.19	0.15 0.08	0.95 0.09	0.32 0.07	0.07 0.03	0.21 < 0.01	< 0.01 < 0.01	0.20 < 0.01	0.23 < 0.02	0.06 0.05	0.73 < 0.01	0.05 < 0.01	0.18 < 0.02	0.10 0.11	< 0.01 < 0.01	0.15 < 0.01	0.12 0.13	< 0.02 < 0.02	0.32 0.07	< 0.02 < 0.02	0.13 < 0.01	< 0.02 < 0.02	0.18 0.14	< 0.02 < 0.02	0.11	< 0.01 < 0.01	< 0.01 0.11	0.09 < 0.02	0.12 0.08	0.10 0.02	0.09 0.04	0.95 0.19	0.01 0.01	0.17 0.05
2,3,4-Trimethylpentane	ppbv	-	0.13	0.00	0.03	0.07	< 0.03	< 0.01	< 0.01	< 0.01	< 0.02	< 0.01	< 0.01	< 0.01	< 0.02	0.11	< 0.01	< 0.01	< 0.02	< 0.02	0.07	< 0.02	< 0.01	< 0.02	0.14	< 0.02	0.15	< 0.01	< 0.01	0.12	0.05	0.02	0.04	0.18	0.01	0.05
2,3-Dimethylbutane	ppbv	-	0.25	0.14	0.11	0.17	0.05	0.03	< 0.03	< 0.03	< 0.05	< 0.03	0.06	< 0.03	< 0.03	0.18	< 0.02	0.07	0.17	0.04	0.20	0.20	0.11	0.15	0.89	< 0.03	0.14	0.11	0.08	0.08	0.10	0.10	0.06	0.89	0.02	0.12
2,3-Dimethylpentane	ppbv	-	0.31	0.14	0.10	0.21	0.04	0.12	< 0.03	< 0.03	< 0.05	0.05	0.07	0.06	0.13	0.14	< 0.02	0.17	0.13	< 0.03	0.15	< 0.03	0.07	< 0.03	0.09	< 0.03	0.09	0.06	0.06	0.06	0.06	0.06	0.06	0.31	0.02	0.09
2,4-Dimethylpentane	ppbv	-	0.23	0.11	0.06	0.12	< 0.01	< 0.01	< 0.01	< 0.01	< 0.02	< 0.01	0.02	< 0.01	< 0.02	0.09	< 0.01	0.08	0.14	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	0.06	< 0.02	0.10	0.09	0.11	0.09	0.09	0.05	0.05	0.23	0.01	0.06
2-Methylheptane 2-Methylhexane	ppbv ppbv	-	0.56 0.65	0.18 0.17	0.14 0.15	0.29 0.36	0.04 0.19	0.11 0.19	< 0.01 < 0.01	0.08 0.07	< 0.02 < 0.02	< 0.01 0.07	0.19 0.26	0.03 0.09	< 0.02 0.18	0.11 0.12	< 0.01 < 0.01	0.39 0.30	0.09 0.11	< 0.02 < 0.02	< 0.02 < 0.02	< 0.02 0.13	< 0.01 0.07	< 0.02 < 0.02	0.18 0.13	< 0.02 < 0.02	0.11 0.13	0.08 0.05	0.08 0.05	0.06 0.06	< 0.02 0.06	0.11 0.07	0.07 0.08	0.56 0.65	0.01 0.01	0.10 0.13
2-Methylpentane	ppbv	-	1.11	0.17	0.13	0.66	0.19	0.19	0.13	0.07	< 0.02	0.06	0.20	0.09	0.10	0.12	< 0.01	0.54	0.17	0.15	0.13	0.13	0.07	0.02	8.02	0.19	0.13	0.05	0.05	0.06	0.06	0.07	0.08	8.02	0.01	0.53
3-Methylheptane	ppbv	-	0.37	0.14	0.12	0.27	< 0.03	0.03	< 0.03	0.13	< 0.05	< 0.03	0.13	< 0.03	< 0.03	0.14	< 0.02	0.21	0.19	< 0.03	0.20	< 0.03	< 0.02	< 0.03	0.26	< 0.03	0.11	0.09	0.11	0.06	0.12	0.12	0.1	0.37	0.02	0.11
3-Methylhexane	ppbv	-	0.57	0.20	0.16	0.47	0.21	0.24	< 0.03	0.04	< 0.05	< 0.03	0.14	0.05	0.11	0.19	< 0.02	0.41	0.16	< 0.03	0.23	0.21	0.11	0.08	0.18	< 0.03	0.17	0.07	0.09	0.10	0.09	0.05	0.09	0.57	0.02	0.15
3-Methylpentane	ppbv	-	0.77	0.19	0.94	0.68	0.42	0.29	0.04	0.20	0.18	0.07	0.68	0.12	0.21	0.26	< 0.01	0.42	0.18	0.08	0.30	0.19	0.17	0.08	4.06	< 0.02	0.27	0.16	0.17	0.08	0.17	0.13	0.14	4.06	0.01	0.38
Benzene	ppbv	0.9	0.83	0.25	0.38	0.42	0.31	0.38	0.16	0.15	0.34	0.09	0.32	0.10	< 0.02	0.32	< 0.01	0.46	0.25	< 0.02	0.24	0.39	0.17	0.23	0.28	< 0.02	0.18	0.11	0.13	0.14	0.11	0.16	0.24	0.83	0.01	0.23
cis-2-Butene	ppbv	-	0.13	0.11	0.51	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	0.07	< 0.03	< 0.03	< 0.03	< 0.03	0.18	< 0.02	< 0.02	< 0.03	0.06	< 0.03	< 0.03	0.05	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	1.09	< 0.03	< 0.03	1.09	0.02	0.09
cis-2-Pentene Cyclohexane	ppbv ppbv	-	0.16 1.06	0.10 0.32	0.05 0.32	< 0.03 0.71	< 0.03 0.22	< 0.03 0.16	< 0.03 < 0.03	< 0.03 0.10	< 0.05 0.09	0.58 0.14	< 0.03 0.31	< 0.03 0.08	< 0.03 0.27	< 0.03 0.18	< 0.02 < 0.02	< 0.02 0.63	< 0.03 0.27	0.07 < 0.03	< 0.03 0.17	< 0.03 0.13	< 0.02 0.21	< 0.03 0.14	< 0.03 0.18	< 0.03 < 0.03	< 0.03 0.33	< 0.03 0.13	< 0.03 0.13	< 0.03 0.14	< 0.04 0.13	< 0.03 0.07	0.05 0.24	0.58 1.06	0.02 0.02	0.06 0.22
Cyclopentane	ppbv	-	0.25	0.13	0.07	0.16	0.22	0.03	< 0.03	0.10	< 0.03	< 0.01	0.06	0.12	< 0.02	0.10	< 0.02	0.03	0.17	< 0.03	0.17	0.13	0.21	< 0.02	0.18	< 0.03	0.33	0.13	0.13	0.14	0.13	0.07	0.24	0.25	0.01	0.09
Ethylbenzene	ppbv	-	2.30	0.81	0.94	1.04	0.31	0.78	< 0.01	0.19	< 0.02	0.08	0.37	0.15	< 0.02	0.34	< 0.01	0.56	0.19	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	0.36	< 0.02	0.29	0.18	< 0.01	0.24	< 0.02	0.26	< 0.01	2.30	0.01	0.32
Isobutane	ppbv	-	1.06	0.59	1.81	2.31	12.50	1.32	0.98	0.69	1.71	0.96	0.73	2.06	0.44	3.90	0.83	1.33	2.69	0.50	3.14	0.66	1.79	2.00	2.00	0.55	1.49	1.12	1.39	1.09	1.45	1.28	2.26	12.50	0.44	1.81
Isopentane	ppbv	-	2.01	0.45	1.54	2.33	2.87	0.97	0.52	0.26	0.32	0.23	0.51	0.42	0.47	1.40	0.30	0.67	0.27	0.20	0.70	0.40	0.32	0.33	0.79	0.44	0.73	0.39	0.46	0.31	0.64	0.58	0.94	2.87	0.20	0.73
Isoprene	ppbv	-	0.07 0.06	0.10 0.07	< 0.01 0.04	< 0.01 < 0.01	< 0.01	< 0.01 < 0.01	< 0.01 < 0.01	< 0.01	< 0.02 < 0.02	0.08 < 0.01	< 0.01 < 0.01	< 0.01 < 0.01	< 0.02 < 0.02	0.17 < 0.02	< 0.01 < 0.01	< 0.01 0.02	0.25 < 0.02	0.36 < 0.02	0.22 < 0.02	0.21 < 0.02	0.09 < 0.01	0.13 < 0.02	0.11	< 0.02 < 0.02	< 0.01 < 0.01	< 0.01 < 0.01	0.14 < 0.01	0.12 < 0.02	< 0.02	0.05 0.02	0.07	0.36	0.01 0.01	0.08 0.02
Isopropylbenzene m,p-Xylene	ppbv ppbv	161	11.00	2.24	1.76	3.66	< 0.01 1.17	2.53	< 0.01	< 0.01 0.11	0.15	0.19	1.39	0.52	< 0.02	0.02	0.33	2.28	0.50	< 0.02	< 0.02	< 0.02	0.33	< 0.02	0.11 1.05	< 0.02	0.62	0.22	< 0.01	0.02	< 0.02 < 0.05	0.02	< 0.01 0.24	0.11 11.00	0.01	1.05
m-Diethylbenzene	vdqq	-	0.07	0.13	< 0.06	< 0.05	< 0.06	< 0.05	< 0.04	< 0.06	< 0.09	< 0.06	< 0.05	< 0.06	< 0.06	< 0.06	< 0.04	< 0.04	< 0.06	< 0.03	< 0.04	< 0.06	< 0.04	< 0.06	0.23	< 0.06	< 0.02	< 0.06	< 0.04	< 0.23	< 0.03	0.29	< 0.06	0.29	0.04	0.08
Methylcyclohexane	ppbv	-	0.72	0.22	0.14	0.19	0.14	0.24	< 0.11	< 0.11	< 0.18	< 0.11	< 0.11	< 0.11	< 0.12	< 0.12	< 0.08	0.27	0.17	< 0.13	< 0.12	< 0.12	< 0.08	< 0.12	0.70	< 0.12	0.18	< 0.12	< 0.12	0.20	< 0.14	0.24	< 0.11	0.72	0.08	0.18
Methylcyclopentane	ppbv	-	1.82	0.32	0.36	0.97	0.45	0.53	0.02	< 0.01	0.03	0.08	0.39	0.21	0.17	0.25	< 0.01	1.24	0.19	< 0.02	0.17	0.07	0.12	0.10	0.25	< 0.02	0.17	0.07	0.09	0.06	0.12	0.15	0.14	1.82	0.01	0.28
m-Ethyltoluene	ppbv	-	0.85	0.22	1.17	0.76	0.42	0.39	< 0.03	0.26	0.09	0.09	0.66	0.17	0.22	0.23	< 0.02	0.55	0.20	< 0.03	0.30	0.21	0.20	0.10	0.16	< 0.03	0.21	0.13	0.17	0.12	0.21	0.12	0.13	1.17	0.02	0.28
n-Butane n-Decane	ppbv ppbv	-	1.62 0.45	0.60 0.43	3.22 0.22	4.60 2.02	9.23 0.13	1.76 0.33	1.49 < 0.08	0.82 < 0.08	0.87 < 0.14	0.65 < 0.09	1.18 0.25	1.28 0.13	0.28 < 0.09	1.40 0.19	0.65 0.08	0.91 0.47	1.05 0.15	0.57 0.10	3.76 0.46	0.68 0.09	0.91 0.10	0.98 0.10	1.28 0.24	0.80 < 0.09	1.69 0.22	1.43 0.11	1.76 < 0.09	1.09 0.20	2.41 < 0.10	2.09 0.37	3.13 0.21	9.23 2.02	0.28 0.08	1.70 0.25
n-Decane n-Dodecane	ppbv	-	< 0.6	< 0.6	< 0.6	< 0.5	< 0.6	< 0.5	< 0.6	< 0.6	< 0.14	< 0.09	< 0.5	< 0.6	< 0.09	< 0.6	0.70	< 0.47	< 0.6	< 0.7	1.30	< 0.6	< 0.4	< 0.6	< 0.6	< 0.09	< 0.6	< 0.6	< 0.09	< 0.7	< 0.10	1.10	< 0.6	1.30	0.40	0.64
n-Heptane	ppbv	-	1.45	0.38	0.43	0.74	0.36	0.45	< 0.01	< 0.01	< 0.02	0.05	0.31	0.06	0.24	0.21	< 0.01	1.20	0.12	< 0.02	0.35	0.12	0.18	0.23	0.35	< 0.02	0.17	0.06	0.09	0.15	0.08	0.22	0.24	1.45	0.01	0.27
n-Hexane	ppbv	1990	2.02	0.39	4.36	2.10	0.83	0.80	0.12	0.74	0.31	0.03	2.55	0.22	0.33	0.35	< 0.01	1.14	0.20	0.03	1.25	0.40	0.49	0.17	0.45	< 0.02	0.40	0.11	0.16	0.14	0.44	0.36	0.29	4.36	0.01	0.70
n-Nonane	ppbv	-	0.53	0.34	0.21	0.32	0.12	0.27	0.05	< 0.01	< 0.02	0.08	0.22	< 0.01	< 0.02	0.15	0.04	0.50	0.19	< 0.02	< 0.02	< 0.02	0.09	0.06	0.24	< 0.02	0.17	0.13	< 0.01	0.20	0.17	0.30	0.19	0.53	0.01	0.15
n-Octane	ppbv	-	0.75	0.25	0.25	1.16	0.16	0.24	< 0.03	0.09	< 0.05	< 0.03	0.21	< 0.03	< 0.03	0.13	< 0.02	0.65	0.16	< 0.03	0.21	0.11	0.10	< 0.03	0.24	< 0.03	0.18	0.12	0.16	0.17	0.12	0.31	0.12	1.16	0.02	0.20
n-Pentane	ppbv ppbv	-	2.40 0.34	0.50 0.10	1.50 0.09	2.00 0.08	2.00 < 0.07	1.00 < 0.07	0.40 < 0.07	0.20 < 0.07	< 0.2 < 0.12	0.10 < 0.07	0.50 < 0.07	0.30 < 0.07	0.40 < 0.08	1.00 < 0.08	0.20 < 0.05	0.80 0.08	0.30 0.13	0.20 < 0.08	0.50 < 0.08	0.40 < 0.08	0.30 < 0.05	0.40 < 0.08	0.80 0.33	0.40 < 0.08	0.80 0.19	0.40 < 0.07	0.40 < 0.07	0.30 < 0.08	0.60 < 0.09	0.50 0.16	0.8 < 0.07	2.40 0.34	0.10 0.05	0.66 0.10
n-Propylbenzene n-Undecane	ppbv	-	< 0.7	< 0.7	< 0.7	< 0.7	< 0.07	< 0.07	< 0.07	< 0.07	< 1.2	< 0.07	< 0.07	< 0.07	< 0.08	< 0.08	< 0.05	< 0.5	< 0.13	< 0.08	< 0.08	< 0.08	< 0.05	< 0.08	< 0.7	< 0.08	< 0.7	< 0.07	< 0.07	< 0.08	< 0.09	< 0.8	< 0.07	1.20	0.50	0.74
o-Ethyltoluene	ppbv	-	0.36	0.10	0.14	0.05	0.03	0.09	< 0.01	< 0.01	< 0.02	< 0.01	0.09	< 0.01	< 0.02	< 0.02	< 0.01	0.11	0.08	< 0.02	< 0.02	< 0.02	< 0.01	< 0.02	0.34	< 0.02	0.11	< 0.01	< 0.01	< 0.02	< 0.02	0.14	< 0.01	0.36	0.01	0.06
o-Xylene	ppbv	161	3.04	0.78	0.58	1.00	0.38	0.95	< 0.01	0.04	0.26	0.03	0.52	0.09	< 0.02	0.37	0.04	0.70	0.27	< 0.02	< 0.02	< 0.02	0.11	< 0.02	0.83	< 0.02	0.19	0.05	< 0.01	0.08	< 0.02	0.11	0.14	3.04	0.01	0.35
p-Ethyltoluene	ppbv	-	0.17	0.24	< 0.06	< 0.05	< 0.06	0.07	< 0.06	< 0.06	< 0.09	< 0.06	< 0.05	< 0.06	< 0.06	< 0.06	< 0.04	0.05	< 0.06	< 0.07	< 0.06	< 0.06	< 0.04	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.06	< 0.07	< 0.07	0.64	< 0.06	0.64	0.04	0.09
Styrene	ppbv	-	0.26	< 0.10	0.11	< 0.10	< 0.10	< 0.09	< 0.10	< 0.10	< 0.16	< 0.10	< 0.09	< 0.10	< 0.11	< 0.10	< 0.07	< 0.07	< 0.11	< 0.11	< 0.10	< 0.11	< 0.07	< 0.11	0.38	< 0.11	0.13	< 0.10	< 0.10	< 0.12	< 0.12	0.16	< 0.10	0.38	0.07	0.12
Toluene	ppbv	106	0.29	0.16	< 0.06	0.10	< 0.06	< 0.05	0.08	< 0.06	< 0.09 0.18	< 0.06	< 0.05	< 0.06	< 0.06	< 0.06	< 0.04	0.24	< 0.06	< 0.07	< 0.06 0.37	< 0.06	< 0.04	< 0.06	0.35	< 0.06	< 0.06	< 0.06	< 0.06	< 0.07	< 0.07	< 0.06	< 0.06	0.35	0.04 0.02	0.09
trans-2-Butene trans-2-Pentene	ppbv ppbv	-	13.80 0.07	2.85 0.12	1.72 0.51	10.30 < 0.01	3.06 < 0.01	6.71 < 0.01	0.22 0.05	0.31 0.03	0.18	0.58 < 0.01	4.26 < 0.01	0.46 < 0.01	0.46 < 0.02	0.52 0.10	1.16 < 0.01	3.63 < 0.01	0.45 < 0.02	0.06 0.07	< 0.02	0.21 < 0.02	0.22 0.05	0.20 < 0.02	9.32 < 0.01	< 0.02 < 0.02	1.50 < 0.01	0.19 < 0.01	0.12 0.02	0.30 < 0.02	0.21 < 0.02	0.69 < 0.02	0.28 < 0.01	13.80 0.51	0.02	2.14 0.05
p-Diethylbenzene	ppbv	-	0.07	0.12	< 0.03	< 0.01	< 0.01	< 0.01	< 0.03	< 0.03	< 0.07	0.06	< 0.01	< 0.01	< 0.02	< 0.03	< 0.01	< 0.01	< 0.02	< 0.03	< 0.02	< 0.02	< 0.03	< 0.02	< 0.01	< 0.02	< 0.01	< 0.01	< 0.02	< 0.02	< 0.02	< 0.02	0.04	0.13	0.01	0.04
Total Non-Methane Organic																																			0.07	0.08
Compounds	ppmv	-	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07	< 0.07	< 0.12	< 0.07	< 0.07	< 0.07	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.08	< 0.07	< 0.08	< 0.07	< 0.07	< 0.07	< 0.08	< 0.09	<0.08	< 0.07	0.12		
Total VOCs	ppbv	-	59.42	17.96	29.15	42.98	39.02	24.15	7.05	8.58	17.54	9.14	19.66	11.59	7.22	21.26	5.68	23.13	12.25	5.35	17.28	9.96	9.31	9.48	40.64	5.41	14.65	8.55	9.25	9.49	12.00	13.40	13.34	59.42	1.18	17.35

- Notes:
 (1) Alberta Ambient Air Quality Objectives (Over a 24 hour averaging period for o,m,p-Xylene, n-Hexane, Toluene)
 (2) Alberta Ambient Air Quality Objectives (Over an Annual period for Benzene)

- (3) Minimum values are the lowest values above the lab detection limit
 (4) Averages are taken with the assumption that values under the lab detection limit are equal to the lab dection limit, as required by the AMD
 (5) Sample data is considered to be invalid due to failed QA/QC protocols

Table 3 Page 1 of 1

2019 Calendar Year Meteorlogical Station Uptime Summary AEP Station ID 00010348-C-1 Clean Harbors Canada, Inc.


Reporting Month	Hours Expected	Hours Reported	% Uptime
January	744	646	86.8%
February	672	672	100.0%
March	744	742	99.7%
April	720	720	100.0%
May	744	742	99.7%
June	720	718	99.7%
July	744	744	100.0%
August	744	744	100.0%
September	720	720	100.0%
October	744	744	100.0%
November	720	720	100.0%
December	744	744	100.0%
Total	8760	8656	98.81%

Note:

The meteorlogical station monitors wind speed and direction.

Appendices

Appendix A Annual Wind Rose

	Frequency Distribution Report: Ryley, Alberta - 2019 Summary											
			•	, ,	Number of O				Total Occurrences			
Direction	Angle	< 0.5	0.5 to < 1.5	1.5 to < 2.5	2.5 to < 3.5	3.5 to < 4.5	>= 4.5	%	by Direction			
North	> 337.5 - 22.5	8	71	161	153	99	274	8.7%	766			
Northeast	> 22.5 - 67.5	2	58	104	101	69	83	4.8%	417			
East	> 67.5 - 112.5	3	80	142	140	133	254	8.6%	752			
Southeast	> 112.5 - 157.5	8	95	275	299	251	459	15.8%	1387			
South	> 157.5 - 202.5	9	69	169	242	202	163	9.7%	854			
Southwest	> 202.5 - 247.5	4	54	131	228	323	484	14.0%	1224			
West	> 247.5 - 292.5	6	70	183	311	390	669	18.6%	1629			
Northwest	> 292.5 - 337.5	7	71	179	173	209	988	18.6%	1627			
Missing/Inv	alid Hours							1.2%	104			
Total Occuren	ces by Speed	47	568	1344	1647	1676	3374		8760			
Occurence	ces by %	0.5%	6.5%	15.3%	18.8%	19.1%	38.5%	100.00%				

Appendix B Quarterly Calibration Records for Partisol

GHD | AEP Annual Ambient Air Monitoring | 11114644 (32)

Quarterly Audit Partisol FRM Model 2000

Clean Harbors 50114 Range Rd. 173 Ryley, Alberta T0B 4A0

Quarterly Audit Date: March 22, 2019

Clean Harbors

Table of Contents

	1.	Introd	luction		1
	2.	Audit	Procedure	e	1
	3.	Audit	Results		1
		3.1	Siting Lo	cation Audit Results (AEP Station ID 00010348-I-1)	1
		3.2	Pressure	e and Temperature Audit Results (AEP Station ID 00010348-I-1)	2
		3.3	Leak Che	eck Result (AEP Station ID 00010348-I-1)	2
		3.4	Flow Aud	dit (AEP Station ID 00010348-I-1)	2
		3.5	Instrume	ent Condition and Recommendations (AEP Station ID 00010348-I-1)	3
			3.5.1	Recommendations	3
Та	ble	Ind	ех		
	Table	3.1	AMD Re	quirements vs. Current Partisol Sampler Location	2
	Table	3.2	Reference	ce Results vs. Partisol Sampler Readings	2
Αp	per	dix	Inde	e x	
	Appe	ndix A	Quar	terly Audit Form	
	Appe	ndix B	Calib	ration Certificates	

1. Introduction

GHD Limited (GHD) was retained by Clean Harbors to conduct a Quarterly Audit at 50114 Range Road 173 Ryley, Alberta (Facility) on March 22, 2019. The Quarterly Audit was conducted on the Partisol FRM 2000 Particulate Matter less than 10 microns (PM₁₀) Sampler (Partisol Sampler), located on the roof of the Ryley Lift Station (AEP Station ID 00010348-I-1) which is southeast of the Facility. The coordinates of the lift station are 53.297961, -112.416076.

2. Audit Procedure

The Partisol Sampler was audited in accordance with the instrument manual and the Alberta Air Monitoring Directive, 2015 (AMD). Siting location, ambient pressure, ambient temperature, filter temperature, leakage rate and flow rate were audited, as well as overall instrument condition to ensure compliance with the instrument manual and the AMD. Below is a summary of the tasks performed on the Partisol Sampler:

- Siting Location Audit
- Ambient Pressure Audit
- Ambient Temperature Audit
- Filter Temperature Audit
- Leakage Rate Audit
- Flow Rate Audit
- Instrument Condition and Recommendations

GHD verified all of these parameters using calibrated reference instruments. GHD reference instruments either have National Institute of Standards and Technology (NIST) Traceable Certifications, current manufacturer certification, or were verified by a primary standard. The GHD quarterly audit field form can be found in Appendix A. All calibrations and certifications can be found in Appendix B.

3. Audit Results

3.1 Siting Location Audit Results (AEP Station ID 00010348-I-1)

The siting location of the Partisol Sampler meets the requirements of Chapter 3, of the AMD. Table 3.1 of this report compares the AMD Siting Requirements for Intermittent Samplers versus the current Partisol sampler location.

- The current coordinates of the Partisol Sampler are 53.297961, -112.416076.
- The distance from the nearest roadway is 21 m.

Table 3.1 AMD Requirements vs. Current Partisol Sampler Location

Site Characteristics	AMD	Requirements	Current Location	Specification
Sampler Inlet-height above ground (abg)	Minir	num 2 m, Maximum 15 m	Meets Requirement	4.63 m abg
Other Requirements	a.	Distance from an obstacle greater than 2.5 times the height of the obstacle above the sampler.	Meets Requirement	>2.5 times
	b.	At least 2 m from any other samplers or inlets with flow rates greater than 200 litres (L) per minute,	Meets Requirement	None
		Or at least 1 m apart from any other samplers or inlets with flow rates less than or equal of 200 L per minute.	Meets Requirement	None
	C.	Unrestricted air flow in three to four wind quadrants.	Meets Requirement	4/4 Unrestricted Quadrants

3.2 Pressure and Temperature Audit Results (AEP Station ID 00010348-I-1)

The pressure and temperature audit results of the Partisol Sampler meet the requirements of Chapter 4, of the AMD. Table 3.2 of this report compares the reference results versus the Partisol Sampler readings.

Table 3.2 Reference Results vs. Partisol Sampler Readings

Parameter	Partisol	Reference	Difference	Limit	Pass/Fail
Ambient Temperature (°C)	0.9	.81	.09	<u>+</u> 2%	Pass
Barometric Pressure (mmHg)	698	704.6	6.6	<u>+</u> 10 mmHg	Pass
Filter Temperature (°C)	2.0	2.05	.05	<u>+</u> 2%	Pass
Flow	16.7 L/min	16.3 L/min	0.4 L/min	<u>+</u> 1 L/min	Pass

3.3 Leak Check Result (AEP Station ID 00010348-I-1)

The Partisol firmware performs leak checks in automatic mode and indicates either a "pass" or "fail" based on a pressure drop off -4 mmHg per minute. The Partisol Sampler passed the requirements of Chapter 4 of the AMD.

3.4 Flow Audit (AEP Station ID 00010348-I-1)

The flow audit results of the Partisol Sampler meet the requirements of Chapter 4 of the AMD, refer to Table 3.2.

3.5 Instrument Condition and Recommendations (AEP Station ID 00010348-I-1)

The Partisol Sampler was visually and functionally inspected on the audit day. Audit recommendations and instrument conditions are listed below:

- · Liquid crystal display screen is functioning.
- Filter exchange cabinet has been cleaned.
- Ventilation fan filters are clean.
- Filter exchange mechanism is operating normally.
- Filter v-seals are in good condition.
- Ambient temperature and pressure sensor wires in good condition.
- Main power connection wire in good condition.

3.5.1 Recommendations

GHD recommends opening and cleaning PM₁₀ sampling inlet prior to next sampling event.

All of Which is Respectfully Submitted,

GHD

Brandon Lawrence, QSTI

Appendices GHD | Quarterly Audit Partisol FRM Model 2000 | 11114644 (25)

Appendix A Quarterly Audit Form

GHD Quarterly Audit Form

Calm/2.0*C Date 3/22/2019 Weather Cond.: Clean Harbors Start Time: 8:15 Owner Ryley Lift Station End Time: 8:45 Station Name Parameter PM 10 Performed By: Trevor Lewis

 Partisol FRM Model 2000 Identification
 Sampler Data

 Make/Model:
 R & P Partisol FRM 2000
 Temperature:
 2°C

 Unit ID:
 Ryley Lift Station
 Pressure:
 698

 S/N:
 200FB209860905
 Flow Set Point:
 16.7

GHD Reference Standards Flow **Temperature Manometer Pressure** Make: Fluke AirMetrics TSI Dwyer Model: FRM 9555-P 1551A EX Series 475 Serial Number: 9555P0838016 3520009 MAN-CAL-001 FRM1218

 Serial Number:
 FRM1218
 9555P0838016
 3520009
 MAN-CAL-00

 Calibration Date:
 5/17/2016
 3/7/2018
 9/14/2017
 9/14/2017

Audit Data				
	Sampler Data	Reference Data	Difference	Pass/Fail
Ambient Temperature (<u>+</u> 2 %)	0.9	0.81	0.09	Pass
Barometric Pressure (<u>+</u> 10 mmHg)	698	704.6	6.60	Pass
Filter Temperature (<u>+</u> 2%)	2.0	2.05	0.05	Pass
Flow (<u>+</u> 1.0 litres/minute)	16.7	16.3	0.40	Pass
Leak Check				

Pressure Drop Initial Pressure Final Pressure **Pressure Drop** Pass/Fail (-4 mmHg / minute) -13.50 -11.00 -2.50Pass in.HG Leak check was performed in automatic mode, sampler indicated: Pass @ 51 mmHg/min As Found/As Left Yes/No As Found As Left Pass/Fail Did the ambient temperature require adjustment? No 0.9 0.9 **Pass** Did the barometric pressure require adjustment? 698 698 No Pass Did the filter temperature require adjustment? 2.0 No 2.0 **Pass**

No

16.7

16.7

Pass

Comments

Did the flow audit require adjustment?

Partisol sampler was very dirty with some moisture build up in the inlet. GHD cleaned and dryed the sampler.

Flow Equation						
Set Point	Actual Flow (Qact)	Absolute Difference	Pass/Fail	Manometer (DH)	4.03 "H2O	
(lpm)	(lpm)	(lpm)	(<u>+</u> 1 lpm)	Actual Temp (Tact)	275.15 °K	2.0°C
				Actual Pres (Pact)	0.931 bar	
16.7	16.3	0.4	Pass	Actual Pres (Pact)	27.48 inHg	
FTS Linear Regro	ession Constants			$\sqrt{\Lambda H \times Tact}$		
(mflo) =	0.4452		Qact = mfl	$o \times \frac{\sqrt{\Delta H} \times I det}{P_{a} = t} + bflo$		
(bflo) =	0.4430			$o \times \frac{\sqrt{\Delta H \times Tact}}{Pact} + bflo$		

Appendix B Calibration Certificates

TORONTO

16975 Leslie Street Newmarket, ON L3Y 9A1 Tel: (905) 952-3750 Fax: (905) 952-3751

MONTRÉAL

20800 Boul. Industriel Ste-Anne-de-Bellevue, QC H9X 0A1 Tel: (514) 457-7280

CALGARY #209, 4615 112 Ave SE

Calgary, AB T2C 5J3 Tel: (403) 272-9332 Fax: (403) 248-5194

Fax: (514) 457-4329 www.itm.com - information@itm.com

Calibration Certificate

Customer: GHD Ltd.

Certificate: C232934-00-02

Unit Identification

Manufacturer: Fluke Model: 1551A Ex

Description: Stik Thermometer

Calibration Date

Calibration Date: 18-Sep-2018

Due Date: 18-Sep-2019

Serial: 3520009

Unit ID: N/A

Calibration Conditions

Temperature: 22.8°C Humidity: 33 %

Barometric Pressure: N/A

General Information

Remark: N/A

Standards Used

Unit ID	Manufacturer	Model	Cal Date	<u>Due Date</u>
CAL0080	Burns Engineering	12001-A-12-6-2-A	4-Jun-2018	4-Jun-2021
CAL0124	Hart Scientific	1502A	11-Apr-2018	11-Apr-2019
CAL0223	Ametek	RTC-158B	10-Sep-2018	10-Mar-2020

The calibration was performed using measurement standards traceable to the National Measurement Institute Standards (NMIS) part of the National Research Council of Canada (NRC) or the National Institute of Standards and Technology (NIST), or to accepted instrinsic standards or measurement, or is derived by ratio type self-calibration techniques. Measurement uncertainties given in this report are based on a coverage factor of k=2 corresponding to a confidence level of approximately 95%.

Calibrated by: A. Atton

Andry Allan

TORONTO

16975 Leslie Street Newmarket, ON L3Y 9A1 Tel: (905) 952-3750 Fax: (905) 952-3751

MONTRÉAL

20800 Boul. Industriel Ste-Anne-de-Bellevue, QC H9X 0A1 Tel: (514) 457-7280 Fax: (514) 457-4329

CALGARY

#209, 4615 112 Ave SE Calgary, AB T2C 5J3 Tel: (403) 272-9332 Fax: (403) 248-5194

www.itm.com - information@itm.com

Test Results

Procedure: Fluke Stik Thermometer /RTC-158B,1502,PRT Rev: 1.0

Data Type: As Found Results: Pass

Test Description	True Value	Reading	Lower Limit	Upper Limit	Test Status	Exp Uncert
0.030 °C		0.06 °C	-0.02 °C	0.08 °C	Pass	8.3e-003 °C
25.003 °C		25.04 °C	24.95 °C	25.05 °C	Pass	8.8e-003 °C
99.765 °C		99.77 °C	99.72 °C	99.81 °C	Pass	1.0e-002 °C
149.558 °C		149.60 °C	149.51 °C	149.61 °C	Pass	1.2e-002 °C

INSTRUMENT CALIBRATION REPORT

Pine Environmental Services LLC

4911-99 Street NW Edmonton, AB T6E 4Y1 Office: 780-643-2680

Fax: 780-468-3050

Pine Environmental Services, Inc.

Instrument ID 19221

Description Velocity Meter

Calibrated 3/21/2019 11:10:11AM

Manufacturer Tsi

Model Number 9565-P

Serial Number/ Lot 9565P1148025

Number

Location Edmonton

Department

State Certified

Status Pass

Temp °C 22

Humidity % 20

Calibration Specifications

Group# 1

Group Name Functional, pressure test and

download

Test Performed: Yes

As Found Result: Pass

As Left Result: Pass

Test Instruments Used During the Calibration

(As Of Cal Entry Date)

Test Standard ID Description

Manufacturer

Model Number

Serial Number / Lot Number

Next Cal Date / Last Cal Date/ Expiration Date

Opened Date

Notes about this calibration

Calibration Result Calibration Successful

Who Calibrated Matt Lehnert

All instruments are calibrated by Pine Environmental Services LLC according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services LLC of any defect within 24 hours of receipt of equipment Please call 800-301-9663 for Technical Assistance

INSTRUMENT CALIBRATION REPORT

Pine Environmental Services LLC

4911-99 Street NW Edmonton, AB T6E 4Y1 Office: 780-643-2680

Fax: 780-468-3050

Pine Environmental Services, Inc.

Instrument ID 25251

Description TSI Velocity Probe 964

Calibrated 3/21/2019 11:10:58AM

Manufacturer Tsi

Model Number 964

Serial Number/Lot P08130044

Number

Location Edmonton

Department

State Certified

Status Pass

Temp °C 22

Humidity % 20

Calibration Specifications

Group# 1

Group Name Functional, Pressure test and

Download

Test Performed: Yes

As Found Result: Pass

As Left Result: Pass

Test Instruments Used During the Calibration

(As Of Cal Entry Date)

Test Standard ID Description

Manufacturer

Model Number

Serial Number / Lot Number

Next Cal Date / Last Cal Date/ Expiration Date

Opened Date

Notes about this calibration

Calibration Result Calibration Successful

Who Calibrated Luc Robert

All instruments are calibrated by Pine Environmental Services LLC according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services LLC of any defect within 24 hours of receipt of equipment Please call 800-301-9663 for Technical Assistance

INSTRUMENT CALIBRATION REPORT

Pine Environmental Services, Inc

Instrument ID 19221

Description TSI 9565P VelociCalc

Calibrated 6/25/2018

Manufacturer TSI

Model Number 9565P

Serial Number 9565P1148025

Location New Jersey

Temp 76

Classification

Status pass

Frequency Yearly EOM

Department Lab

Humidity 35

Calibration	Specifications

Group # 1

Group Name Barometric Pressure

Stated Accy Pct of Reading

Range Acc % 0.0000

Reading Acc % 2.0000

Range Acc % 0.0000

12.08

0.67%

Pass

Reading Acc % 1.0000

12.08

Plus/Minus 0.000

Pass/Fail Dev% Fnd As Lft As Nom In Val / In Val Out Type In Type Out Val 0.00% Pass 29.920 inHg 29.900 29.920 30.000 / 29.920 inHg

Group# 2

Group Name Differential Pressure

State	d Accy Pct of Re	ading		Plus/Mi	nus 0.00		
Nom In Val / In Val	In Type	Out Val	Out Type	Fnd As	Lft As	Dev%	Pass/Fail
-4.00 / -4.00	inH2O	-4.00	inH2O	-4.03	-4.03	0.75%	Pass
4.00 / 4.00	inH2O	4.00	inH2O	4.02	4.02	0.50%	Pass
8.00 / 8.00	inH2O	8.00	inH2O	8.06	8.06	0.75%	Pass

12.00 / 12.00	inH2O
Test Instruments Use	d During the Calibration

Test Instruments Co				(As Of C	al Entry Date)
Test Instrument ID DWYER	<u>Description</u> Dwyer 477AV-1 Digital	<u>Manufacturer</u> Dwyer	Serial Number 005PM2	<u>Last Cal Date</u> 8/30/2017	Next Cal Date 8/30/2018
477AV-1 OMEGA HX93AC/DP25-	Manometer Omega HX93AC/DP25-E	Omega Engineering	1010368 035025 035026	9/15/2016	9/15/2018

inH2O

12.00

Notes about this calibration

Calibration Result Calibration Successful

Who Calibrated David Galego

Advanced Labs, Inc. hereby certifies that this instrument is calibrated and functions to meet the manufacture's specifications using NIST traceable standards, or is derived from accepted values of physical constants.

16975 Leslie Street Newmarket, ON L3Y 9A1 Tel: (905) 952-3750 Fax: (905) 952-3751

MONTRÉAL

20800 Boul. Industriel Ste-Anne-de-Bellevue, QC H9X 0A1 Tel: (514) 457-7280 Fax: (514) 457-4329 **CALGARY**

#209, 4615 112 Ave SE Calgary, AB T2C 5J3 Tel: (403) 272-9332 Fax: (403) 248-5194

www.itm.com - information@itm.com

Calibration Certificate Customer: GHD Ltd. Certificate: C232934-00-01 Unit Identification Manufacturer: Dwyer Serial: N/A

Calibration Date

Model: 475-0-FM

Calibration Date: 17-Sep-2018

Description: Digital Manometer

Due Date: 17-Sep-2019

Serial: N/A

Unit ID: MAN-CAL-001

Calibration Conditions

Temperature: 21.8°C Humidity: 33 %

Barometric Pressure: N/A

General Information

Remark: N/A

Standards Used

 Unit ID
 Manufacturer
 Model
 Cal Date
 Due Date

 CAL0224
 Fluke
 750P01
 16-Apr-2018
 16-Oct-2018

The calibration was performed using measurement standards traceable to the National Measurement Institute Standards (NMIS) part of the National Research Council of Canada (NRC) or the National Institute of Standards and Technology (NIST), or to accepted instrinsic standards or measurement, or is derived by ratio type self-calibration techniques. Measurement uncertainties given in this report are based on a coverage factor of k=2 corresponding to a confidence level of approximately 95%.

Calibrated by: A. Atton

Andra Attor

Approved by:

Certificate: C232934-00-01

Asset: ITM0017905

Calibration Certificate

Page 1/2

16975 Leslie Street Newmarket, ON L3Y 9A1 Tel: (905) 952-3750 Fax: (905) 952-3751

MONTRÉAL

20800 Boul. Industriel Ste-Anne-de-Bellevue, QC H9X 0A1 Tel: (514) 457-7280

CALGARY #209, 4615 112 Ave SE

Calgary, AB T2C 5J3 Tel: (403) 272-9332 Fax: (403) 248-5194

Fax: (514) 457-4329 www.itm.com - information@itm.com

Test Results

Procedure: Pressure Gauge 10.00 IN.W.C 0.5% FS /750P01 Rev: 1.0

Data Type: As Found Results: Pass

	True Value re if more than one listed):	Reading	Lower Limit	Upper Limit	Test Status	Exp Uncert
0.5% of full scale UUT is set to the nomin actual pressure read by 1 inH2O 2 inH2O 4 inH2O 6 inH2O 8 inH2O 10 inH2O	al value, Reading is the the system instrument.	1 inH2O 2 inH2O 4 inH2O 6 inH2O 8 inH2O 10 inH2O	1 inH2O 2 inH2O 4 inH2O 6 inH2O 8 inH2O 10 inH2O	1 inH2O 2 inH2O 4 inH2O 6 inH2O 8 inH2O 10 inH2O	Pass Pass Pass Pass Pass Pass	5.8e+000 inH2O 5.8e+000 inH2O 5.8e+000 inH2O 5.8e+000 inH2O 5.8e+000 inH2O 5.8e+000 inH2O

Certificate: C232934-00-01 Asset: ITM0017905

Calibration Certificate

NIST Traceable Transfer Standard Calibration

Calibration Ambient Te Amb Press	emp, °K:	17/2016 295.5 1.0000	Orific Pri Si Mand	÷	1218- 774300 11218	By: _	
Std ∆H (inH₂O)	Manometer ΔH (inH ₂ O)	Actual Flow (alpm)	Calc Flow (alpm)	Difference* (%diff)			
6.67 5.86 5.10 4.39 3.73 3.12 2.56	6.67 5.86 5.10 4.39 3.73 3.12 2.56	20.179 18.988 17.733 16.490 15.233 13.964 12.683	20.209 18.970 17.727 16.479 15.224 13.962 12.688	-0.15 0.09 0.03 0.07 0.06 0.02 -0.04			s Act Flow on Results: 0.4452 0.4430 1.0000

11.401

The MiniFlo calibration is performed with an NIST-traceable standard. Each unit has a unique pair of calibration constants derived from the calibration which are used to calculate the actual air flow rate at all ambient conditions. The unit's calibration should be recertified annually.

-0.10

The actual flow rate is a function of the pressure drop across the device, the ambient temperature, and the ambient pressure. The relationship of these variables and the unique calibration constants ("m" and "b") for each device is presented in the following equation (Eq.A):

$$Q_{act} = m_{flo} \times \sqrt{\frac{\Delta H \times T_{act}}{P_{act}}} + b_{flo}$$
 $Q_{act} = actual flowrate, liters per min $\Delta H = manometer reading, inches of water T_{act} = ambient temperature, °K P_{act} = ambient pressure, atmospheres$$

* all points must be within ± 2%

CAUTION: The weather service, most airports, etc, reduce the atmospheric pressure to a common reference (sea level). The equation above requires the atmospheric pressure at the location where the MiniFlo is being used.

The equation below may be used to estimate the ambient atmospheric pressure at any elevation if the sea level pressure is known.

$$P_{act} = P_{sea} \times \left(1 - \frac{E}{145300}\right)^{5.25}$$
 $P_{act} = Ambient Atmospheric Pressure P_{sea} = Sea Level Atmospheric Pressure E = Site elevation, feet$

2.05

2.05

11.390

Airmetrics

1940 Don St., Suite 300 Springfield, OR 97477 (541) 683-5420

about GHD

GHD is one of the world's leading professional services companies operating in the global markets of water, energy and resources, environment, property and buildings, and transportation. We provide engineering, environmental, and construction services to private and public sector clients.

Brandon Lawrence
Brandon.lawrence@ghd.com
403.538.8605

www.ghd.com

Quarterly Audit Partisol FRM Model 2000

Clean Harbors 50114 Range Rd. 173 Ryley, Alberta T0B 4A0

Quarterly Audit Date: June 12, 2019

Clean Harbors

Table of Contents

1.	Introd	uction		1
2.	Audit	Procedure	e	1
3.	Audit	Results		1
	3.1	Siting Loc	cation Audit Results (AEP Station ID 00010348-I-1)	1
	3.2	Pressure	and Temperature Audit Results (AEP Station ID 00010348-I-1)	2
	3.3	Leak Che	eck Result (AEP Station ID 00010348-I-1)	2
	3.4	Flow Aud	dit (AEP Station ID 00010348-I-1)	2
	3.5	Instrume	nt Condition and Recommendations (AEP Station ID 00010348-I-1)	3
		3.5.1	Recommendations	3
Table	Ind	ex		
Table	3.1	AMD Red	quirements vs. Current Partisol Sampler Location	2
Table	3.2	Reference	ce Results vs. Partisol Sampler Readings	2
Appen	dix	Inde	×	
Apper	ndix A	Quart	terly Audit Form	
Apper	ndix B	Calibr	ration Certificates	

1. Introduction

GHD Limited (GHD) was retained by Clean Harbors to conduct a Quarterly Audit at 50114 Range Road 173 Ryley, Alberta (Facility) on June 12, 2019. The Quarterly Audit was conducted on the Partisol FRM 2000 Particulate Matter less than 10 microns (PM₁₀) Sampler (Partisol Sampler), located on the roof of the Ryley Lift Station (AEP Station ID 00010348-I-1) which is southeast of the Facility. The coordinates of the lift station are 53.297961, -112.416076.

2. Audit Procedure

The Partisol Sampler was audited in accordance with the instrument manual and the Alberta Air Monitoring Directive, 2015 (AMD). Siting location, ambient pressure, ambient temperature, filter temperature, leakage rate and flow rate were audited, as well as overall instrument condition to ensure compliance with the instrument manual and the AMD. Below is a summary of the tasks performed on the Partisol Sampler:

- Siting Location Audit
- Ambient Pressure Audit
- Ambient Temperature Audit
- Filter Temperature Audit
- Leakage Rate Audit
- Flow Rate Audit
- Instrument Condition and Recommendations

GHD verified all of these parameters using calibrated reference instruments. GHD reference instruments either have National Institute of Standards and Technology (NIST) Traceable Certifications, current manufacturer certification, or were verified by a primary standard. The GHD quarterly audit field form can be found in Appendix A. All calibrations and certifications can be found in Appendix B.

3. Audit Results

3.1 Siting Location Audit Results (AEP Station ID 00010348-I-1)

The siting location of the Partisol Sampler meets the requirements of Chapter 3, of the AMD. Table 3.1 of this report compares the AMD Siting Requirements for Intermittent Samplers versus the current Partisol sampler location.

- The current coordinates of the Partisol Sampler are 53.297961, -112.416076.
- The distance from the nearest roadway is 21 m.

Table 3.1 AMD Requirements vs. Current Partisol Sampler Location

Site Characteristics	AMD	Requirements	Current Location	Specification
Sampler Inlet-height above ground (abg)	Minin	num 2 m, Maximum 15 m	Meets Requirement	4.63 m abg
Other Requirements	a.	Distance from an obstacle greater than 2.5 times the height of the obstacle above the sampler.	Meets Requirement	>2.5 times
	b.	At least 2 m from any other samplers or inlets with flow rates greater than 200 litres (L) per minute,	Meets Requirement	None
		Or at least 1 m apart from any other samplers or inlets with flow rates less than or equal of 200 L per minute.	Meets Requirement	None
	C.	Unrestricted air flow in three to four wind quadrants.	Meets Requirement	4/4 Unrestricted Quadrants

3.2 Pressure and Temperature Audit Results (AEP Station ID 00010348-I-1)

The pressure and temperature audit results of the Partisol Sampler meet the requirements of Chapter 4, of the AMD. Table 3.2 of this report compares the reference results versus the Partisol Sampler readings.

Table 3.2 Reference Results vs. Partisol Sampler Readings

Parameter	Partisol	Reference	Difference	Limit	Pass/Fail
Ambient Temperature (°C)	25.3	25.7	0.4	<u>+</u> 2%	Pass
Barometric Pressure (mmHg)	702	702.5	0.5	<u>+</u> 10 mmHg	Pass
Filter Temperature (°C)	27.9	28.1	0.2	<u>+</u> 2%	Pass
Flow	16.7 L/min	16.2 L/min	0.5 L/min	<u>+</u> 1 L/min	Pass

3.3 Leak Check Result (AEP Station ID 00010348-I-1)

The Partisol firmware performs leak checks in automatic mode and indicates either a "pass" or "fail" based on a pressure drop off -4 mmHg per minute. The Partisol Sampler passed the requirements of Chapter 4 of the AMD.

3.4 Flow Audit (AEP Station ID 00010348-I-1)

The flow audit results of the Partisol Sampler meet the requirements of Chapter 4 of the AMD, refer to Table 3.2.

3.5 Instrument Condition and Recommendations (AEP Station ID 00010348-I-1)

The Partisol Sampler was visually and functionally inspected on the audit day. Audit recommendations and instrument conditions are listed below:

- Liquid crystal display screen is functioning.
- Filter exchange cabinet has been cleaned.
- Ventilation fan filters are clean.
- Filter exchange mechanism is operating normally.
- Filter v-seals are in good condition.
- Ambient temperature and pressure sensor wires in good condition.
- Main power connection wire in good condition.

3.5.1 Recommendations

GHD recommends opening and cleaning PM₁₀ sampling inlet prior to next sampling event.

Appendices GHD | Quarterly Audit Partisol FRM Model 2000 | 11114644 (27)

Appendix A Quarterly Audit Form

GHD Quarterly Audit Form

Date		6/12/2019		Weather Cond.:	Si	unny/Wir	ndv
Owner		Clean Harbors		Start Time:		12:00	,
Station Name		Ryley Lift Station		End Time:		12:40	
Parameter		PM ₁₀		Performed By:	Т	revor Lev	wis
Partical EDM Ma	del 2000 Identification	n		Sampler Data			
Make/Model:	R & P Partisol FRM			Temperature:	25°C		
Unit ID:	Ryley Lift Station	2000		Pressure:	702		
S/N:	200FB209860905			Flow Set Point:	16.7		
				Tiow Set Foint.	10.7		
GHD Reference S			D	T	Manage		
. .		ow	Pressure	Temperature	Manon		
Make:		etrics	TSI	Fluke	Dwy		
Model:		RM	9555-P	1551A EX	Series		
Serial Number:		11218	9555P0838016	3520009	MAN-CA		
Calibration Date:	5/17	/2016	3/7/2018	9/14/2017	9/14/2	017	
Audit Data							
			Sampler Data	Reference Data	Difference	Pa	ıss/Fail
Ambient Tempera	- ·		25.3	25.7	0.40 Pass		Pass
Barometric Press	sure (<u>+</u> 10 mmHg)		702	702.5	0.50 Pass		Pass
Filter Temperatui	re (<u>+</u> 2%)		27.9	28.1	0.20		Pass
Flow (±1.0 litres/	minute)		16.7	16.2	0.50		Pass
Leak Check							
Pressure Drop		Initial Pressure	Final Pressure	Pressure Drop	Pass/	Fail	
(-4 mmHg / minute))	15.00	13.00	2.00	Pas	s	in.HG
Leak check was p	erformed in automation	mode, sampler indic	cated:	Pass @ 51 mmHg/min			
As Found/As Left	t		Yes/No		As Found	As Left	Pass/Fail
Did the ambient te	emperature require ad	ustment?	No		25.3	25.3	Pass
Did the barometric	pressure require adju	ustment?	No		702	702	Pass
Did the filter temporal	erature require adjusti	ment?	No		27.9	27.9	Pass
Did the flow audit	require adjustment?		No		16.7	16.7	Pass
Comments							
Partisol sampler w	as very dirty with som	ne moisture build up i	n the inlet. GHD	cleaned and dryed the sa	mpler.		
Floor Formation							
Flow Equation	Actual Flow (Ocat)	Abaalista Diffaranaa	Doog/Foil	Manamatar (DH)	2.05	"1120	
Set Point	Actual Flow (Qact)	Absolute Difference		Manometer (DH)		"H2O	05.700
(lpm)	(lpm)	(lpm)	(<u>+</u> 1 lpm)	Actual Temp (Tact)	298.85		25.7°C
16.7	16.2	0.5	Pass	Actual Pres (Pact) Actual Pres (Pact)	0.937 27.66		
ETC Linear Darrie	anian Canatanta						
FTS Linear Regre (mflo) =	ssion Constants 0.4452		Qact = mflo	$0 \times \frac{\sqrt{\Delta H \times Tact}}{2} + bflo$			

Pact

(bflo) =

0.4430

Appendix B Calibration Certificates

16975 Leslie Street Newmarket, ON L3Y 9A1 Tel: (905) 952-3750 Fax: (905) 952-3751

MONTRÉAL

20800 Boul. Industriel Ste-Anne-de-Bellevue, QC H9X 0A1 Tel: (514) 457-7280 Fax: (514) 457-4329

CALGARY

#209, 4615 112 Ave SE Calgary, AB T2C 5J3 Tel: (403) 272-9332 Fax: (403) 248-5194

www.itm.com - information@itm.com

Calibration Certificate

Customer: GHD Ltd.

Certificate: C232934-00-02

Unit Identification

Manufacturer: Fluke Model: 1551A Ex

Description: Stik Thermometer

Calibration Date

Calibration Date: 18-Sep-2018

Due Date: 18-Sep-2019

Serial: 3520009

Unit ID: N/A

Calibration Conditions

Temperature: 22.8°C Humidity: 33 %

Barometric Pressure: N/A

General Information

Remark: N/A

Standards Used

<u>Unit ID</u>	Manufacturer	Model	Cal Date	Due Date
CAL0080	Burns Engineering	12001-A-12-6-2-A	4-Jun-2018	4-Jun-2021
CAL0124	Hart Scientific	1502A	11-Apr-2018	11-Apr-2019
CAL0223	Ametek	RTC-158B	10-Sep-2018	10-Mar-2020

The calibration was performed using measurement standards traceable to the National Measurement Institute Standards (NMIS) part of the National Research Council of Canada (NRC) or the National Institute of Standards and Technology (NIST), or to accepted instrinsic standards or measurement, or is derived by ratio type self-calibration techniques. Measurement uncertainties given in this report are based on a coverage factor of k=2 corresponding to a confidence level of approximately 95%.

Calibrated by: A. Atton

Andry Allan

16975 Leslie Street Newmarket, ON L3Y 9A1 Tel: (905) 952-3750 Fax: (905) 952-3751

MONTRÉAL

20800 Boul. Industriel Ste-Anne-de-Bellevue, QC H9X 0A1 Tel: (514) 457-7280 Fax: (514) 457-4329

CALGARY

#209, 4615 112 Ave SE Calgary, AB T2C 5J3 Tel: (403) 272-9332 Fax: (403) 248-5194

www.itm.com - information@itm.com

Test Results

Procedure: Fluke Stik Thermometer /RTC-158B,1502,PRT Rev: 1.0

Data Type: As Found Results: Pass

Test Description	True Value	Reading	Lower Limit	Upper Limit	Test Status	Exp Uncert
0.030 °C		0.06 °C	-0.02 °C	0.08 °C	Pass	8.3e-003 °C
25.003 °C		25.04 °C	24.95 °C	25.05 °C	Pass	8.8e-003 °C
99.765 °C		99.77 °C	99.72 °C	99.81 °C	Pass	1.0e-002 °C
149.558 °C		149.60 °C	149.51 °C	149.61 °C	Pass	1.2e-002 °C

INSTRUMENT CALIBRATION REPORT

Pine Environmental Services, Inc

Instrument ID 15314

Description TSI 9565-P VelociCalc

Calibrated 1/24/2019

Manufacturer TSI

Model Number 9565-P

Serial Number 9565P1545007

Location New Jersey

Temp 71

Classification

Status pass Frequency Yearly

Department Lab

Humidity 31

		<u>Cal</u>	ibration Specifica	<u>tions</u>			
0	Group # 1			Range Acc %	0.0000		
Group	Name Differenti	al Pressure		Reading Acc %			
State	ed Accy Pct of Re	ading		Plus/Minus			
Nom In Val / In Val	In Type	Out Val	Out Type	Fnd As	Lft As	Dev%	Pass/Fail
-4.000 / -4.000	inHg	-4.000	inHg	-4.030	-4.030		
4.000 / 4.090	inHg	4.090	_			0.75%	Pass
10.00	_		inHg	4.120	4.120	0.73%	Pass
8.000 / 8.160	inHg	8.160	inHg	8.230	8.230	0.86%	Pass
12.000 / 12.040	inHg	12.040	inHg	12.130	12.130	0.75%	Pass
G	Froup# 2			Range Acc %	0.0000		
Group	Name Barometr	ic Pressure		Reading Acc %			
State	Stated Accy Pct of Reading			Plus/Minus			
Nom In Val / In Val	In Type	Out Val	Out Type	Fnd As	Lft As	Dev%	Pass/Fail
30.000 / 29.210	inHg	29.210	inHg	29.170	29.210	0.00%	Pass

(As Of Cal Entry Date)								
Test Instrument ID	<u>Description</u>	<u>Manufacturer</u>	Serial Number	Last Cal Date	Next Cal Date			
DWYER 477AV	Dwyer 477AV-000 Digital Manometer	Dwyer	005TRQ	9/21/2018	9/21/2019			
DWYER	Dwyer 477AV-1 Digital	Dwyer	005PM2	9/21/2018	9/21/2019			
477AV-1	Manometer							
DWYER	Dwyer 477AV-3 Digital	Dwyer	005PM1	9/21/2018	9/21/2019			
477AV-3	Manometer				J. 21. 2017			
OMEGA	Omega HX93AC/DP25-E	Omega Engineering	1010368 035025	10/11/2018	10/11/2020			
HX93AC/DP25-			035026	10/11/2010	10/11/2020			
E								
OMEGA	Omega	Omega Engineering	168377/8375030	10/11/2018	10/11/2020			
PX02K1-16A5T	PX02K1-16A5T/DP25-E-A	5 6		20,22,2010	10,11,2020			
/DP25-E-A								
OMEGA	Omega WT4401-D	Omega Engineering	101105	10/11/2018	10/11/2020			
WT4401-D		0 0		10/11/2010	10/11/2020			

Notes about this calibration

16975 Leslie Street Newmarket, ON L3Y 9A1 Tel: (905) 952-3750 Fax: (905) 952-3751

MONTRÉAL

20800 Boul. Industriel Ste-Anne-de-Bellevue, QC H9X 0A1 Tel: (514) 457-7280 Fax: (514) 457-4329 CALGARY

#209, 4615 112 Ave SE Calgary, AB T2C 5J3 Tel: (403) 272-9332 Fax: (403) 248-5194

www.itm.com - information@itm.com

Cal	ibration Certificate
Customer: GHD Ltd.	
Certificate: C232934-00-01	
Unit Identification	
Manufacturer: Dwyer Model: 475-0-FM Description: Digital Manometer	Serial: N/A Unit ID: MAN-CAL-001
Calibration Date	Calibration Conditions
Calibration Date: 17-Sep-2018 Due Date: 17-Sep-2019	Temperature: 21.8°C Humidity: 33 % Barometric Pressure: N/A
General Information	
Remark:N/A	

Standards Oscu				
Unit ID	Manufacturer	Model	Cal Date	<u>Due Date</u>
CAL0224	Fluke	750P01	16-Apr-2018	16-Oct-2018

The calibration was performed using measurement standards traceable to the National Measurement Institute Standards (NMIS) part of the National Research Council of Canada (NRC) or the National Institute of Standards and Technology (NIST), or to accepted instrinsic standards or measurement, or is derived by ratio type self-calibration techniques. Measurement uncertainties given in this report are based on a coverage factor of k=2 corresponding to a confidence level of approximately 95%.

Calibrated by: A. Atton

Standards Used

Andre Attor

Approved by:

Certificate: C232934-00-01

Asset: ITM0017905

Calibration Certificate

Page 1/2

16975 Leslie Street Newmarket, ON L3Y 9A1 Tel: (905) 952-3750 Fax: (905) 952-3751

MONTRÉAL

20800 Boul. Industriel Ste-Anne-de-Bellevue, QC H9X 0A1 Tel: (514) 457-7280

CALGARY #209, 4615 112 Ave SE

Calgary, AB T2C 5J3 Tel: (403) 272-9332 Fax: (403) 248-5194

Fax: (514) 457-4329 www.itm.com - information@itm.com

Test Results

Procedure: Pressure Gauge 10.00 IN.W.C 0.5% FS /750P01 Rev: 1.0

Data Type: As Found Results: Pass

	True Value re if more than one listed):	Reading	Lower Limit	Upper Limit	Test Status	Exp Uncert
0.5% of full scale UUT is set to the nomin actual pressure read by 1 inH2O 2 inH2O 4 inH2O 6 inH2O 8 inH2O 10 inH2O	al value, Reading is the the system instrument.	1 inH2O 2 inH2O 4 inH2O 6 inH2O 8 inH2O 10 inH2O	1 inH2O 2 inH2O 4 inH2O 6 inH2O 8 inH2O 10 inH2O	1 inH2O 2 inH2O 4 inH2O 6 inH2O 8 inH2O 10 inH2O	Pass Pass Pass Pass Pass Pass	5.8e+000 inH2O 5.8e+000 inH2O 5.8e+000 inH2O 5.8e+000 inH2O 5.8e+000 inH2O 5.8e+000 inH2O

Certificate: C232934-00-01 Asset: ITM0017905

Calibration Certificate

NIST Traceable Transfer Standard Calibration

Calibration Ambient Te Amb Press	mp, °K:	17/2016 295.5 1.0000	Orific Pri Si Mand	· ·	1218- 774300 1218	By:
Std ∆H (inH₂O)	Manometer ΔH (in H_2O)	Actual Flow (alpm)	Calc Flow (alpm)	Difference* (%diff)		
6.67	6.67	20.179	20.209	-0.15		er ∆H vs Act Flow
5.86	5.86	18.988	18.970	0.09	Linear Re	gression Results:
5.10	5.10	17.733	17.727	0.03	m _{flo} =	0.4452
4.39	4.39	16.490	16.479	0.07	b _{flo} =	0.4430
3.73	3.73	15.233	15.224	0.06	r ² =	1.0000
3.12	3.12	13.964	13,962	0.02		
2.56	2.56	12.683	12.688	-0.04		
2.05	2.05	11.390	11.401	-0.10	* all points mu	ust be within ± 2%

The MiniFlo calibration is performed with an NIST-traceable standard. Each unit has a unique pair of calibration constants derived from the calibration which are used to calculate the actual air flow rate at all ambient conditions. The unit's calibration should be recertified annually.

The actual flow rate is a function of the pressure drop across the device, the ambient temperature, and the ambient pressure. The relationship of these variables and the unique calibration constants ("m" and "b") for each device is presented in the following equation (Eq.A):

$$Q_{act} = m_{flo} \times \sqrt{\frac{\Delta H \times T_{act}}{P_{act}}} + b_{flo}$$
 $Q_{act} = actual flowrate, liters per min $\Delta H = manometer reading, inches of water T_{act} = ambient temperature, °K P_{act} = ambient pressure, atmospheres$$

CAUTION: The weather service, most airports, etc, reduce the atmospheric pressure to a common reference (sea level). The equation above requires the atmospheric pressure at the location where the MiniFlo is being used.

The equation below may be used to estimate the ambient atmospheric pressure at any elevation if the sea level pressure is known.

$$P_{act} = P_{sea} \times \left(1 - \frac{E}{145300}\right)^{5.25}$$
 $P_{act} = Ambient Atmospheric Pressure P_{sea} = Sea Level Atmospheric Pressure E = Site elevation, feet$

Airmetrics

1940 Don St., Suite 300 Springfield, OR 97477 (541) 683-5420

about GHD

GHD is one of the world's leading professional services companies operating in the global markets of water, energy and resources, environment, property and buildings, and transportation. We provide engineering, environmental, and construction services to private and public sector clients.

Brandon Lawrence
Brandon.lawrence@ghd.com
403.538.8605

www.ghd.com

Quarterly Audit Partisol FRM

Model 2000

Clean Harbors 50114 Range Rd. 173 Ryley, Alberta T0B 4A0

Quarterly Audit Date: August 28, 2019

Clean Harbors

Table of Contents

1. lı	ntroduction	1
2. A	Audit Procedure	1
3. A	Audit Results	1
3	3.1 Siting Location Audit Results (AEP Station ID 00010348-I-1)	1
3	3.2 Pressure and Temperature Audit Results (AEP Station ID 00010348-I-1)	2
3	3.3 Leak Check Result (AEP Station ID 00010348-I-1)	2
3	3.4 Flow Audit (AEP Station ID 00010348-I-1)	2
3	3.5 Instrument Condition and Recommendations (AEP Station ID 00010348-I-1)	3
	3.5.1 Recommendations	3
Table I	ndex	
Table 3	3.1 AMD Requirements vs. Current Partisol Sampler Location	2
Table 3	3.2 Reference Results vs. Partisol Sampler Readings	2
Append	dix Index	
Append	dix A Quarterly Audit Form	
Append	dix B Calibration Certificates	

1. Introduction

GHD Limited (GHD) was retained by Clean Harbors to conduct a Quarterly Audit at 50114 Range Road 173 Ryley, Alberta (Facility) on August 26, 2019. The Quarterly Audit was conducted on the Partisol FRM 2000 Particulate Matter less than 10 microns (PM₁₀) Sampler (Partisol Sampler), located on the roof of the Ryley Lift Station (AEP Station ID 00010348-I-1) which is southeast of the Facility. The coordinates of the lift station are 53.297961, -112.416076.

2. Audit Procedure

The Partisol Sampler was audited in accordance with the instrument manual and the Alberta Air Monitoring Directive, 2015 (AMD). Siting location, ambient pressure, ambient temperature, filter temperature, leakage rate and flow rate were audited, as well as overall instrument condition to ensure compliance with the instrument manual and the AMD. Below is a summary of the tasks performed on the Partisol Sampler:

- Siting Location Audit
- Ambient Pressure Audit
- Ambient Temperature Audit
- Filter Temperature Audit
- Leakage Rate Audit
- Flow Rate Audit
- Instrument Condition and Recommendations

GHD verified all of these parameters using calibrated reference instruments. GHD reference instruments either have National Institute of Standards and Technology (NIST) Traceable Certifications, current manufacturer certification, or were verified by a primary standard. The GHD quarterly audit field form can be found in Appendix A. All calibrations and certifications can be found in Appendix B.

3. Audit Results

3.1 Siting Location Audit Results (AEP Station ID 00010348-I-1)

The siting location of the Partisol Sampler meets the requirements of Chapter 3, of the AMD. Table 3.1 of this report compares the AMD Siting Requirements for Intermittent Samplers versus the current Partisol sampler location.

- The current coordinates of the Partisol Sampler are 53.297961, -112.416076.
- The distance from the nearest roadway is 21 m.

Table 3.1 AMD Requirements vs. Current Partisol Sampler Location

Site Characteristics	AMD	Requirements	Current Location	Specification
Sampler Inlet-height above ground (abg)	Minir	num 2 m, Maximum 15 m	Meets Requirement	4.63 m abg
Other Requirements	a.	Distance from an obstacle greater than 2.5 times the height of the obstacle above the sampler.	Meets Requirement	>2.5 times
	b.	At least 2 m from any other samplers or inlets with flow rates greater than 200 litres (L) per minute,	Meets Requirement	None
		Or at least 1 m apart from any other samplers or inlets with flow rates less than or equal of 200 L per minute.	Meets Requirement	None
	C.	Unrestricted air flow in three to four wind quadrants.	Meets Requirement	4/4 Unrestricted Quadrants

3.2 Pressure and Temperature Audit Results (AEP Station ID 00010348-I-1)

The pressure and temperature audit results of the Partisol Sampler meet the requirements of Chapter 4, of the AMD. Table 3.2 of this report compares the reference results versus the Partisol Sampler readings.

Table 3.2 Reference Results vs. Partisol Sampler Readings

Parameter	Partisol	Reference	Difference	Limit	Pass/Fail
Ambient Temperature (°C)	18.6	18.9	0.3	<u>+</u> 2%	Pass
Barometric Pressure (mmHg)	700	702	2.0	<u>+</u> 10 mmHg	Pass
Filter Temperature (°C)	21.5	21.4	0.1	<u>+</u> 2%	Pass
Flow	16.7 L/min	16.3 L/min	0.5 L/min	<u>+</u> 1 L/min	Pass

3.3 Leak Check Result (AEP Station ID 00010348-I-1)

The Partisol firmware performs leak checks in automatic mode and indicates either a "pass" or "fail" based on a pressure drop off -4 mmHg per minute. The Partisol Sampler passed the requirements of Chapter 4 of the AMD.

3.4 Flow Audit (AEP Station ID 00010348-I-1)

The flow audit results of the Partisol Sampler meet the requirements of Chapter 4 of the AMD, refer to Table 3.2.

3.5 Instrument Condition and Recommendations (AEP Station ID 00010348-I-1)

The Partisol Sampler was visually and functionally inspected on the audit day. Audit recommendations and instrument conditions are listed below:

- · Liquid crystal display screen is functioning.
- Filter exchange cabinet has been cleaned.
- Ventilation fan filters are clean.
- Filter exchange mechanism is operating normally.
- Filter v-seals are in good condition.
- Ambient temperature and pressure sensor wires in good condition.
- Main power connection wire in good condition.

3.5.1 Recommendations

GHD recommends opening and cleaning PM₁₀ sampling inlet prior to next sampling event.

All of Which is Respectfully Submitted,

Bunke Lucar

GHD

Brandon Lawrence, QSTI

Appendices GHD | Quarterly Total Suspended Particulate (TSP) High Volume Sampler Calibration | 11114644 (28)

Appendix A Quarterly Audit Forms

TE-5170V Sampler Calibration Worksheet (Using G-Factor)

Site and Calibration Information

Site Calibration Orifice

Location: Facility Sam pler Make: Tisch Environm ental

 Date: Aug 28, 2019
 Model: TE-5028A

 Tech.: T. Lewis
 Serial: 1203

 maler: TE-5170V
 Oa Slope (m): 0.96368

 Sampler: TE-5170V
 Qa Slope (m): 0.96368

 Serial #: P8580 TSP VFC
 Qa Int (b): -0.00652

VFC G-Factor: 0.09095235 Calibration due date: 28/11/2020

Ambient Conditions

Temp (deg F): 65.5

Ta (deg K): 292 Barometric Press (in Hg): 27.58
Ta (deg C): 18.6 Pa (mm Hg): 700.5

Calibration Information

Run	Orifice	Qa	Sampler	Pf		Calculated	% of
Number	<u>"H2O</u>	m3/min	<u>"H2O</u>	mm Hg	Po/Pa	m3/min	<u>Diff</u>
1	3 2 4	1 212	5.35	9.985	0.986	1.279	5 . 53
2	3.22	1 208	6.78	12 . 653	0.982	1.274	5.46
3	3.08	1.182	7.88	14.706	0.979	1.270	7.45
4	2.98	1.163	8.33	15.546	0.978	1.268	9.12
5	2.91	1.149	9.70	18.103	0.974	1 263	9.92

Calculate Total Air Volume Using G-Factor

Enter Average Temperature During Sampling Duration (Deg F)	65.50
Average Temperature During Sampling Duration (Deg K)	291.61
Enter Average Barometric Pressure During Sampling Duration (In Hg)	27.58
Average Barometric Pressure During Sampling (mm Hg)	700.53
Enter Clean Filter Sampler Inches of Water	3.45
Enter Dirty Filter Sampler Inches of Water	3.45
Average Filter Sampler (mm Hg)	6.44
Enter Total Runtime in Hours (xx.xx)	0.25
	D /D 0 001

Po/Pa: 0.991

Calculated Flow Rate (m3/min): 1.286

Total Flow (m3): 1929

Calculations

Calibrator Flow (Qa) = 1/Slope*(SQRT(H20*(Ta/Pa))-Intercept)

Pressure Ratio (Po/Pa) = 1-Pf/Pa

Difference = (Look Up Flow-Calibrator Flow)/Calibrator Flow*100

NOTE: Ensure calibration orifice has been certified within 12 months of use

TE-5170V Sampler Calibration Worksheet (Using G-Factor)

Site and Calibration Information

Site <u>Calibration Orifice</u>

Location: Ryby SchoolSampler Make: Tisch Environm ental

Date: Aug 28, 2019 Model: TE-5028A
Tech.: Trevor Lewis Serial: 1203
Sampler: TE-5170V Qa Slope (m): 0.96368

 Serial #: P8581 TSP VFC
 Qa Int (b): -0.00652

 VFC G-Factor: 0.090677198
 Calibration due date: 28/11/2020

Ambient Conditions

Temp (deg F): 65.5
Ta (deg K): 292
Barometric Press (in Hg): 27.50

Ta (deg C): 18.6 Pa (mm Hg): 698.5

Calibration Information

Run	Orifice	Qa	Sampler	Pf		Calculated	% of
Number	<u>"H2O</u>	m3/min	<u>"H2O</u>	mm Hg	Po/Pa	m3/min	Diff
1	3.20	1206	5.13	9.574	0.986	1.279	6.05
2	3.14	1.195	6.54	12.205	0.983	1.274	6.61
3	3.05	1.178	7.53	14.053	0.980	1.271	7.90
4	2.95	1.158	8 . 60	16.050	0.977	1.267	9.32
5	2.92	1.152	9.60	17.916	0.974	1.263	9 . 63

Calculate Total Air Volume Using G-Factor

Enter Average Temperature During Sampling Duration (Deg F)	65.50
Average Temperature During Sampling Duration (Deg K)	291.61
Enter Average Barometric Pressure During Sampling Duration (In Hg)	27.50
Average Barometric Pressure During Sampling (mm Hg)	698.50
Enter Clean Filter Sampler Inches of Water	3.45
Enter Dirty Filter Sampler Inches of Water	3.45
Average Filter Sampler (mm Hg)	6.44
Enter Total Runtime in Hours (xx.xx)	0.25
• •	D /D 0 001

Po/Pa: 0.991

Calculated Flow Rate (m3/min): 1.286

Total Flow (m3): 1928

Calculations

Calibrator Flow (Qa) = 1/Slope*(SQRT(H20*(Ta/Pa))-Intercept)

Pressure Ratio (Po/Pa) = 1-Pf/Pa

% Difference = (Look Up Flow-Calibrator Flow)/Calibrator Flow*100

NOTE: Ensure calibration orifice has been certified within 12 months of use

Appendix B Calibration Certificates

16975 Leslie Street Newmarket, ON L3Y 9A1 Tel: (905) 952-3750 Fax: (905) 952-3751

MONTRÉAL

20800 Boul. Industriel Ste-Anne-de-Bellevue, QC H9X 0A1 Tel: (514) 457-7280 Fax: (514) 457-4329

CALGARY

#209, 4615 112 Ave SE Calgary, AB T2C 5J3 Tel: (403) 272-9332 Fax: (403) 248-5194

www.itm.com - information@itm.com

Calibration Certificate

Customer: GHD Ltd.

Certificate: C232934-00-02

Unit Identification

Manufacturer: Fluke Model: 1551A Ex

Description: Stik Thermometer

Calibration Date

Calibration Date: 18-Sep-2018

Due Date: 18-Sep-2019

Serial: 3520009

Unit ID: N/A

Calibration Conditions

Temperature: 22.8°C Humidity: 33 %

Barometric Pressure: N/A

General Information

Remark: N/A

Standards Used

<u>Unit ID</u>	Manufacturer	Model	Cal Date	Due Date
CAL0080	Burns Engineering	12001-A-12-6-2-A	4-Jun-2018	4-Jun-2021
CAL0124	Hart Scientific	1502A	11-Apr-2018	11-Apr-2019
CAL0223	Ametek	RTC-158B	10-Sep-2018	10-Mar-2020

The calibration was performed using measurement standards traceable to the National Measurement Institute Standards (NMIS) part of the National Research Council of Canada (NRC) or the National Institute of Standards and Technology (NIST), or to accepted instrinsic standards or measurement, or is derived by ratio type self-calibration techniques. Measurement uncertainties given in this report are based on a coverage factor of k=2 corresponding to a confidence level of approximately 95%.

Calibrated by: A. Atton

Andry Allan

16975 Leslie Street Newmarket, ON L3Y 9A1 Tel: (905) 952-3750 Fax: (905) 952-3751

MONTRÉAL

20800 Boul. Industriel Ste-Anne-de-Bellevue, QC H9X 0A1 Tel: (514) 457-7280 Fax: (514) 457-4329

CALGARY

#209, 4615 112 Ave SE Calgary, AB T2C 5J3 Tel: (403) 272-9332 Fax: (403) 248-5194

www.itm.com - information@itm.com

Test Results

Procedure: Fluke Stik Thermometer /RTC-158B,1502,PRT Rev: 1.0

Data Type: As Found Results: Pass

Test Description	True Value	Reading	Lower Limit	Upper Limit	Test Status	Exp Uncert
0.030 °C		0.06 °C	-0.02 °C	0.08 °C	Pass	8.3e-003 °C
25.003 °C		25.04 °C	24.95 °C	25.05 °C	Pass	8.8e-003 °C
99.765 °C		99.77 °C	99.72 °C	99.81 °C	Pass	1.0e-002 °C
149.558 °C		149.60 °C	149.51 °C	149.61 °C	Pass	1.2e-002 °C

INSTRUMENT CALIBRATION REPORT

Pine Environmental Services, Inc

Instrument ID 19821

Description TSI 9565P VelociCalc

Calibrated 4/9/2019

Manufacturer TSI
Model Number 9565P
Serial Number 9565P1232015

Location New Jersey
Temp 75

Classification

Status pass

Frequency Yearly EOM
Department Lab

Humidity 30

		6.1					
		Cal	ibration Specificat	tions			
G	roup# 1			Range Acc %	0.0000		
Group	Name Barometri	c Pressure		Reading Acc %	2.0000		
State	d Accy Pct of Rea	ding		Plus/Minus	0.000		
Nom In Val / In Val	In Type	Out Val	Out Type	Fnd As	Lft As	Dev%	Pass/Fail
30.000 / 29.420	inHg	29.420	inHg	29.430	29.420	0.00%	Pass
G	roup# 2			Range Acc %	0.0000		
Group	Name Differenti	al Pressure		Reading Acc %	1.0000		
State	d Accy Pct of Rea	ding		Plus/Minus	0.00		
Nom In Val / In Val	In Type	Out Val	Out Type	Fnd As	Lft As	Dev%	Pass/Fail
-4.00 / -4.00	inH2O	-4.00	inH2O	-4.03	-4.03	0.75%	Pass
4.00 / 4.00	inH2O	4.00	inH2O	4.03	4.03	0.75%	Pass
8.00 / 8.00	inH2O	8.00	inH2O	8.06	8.06	0.75%	Pass
12.00 / 12.00	inH2O	12.00	inH2O	12.07	12.07	0.58%	Pass

Test Instruments Used During the Calibration (As Of Cal Entry Date)							
Test Instrument ID	Description	Manufacturer	Serial Number	Last Cal Date	Next Cal Date		
DWYER	Dwyer 477AV-1 Digital	Dwyer	005PM2	9/21/2018	9/21/2019		
477AV-1	Manometer						
OMEGA	Omega HX93AC/DP25-E	Omega Engineering	1010368 035025	10/11/2018	10/11/2020		
HX93AC/DP25-			035026				
E							

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated David Galego

Advanced Labs, Inc. hereby certifies that this instrument is calibrated and functions to meet the manufacture's specifications using NIST traceable standards, or is derived from accepted values of physical constants.

16975 Leslie Street Newmarket, ON L3Y 9A1 Tel: (905) 952-3750 Fax: (905) 952-3751

MONTRÉAL

20800 Boul. Industriel Ste-Anne-de-Bellevue, QC H9X 0A1 Tel: (514) 457-7280 Fax: (514) 457-4329

CALGARY

#209, 4615 112 Ave SE Calgary, AB T2C 5J3 Tel: (403) 272-9332 Fax: (403) 248-5194

www.itm.com - information@itm.com

Calibration Certificate

Customer: GHD Ltd.

Certificate: C232934-00-01

Unit Identification

Model: 475-0-FM

Manufacturer: Dwyer

Description: Digital Manometer

Calibration Date

Calibration Date: 17-Sep-2018

Due Date: 17-Sep-2019

Serial: N/A

Unit ID: MAN-CAL-001

Calibration Conditions

Temperature: 21.8°C Humidity: 33 %

Barometric Pressure: N/A

General Information

Remark: N/A

Standards Used

Unit ID
CAL0224

Manufacturer

Fluke

Model 750P01

Cal Date

16-Apr-2018

Due Date

16-Oct-2018

The calibration was performed using measurement standards traceable to the National Measurement Institute Standards (NMIS) part of the National Research Council of Canada (NRC) or the National Institute of Standards and Technology (NIST), or to accepted instrinsic standards or measurement, or is derived by ratio type self-calibration techniques. Measurement uncertainties given in this report are based on a coverage factor of k=2 corresponding to a confidence level of approximately 95%.

Calibrated by: A. Atton

Andre Attor

Approved by:

Certificate: C232934-00-01

Asset: ITM0017905

Calibration Certificate

Page 1/2

16975 Leslie Street Newmarket, ON L3Y 9A1 Tel: (905) 952-3750 Fax: (905) 952-3751

MONTRÉAL

20800 Boul. Industriel Ste-Anne-de-Bellevue, QC H9X 0A1 Tel: (514) 457-7280

CALGARY #209, 4615 112 Ave SE

Calgary, AB T2C 5J3 Tel: (403) 272-9332 Fax: (403) 248-5194

Fax: (514) 457-4329 www.itm.com - information@itm.com

Test Results

Procedure: Pressure Gauge 10.00 IN.W.C 0.5% FS /750P01 Rev: 1.0

Data Type: As Found Results: Pass

	True Value re if more than one listed):	Reading	Lower Limit	Upper Limit	Test Status	Exp Uncert
0.5% of full scale UUT is set to the nomin actual pressure read by 1 inH2O 2 inH2O 4 inH2O 6 inH2O 8 inH2O 10 inH2O	al value, Reading is the the system instrument.	1 inH2O 2 inH2O 4 inH2O 6 inH2O 8 inH2O 10 inH2O	1 inH2O 2 inH2O 4 inH2O 6 inH2O 8 inH2O 10 inH2O	1 inH2O 2 inH2O 4 inH2O 6 inH2O 8 inH2O 10 inH2O	Pass Pass Pass Pass Pass Pass	5.8e+000 inH2O 5.8e+000 inH2O 5.8e+000 inH2O 5.8e+000 inH2O 5.8e+000 inH2O 5.8e+000 inH2O

Certificate: C232934-00-01 Asset: ITM0017905

Calibration Certificate

NIST Traceable Transfer Standard Calibration

Calibration Ambient Te Amb Press	emp, °K:	17/2016 295.5 1.0000	Orific Pri Si Mand	÷	1218- 774300 11218	By: _	
Std ∆H (inH₂O)	Manometer ΔH (inH ₂ O)	Actual Flow (alpm)	Calc Flow (alpm)	Difference* (%diff)			
6.67 5.86 5.10 4.39 3.73 3.12 2.56	6.67 5.86 5.10 4.39 3.73 3.12 2.56	20.179 18.988 17.733 16.490 15.233 13.964 12.683	20.209 18.970 17.727 16.479 15.224 13.962 12.688	-0.15 0.09 0.03 0.07 0.06 0.02 -0.04			s Act Flow on Results: 0.4452 0.4430 1.0000

11.401

The MiniFlo calibration is performed with an NIST-traceable standard. Each unit has a unique pair of calibration constants derived from the calibration which are used to calculate the actual air flow rate at all ambient conditions. The unit's calibration should be recertified annually.

-0.10

The actual flow rate is a function of the pressure drop across the device, the ambient temperature, and the ambient pressure. The relationship of these variables and the unique calibration constants ("m" and "b") for each device is presented in the following equation (Eq.A):

$$Q_{act} = m_{flo} \times \sqrt{\frac{\Delta H \times T_{act}}{P_{act}}} + b_{flo}$$
 $Q_{act} = actual flowrate, liters per min $\Delta H = manometer reading, inches of water T_{act} = ambient temperature, °K P_{act} = ambient pressure, atmospheres$$

* all points must be within ± 2%

CAUTION: The weather service, most airports, etc, reduce the atmospheric pressure to a common reference (sea level). The equation above requires the atmospheric pressure at the location where the MiniFlo is being used.

The equation below may be used to estimate the ambient atmospheric pressure at any elevation if the sea level pressure is known.

$$P_{act} = P_{sea} \times \left(1 - \frac{E}{145300}\right)^{5.25}$$
 $P_{act} = Ambient Atmospheric Pressure P_{sea} = Sea Level Atmospheric Pressure E = Site elevation, feet$

2.05

2.05

11.390

Airmetrics

1940 Don St., Suite 300 Springfield, OR 97477 (541) 683-5420

about GHD

GHD is one of the world's leading professional services companies operating in the global markets of water, energy and resources, environment, property and buildings, and transportation. We provide engineering, environmental, and construction services to private and public sector clients.

Brandon Lawrence
Brandon.lawrence@ghd.com
403.538.8605

www.ghd.com

Quarterly Audit Partisol FRM Model 2000

Clean Harbors 50114 Range Rd. 173 Ryley, Alberta T0B 4A0

Quarterly Audit Date: December 18, 2019

Clean Harbors

Table of Contents

	1.	Introd	uction		1
	2.	Audit	Procedure	e	1
	3.	Audit	Results		1
		3.1	Siting Lo	cation Audit Results (AEP Station ID 00010348-I-1)	1
		3.2	Pressure	e and Temperature Audit Results (AEP Station ID 00010348-I-1)	2
		3.3	Leak Che	eck Result (AEP Station ID 00010348-I-1)	2
		3.4	Flow Aud	dit (AEP Station ID 00010348-I-1)	2
		3.5	Instrume	ent Condition and Recommendations (AEP Station ID 00010348-I-1)	3
			3.5.1	Recommendations	3
Та	ble	Ind	ех		
	Table	3.1	AMD Re	quirements vs. Current Partisol Sampler Location	2
	Table	3.2	Reference	ce Results vs. Partisol Sampler Readings	2
Αp	pen	dix	Inde	e X	
	Appe	ndix A	Quart	terly Audit Form	
	Appe	ndix B	Calib	ration Certificates	

1. Introduction

GHD Limited (GHD) was retained by Clean Harbors to conduct a Quarterly Audit at 50114 Range Road 173 Ryley, Alberta (Facility) on December 18, 2019. The Quarterly Audit was conducted on the Partisol FRM 2000 Particulate Matter less than 10 microns (PM₁₀) Sampler (Partisol Sampler), located on the roof of the Ryley Lift Station (AEP Station ID 00010348-I-1), which is southeast of the Facility. The coordinates of the lift station are 53.297961, -112.416076.

2. Audit Procedure

The Partisol Sampler was audited in accordance with the instrument manual and the Alberta Air Monitoring Directive, 2015 (AMD). Siting location, ambient pressure, ambient temperature, filter temperature, leakage rate and flow rate were audited, as well as overall instrument condition to ensure compliance with the instrument manual and the AMD. Below is a summary of the tasks performed on the Partisol Sampler:

- Siting Location Audit
- Ambient Pressure Audit
- Ambient Temperature Audit
- Filter Temperature Audit
- Leakage Rate Audit
- Flow Rate Audit
- Instrument Condition and Recommendations

GHD verified all of these parameters using calibrated reference instruments. GHD reference instruments either have National Institute of Standards and Technology (NIST) Traceable Certifications, current manufacturer certification, or were verified by a primary standard. The GHD quarterly audit field form can be found in Appendix A. All calibrations and certifications can be found in Appendix B.

3. Audit Results

3.1 Siting Location Audit Results (AEP Station ID 00010348-I-1)

The siting location of the Partisol Sampler meets the requirements of Chapter 3, of the AMD. Table 3.1 of this report compares the AMD Siting Requirements for Intermittent Samplers versus the current Partisol sampler location.

- The current coordinates of the Partisol Sampler are 53.297961, -112.416076.
- The distance from the nearest roadway is 21 m.

Table 3.1 AMD Requirements vs. Current Partisol Sampler Location

Site Characteristics	AMD	Requirements	Current Location	Specification
Sampler Inlet-height above ground (abg)	Minir	num 2 m, Maximum 15 m	Meets Requirement	4.63 m abg
Other Requirements	a.	Distance from an obstacle greater than 2.5 times the height of the obstacle above the sampler.	Meets Requirement	>2.5 times
	b.	At least 2 m from any other samplers or inlets with flow rates greater than 200 litres (L) per minute,	Meets Requirement	None
		Or at least 1 m apart from any other samplers or inlets with flow rates less than or equal of 200 L per minute.	Meets Requirement	None
	C.	Unrestricted air flow in three to four wind quadrants.	Meets Requirement	4/4 Unrestricted Quadrants

3.2 Pressure and Temperature Audit Results (AEP Station ID 00010348-I-1)

The pressure and temperature audit results of the Partisol Sampler meet the requirements of Chapter 4, of the AMD. Table 3.2 of this report compares the reference results versus the Partisol Sampler readings.

Table 3.2 Reference Results vs. Partisol Sampler Readings

Parameter	Partisol	Reference	Difference	Limit	Pass/Fail
Ambient Temperature (°C)	-5.0	-4.9	0.1	<u>+</u> 2%	Pass
Barometric Pressure (mmHg)	697	696	1	<u>+</u> 10 mmHg	Pass
Filter Temperature (°C)	-2.0	-2.04	0.04	<u>+</u> 2%	Pass
Flow	16.7 L/min	16.6 L/min	0.1 L/min	<u>+</u> 1 L/min	Pass

3.3 Leak Check Result (AEP Station ID 00010348-I-1)

The Partisol firmware performs leak checks in automatic mode and indicates either a "pass" or "fail" based on a pressure drop off -4 mmHg per minute. The Partisol Sampler passed the requirements of Chapter 4 of the AMD.

3.4 Flow Audit (AEP Station ID 00010348-I-1)

The flow audit results of the Partisol Sampler meet the requirements of Chapter 4 of the AMD, refer to Table 3.2.

3.5 Instrument Condition and Recommendations (AEP Station ID 00010348-I-1)

The Partisol Sampler was visually and functionally inspected on the audit day. Audit recommendations and instrument conditions are listed below:

- Liquid crystal display screen is functioning.
- Filter exchange cabinet has been cleaned.
- Ventilation fan filters are clean.
- Filter exchange mechanism is operating normally.
- Filter v-seals are in good condition.
- Ambient temperature and pressure sensor wires in good condition.
- Main power connection wire in good condition.

3.5.1 Recommendations

GHD recommends opening and cleaning PM₁₀ sampling inlet prior to next sampling event.

Appendices GHD | Quarterly Audit Partisol FRM Model 2000 | 11114644 (31)

Appendix A Quarterly Audit Form

GHD Quarterly Audit Form

Date	1	2/18/2019		Weather Cond.:	S	unny/Ca	lm
Owner	Cle	ean Harbors		Start Time:		11:40	
Station Name	Ryle	ey Lift Station		End Time:	12:10		
Parameter	•	PM ₁₀		Performed By:	Tr	evor Lev	vis
Partisol FRM Mod	lel 2000 Identification			Sampler Data			
Make/Model:	R & P Partisol FRM 200	Λ		Temperature:	-5.5°C		
Unit ID:	Ryley Lift Station	<u> </u>		Pressure:	697 mmHg		
S/N:	200FB209860905			Flow Set Point:	16.7		
GHD Reference S							
GIID Reference 3	Flow		Pressure	Temperature	Manom	eter	
Make:	AirMetric	•e	TSI	Fluke	Dwye		
Model:	FRM		9565-P	1551A EX	Series		
Serial Number:	FRM121	Q	9565P1324039	3520009	MAN-CA		
Calibration Date:	5/17/201	-	3/15/2019	10/8/2019	10/8/20		
Audit Data	3/11/201	0	3/13/2013	10/0/2019	10/0/20	313	
Addit Data			Sampler Data	Reference Data	Difference	Pa	ss/Fail
Ambient Tempera	nture (+2 %)		-5.0	-4.9	0.10		Pass
Barometric Press			697	696	1.00		Pass
Filter Temperatur			-2.0	-2.04	0.04		Pass
Flow (±1.0 litres/n			16.7	16.6	0.10		Pass
Leak Check	,				00		
Pressure Drop	lr	nitial Pressure	Final Pressure	Pressure Drop	Pass/l	ail	
(-4 mmHg / minute)	14.00	14.00	0.00	Pas	S	in.HG
Leak check was pe	erformed in automatic mo	de, sampler indi	cated:	Pass @ 5 mmHg/min			
As Found/As Left			Yes/No		As Found	As Left	Pass/Fail
Did the ambient te	mperature require adjustr	nent?	No		-5.0	-5.0	Pass
Did the barometric	pressure require adjustm	ent?	No		697	697	Pass
Did the filter tempe	erature require adjustmen	t?	No		-2.0	-2.0	Pass
Did the flow audit r	equire adjustment?		No		16.7	16.7	Pass
Comments Partisol sampler w	as moderately dirty, GHD	cleaned the sar	mpler.			_	

Set Point	Actual Flow (Qact)	Absolute Difference	Pass/Fail	Manometer (DH)	4.5 "H2O	
(lpm)	(lpm)	(lpm)	(<u>+</u> 1 lpm)	Actual Temp (Tact)	268.15 °K	-5.0°C
				Actual Pres (Pact)	0.928 bar	
16.7	16.6	0.1	Pass	Actual Pres (Pact)	27.40 inHg	
TS Linear Regr	ession Constants			$\sqrt{\Lambda H \times Tact}$		
mflo) =	0.4452		Qact = mfl	$o \times \frac{\sqrt{\Delta H \times Tact}}{Pact} + bflo$		
bflo) =	0.4430			Pact		

Appendix B Calibration Certificates

16975 Leslie Street Newmarket, ON L3Y 9A1 Tel: (905) 952-3750 Fax: (905) 952-3751

MONTRÉAL

20800 Boul. Industriel Ste-Anne-de-Bellevue, QC H9X 0A1 Tel: (514) 457-7280 Fax: (514) 457-4329

CALGARY

#209, 4615 112 Ave SE Calgary, AB T2C 5J3 Tel: (403) 272-9332 Fax: (403) 248-5194

www.itm.com - information@itm.com

Calibration Certificate

Customer: GHD Ltd.

Certificate: C299060-00-02

Unit Identification

Manufacturer: Fluke

Model: 1551A Ex

Description: Stik Thermometer

Calibration Date

Calibration Date: 8-Oct-2019

Due Date: 8-Oct-2020

Serial: 3520009

Unit ID: THM-CAL-001

Calibration Conditions

Temperature: 22.1°C Humidity: 26 %

Barometric Pressure: N/A

General Information

Remark: N/A

Standards Used

Unit ID	Manufacturer	Model	Cal Date	Due Date
CAL0080	Burns Engineering	12001-A-12-6-2-A	4-Jun-2018	4-Jun-2021
CAL0124	Hart Scientific	1502A	11-Apr-2019	11-Apr-2020
CAL0223	Ametek	RTC-158B	2-Apr-2019	2-Oct-2020

The calibration was performed using measurement standards traceable to the National Measurement Institute Standards (NMIS) part of the National Research Council of Canada (NRC) or the National Institute of Standards and Technology (NIST), or to accepted instrinsic standards or measurement, or is derived by ratio type self-calibration techniques. Measurement uncertainties given in this report are based on a coverage factor of k=2 corresponding to a confidence level of approximately 95%.

Calibrated by: A. Atton

Andry Att

Certificate: C299060-00-02

Asset: ITM0003733

Page 1/2

Calibration Certificate

16975 Leslie Street Newmarket, ON L3Y 9A1 Tel: (905) 952-3750

Fax: (905) 952-3751

MONTRÉAL

20800 Boul. Industriel Ste-Anne-de-Bellevue, QC H9X 0A1 Tel: (514) 457-7280 Fax: (514) 457-4329

CALGARY

#209, 4615 112 Ave SE Calgary, AB T2C 5J3 Tel: (403) 272-9332 Fax: (403) 248-5194

www.itm.com - information@itm.com

Test Results

Procedure: Fluke Stik Thermometer /RTC-158B,1502,PRT Rev: 1.0

Data Type: As Found Results: Pass

Test Description	True Value	Reading	Lower Limit	Upper Limit	Test Status	Exp Uncert
-0.058 °C		-0.08 °C	-0.11 °C	-0.01 °C	Pass	8.3e-003 °C
25.024 °C		24.98 °C	24.97 °C	25.07 °C	Pass	8.8e-003 °C
100.289 °C		100.26 °C	100.24 °C	100.34 °C	Pass	1.0e-002 °C
150.471 °C		150.45 °C	150.42 °C	150.52 °C	Pass	1.2e-002 °C

Certificate: C299060-00-02

Calibration Certificate Asset: ITM0003733

Page 2/2

INSTRUMENT CALIBRATION REPORT

Classification

Status pass
Frequency Yearly EOM

Department Lab Humidity 34

Pine Environmental Services, Inc

Instrument ID 29813
Description 19806
Calibrated 3/15/2019

Manufacturer TSI
Model Number 9565-P
Serial Number 9565P1324039
Location New Jersey

cation New Jersey
Temp 73

		<u>Cal</u>	ibration Specificat	<u>tions</u>			
G	roup# 1			Range Acc %	0.0000		
Group	Name Differenti	al Pressure		Reading Acc %	1.0000		
State	d Accy Pct of Re	ading		Plus/Minus	0.00		
Nom In Val / In Val	<u>In Type</u>	Out Val	Out Type	Fnd As	Lft As	Dev%	Pass/Fail
-4.00 / -4.00	inH2O	-4.00	inH2O	-4.03	-4 .03	0.75%	Pass
4.00 / 4.00	inH2O	4.00	inH2O	4.04	4.04	1.00%	Pass
8.00 / 8.00	inH2O	8.00	inH2O	8.06	8.06	0.75%	Pass
12.00 / 12.00	inH2O	12.00	inH2O	12.07	12.07	0.58%	Pass
G	roup# 2			Range Acc %	0.0000		
Group	Name Barometr	ic Pressure		Reading Acc %	1.0000		
State	d Accy Pct of Re	ading		Plus/Minus	0.00		
Nom In Val / In Val	In Type	Out Val	Out Type	Fnd As	Lft As	Dev%	Pass/Fail
30.00 / 29.72	inHg	29.72	inHg	29.71	29.71	-0.03%	Pass

Test Instruments U	Test Instruments Used During the Calibration (As Of Cal Entry Date)						
Test Instrument ID	Description	<u>Manufacturer</u>	Serial Number	Last Cal Date	Next Cal Date		
DWYER	Dwyer 477AV-1 Digital	Dwyer	005PM2	9/21/2018	9/21/2019		
477AV-1	Manometer						
OMEGA	Omega HX93AC/DP25-E	Omega Engineering	1010368 035025	10/11/2018	10/11/2020		
HX93AC/DP25-			035026				
Е			······································				

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated David Galego

Advanced Labs, Inc. hereby certifies that this instrument is calibrated and functions to meet the manufacture's specifications using NIST traceable standards, or is derived from accepted values of physical constants.

INSTRUMENT CALIBRATION REPORT

Pine Environmental Services, Inc

Instrument ID 24685
Description TSI 964 Probe
Calibrated 4/12/2019

Test Instruments Us	sed During the Calibration				
			G. J. I. Name bear		al Entry Date)
Test Instrument ID	<u>Description</u>	<u>Manufacturer</u>	Serial Number	Last Cal Date	Next Cal Date
MICHELL	Relative Humidity Meter	Michell	273296	9/17/2018	9/17/2019
DM-509-TX-01					
OMEGA	Omega HX93AC/DP25-E	Omega Engineering	1010368 035025	10/11/2018	10/11/2020
HX93AC/DP25-			035026		
E					
OMEGA	Omega =	Omega Engineering	168377/8375030	10/11/2018	10/11/2020
PX02K1-16A5T	PX02K1-16A5T/DP25-E-A				
/DP25-E-A					
OMEGA	Omega WT4401-D	Omega Engineering	101105	10/11/2018	10/11/2020
WT4401-D	_				

Notes about this calibration

Calibration Result Calibration Successful

Who Calibrated David Galego

Advanced Labs, Inc. hereby certifies that this instrument is calibrated and functions to meet the manufacture's specifications using NIST traceable standards, or is derived from accepted values of physical constants.

16975 Leslie Street Newmarket, ON L3Y 9A1 Tel: (905) 952-3750 Fax: (905) 952-3751

MONTRÉAL

20800 Boul. Industriel Ste-Anne-de-Bellevue, QC H9X 0A1 Tel: (514) 457-7280 Fax: (514) 457-4329

CALGARY

#209, 4615 112 Ave SE Calgary, AB T2C 5J3 Tel: (403) 272-9332 Fax: (403) 248-5194

www.itm.com - information@itm.com

Calib	ration Certificate
Customer: GHD Ltd.	
Certificate: C299060-00-01	
Unit Identification	
Manufacturer: Dwyer Model: 475-0-FM Description: Digital Manometer	Serial: N/A Unit ID: MAN-CAL-001
Calibration Date	Calibration Conditions
Calibration Date: 8-Oct-2019 Due Date: 8-Oct-2020	Temperature: 21.5°C Humidity: 27 % Barometric Pressure: N/A
General Information	

Standards Used				
Unit ID	<u>Manufacturer</u>	Model	Cal Date	Due Date
CAL0224	Fluke	750P01	5-Jul-2019	5-Jan-2020

The calibration was performed using measurement standards traceable to the National Measurement Institute Standards (NMIS) part of the National Research Council of Canada (NRC) or the National Institute of Standards and Technology (NIST), or to accepted instrinsic standards or measurement, or is derived by ratio type self-calibration techniques. Measurement uncertainties given in this report are based on a coverage factor of k=2 corresponding to a confidence level of approximately 95%.

Approved by:

Calibrated by: A. Atton

Andra Atta

Certificate: C299060-00-01
Asset: ITM0017905
Calibration Certificate

Page 1/2

16975 Leslie Street Newmarket, ON L3Y 9A1 Tel: (905) 952-3750 Fax: (905) 952-3751

MONTRÉAL

20800 Boul. Industriel Ste-Anne-de-Bellevue, QC H9X 0A1 Tel: (514) 457-7280 Fax: (514) 457-4329

CALGARY

#209, 4615 112 Ave SE Calgary, AB T2C 5J3 Tel: (403) 272-9332 Fax: (403) 248-5194

www.itm.com - information@itm.com

Test Results

Procedure: Pressure Gauge 10.00 IN.W.C 0.5% FS /750P01 Rev: 1.1

Data Type: As Found Results: Fail

Test Description	True Value	Reading	Lower Limit	Upper Limit	Test Status	Exp Uncert
Tolerance used (additive	if more than one listed):					
0.5% of full scale						
UUT is set to the nomina	al value, Reading is the					
actual pressure read by	the system instrument.					
1.000 inH2O		1.007 inH2O	0.950 inH2O	1.050 inH2O	Pass	1.6e-002 inH2O
2.000 inH2O		2.033 inH2O	1.950 inH2O	2.050 inH2O	Pass	1.6e-002 inH2O
4.000 inH2O		4.032 inH2O	3.950 inH2O	4.050 inH2O	Pass	1.6e-002 inH2O
6.000 inH2O		6.077 inH2O	5.950 inH2O	6.050 inH2O	Fail	1.6e-002 inH2O
8.000 inH2O		8.089 inH2O	7.950 inH2O	8.050 inH2O	Fail	1.6e-002 inH2O
10.000 inH2O		10.113 inH2O	9.950 inH2O	10.050 inH2O	Fail	1.6e-002 inH2O

Test Results

Procedure: Pressure Gauge 10.00 IN.W.C 0.5% FS /750P01 Rev: 1.1

Data Type: As Left Results: Pass

Test Description	True Value	Reading	Lower Limit	Upper Limit	Test Status	Exp Uncert
Results Run: 2.00						
Tolerance used (additive	if more than one listed):					
0.5% of full scale						
UUT is set to the nomina	al value, Reading is the					
actual pressure read by	the system instrument.					
1.000 inH2O		0.997 inH2O	0.950 inH2O	1.050 inH2O	Pass	1.6e-002 inH2O
2.000 inH2O		2.001 inH2O	1.950 inH2O	2.050 inH2O	Pass	1.6e-002 inH2O
4.000 inH2O		4.005 inH2O	3.950 inH2O	4.050 inH2O	Pass	1.6e-002 inH2O
6.000 inH2O		6.007 inH2O	5.950 inH2O	6.050 inH2O	Pass	1.6e-002 inH2O
8.000 inH2O		7.999 inH2O	7.950 inH2O	8.050 inH2O	Pass	1.6e-002 inH2O
10.000 inH2O		9.996 inH2O	9.950 inH2O	10.050 inH2O	Pass	1.6e-002 inH2O

Certificate: C299060-00-01

Asset: ITM0017905 Calibration Certificate Page 2/2 =

NIST Traceable Transfer Standard Calibration

Calibration Ambient Te Amb Press	mp, °K:	17/2016 295.5 1.0000	Orific Pri Si Mand	· · · · · · · · · · · · · · · · · · ·	1218- 774300 1218	By:
Std ∆H (inH₂O)	Manometer ΔH (in H_2O)	Actual Flow (alpm)	Calc Flow (alpm)	Difference* (%diff)		
6.67	6.67	20.179	20.209	-0.15		er ∆H vs Act Flow
5.86	5.86	18.988	18.970	0.09	Linear Re	gression Results:
5.10	5.10	17.733	17.727	0.03	m _{flo} =	0.4452
4.39	4.39	16.490	16.479	0.07	b _{flo} =	0.4430
3.73	3.73	15.233	15.224	0.06	r ² =	1.0000
3.12	3.12	13.964	13,962	0.02		
2.56	2.56	12.683	12.688	-0.04		
2.05	2.05	11.390	11.401	-0.10	* all points mu	ust be within ± 2%

The MiniFlo calibration is performed with an NIST-traceable standard. Each unit has a unique pair of calibration constants derived from the calibration which are used to calculate the actual air flow rate at all ambient conditions. The unit's calibration should be recertified annually.

The actual flow rate is a function of the pressure drop across the device, the ambient temperature, and the ambient pressure. The relationship of these variables and the unique calibration constants ("m" and "b") for each device is presented in the following equation (Eq.A):

$$Q_{act} = m_{flo} \times \sqrt{\frac{\Delta H \times T_{act}}{P_{act}}} + b_{flo}$$
 $Q_{act} = actual flowrate, liters per min $\Delta H = manometer reading, inches of water T_{act} = ambient temperature, °K P_{act} = ambient pressure, atmospheres$$

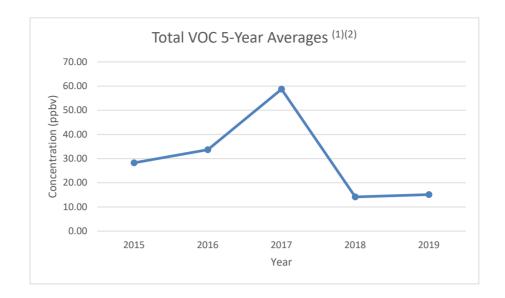
CAUTION: The weather service, most airports, etc, reduce the atmospheric pressure to a common reference (sea level). The equation above requires the atmospheric pressure at the location where the MiniFlo is being used.

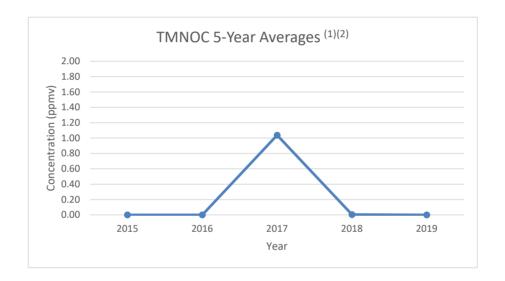
The equation below may be used to estimate the ambient atmospheric pressure at any elevation if the sea level pressure is known.

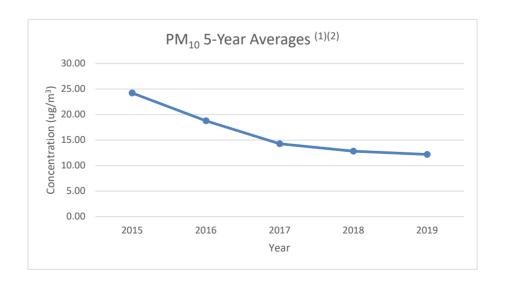
$$P_{act} = P_{sea} \times \left(1 - \frac{E}{145300}\right)^{5.25}$$
 $P_{act} = Ambient Atmospheric Pressure P_{sea} = Sea Level Atmospheric Pressure E = Site elevation, feet$

Airmetrics

1940 Don St., Suite 300 Springfield, OR 97477 (541) 683-5420


about GHD


GHD is one of the world's leading professional services companies operating in the global markets of water, energy and resources, environment, property and buildings, and transportation. We provide engineering, environmental, and construction services to private and public sector clients.


Brandon Lawrence
Brandon.lawrence@ghd.com
403.538.8605

www.ghd.com

Appendix C 5 Year Averages for PM₁₀, VOC and TNMOC Concentrations

Notes:

- (1) All values under the lab method detection limit from 2015-2018 were reported as zero, as per the AMD.
- (2) Values under the lab method detection limit from 2019 onward were reported as the lab detection limit

about GHD

GHD is one of the world's leading professional services companies operating in the global markets of water, energy and resources, environment, property and buildings, and transportation. We provide engineering, environmental, and construction services to private and public sector clients.

Brandon Lawrence
Brandon.lawrence@ghd.com
403.538.8605

www.ghd.com